Repository 'repmatch_gff3'
hg clone https://toolshed.g2.bx.psu.edu/repos/iuc/repmatch_gff3

Changeset 0:a072f0f30ea3 (2015-12-23)
Next changeset 1:e5c7fffdc078 (2016-07-26)
Commit message:
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/repmatch_gff3 commit 0e04a4c237677c1f5be1950babcf8591097996a9
added:
repmatch_gff3.py
repmatch_gff3.xml
repmatch_gff3_macros.xml
repmatch_gff3_util.py
static/images/repmatch.png
test-data/closest_matched_pairs_input1.gff
test-data/detail_out1.tabular
test-data/largest_matched_pairs_input1.gff
test-data/matched_peaks_out1.gff
test-data/statistics_histogram_out1.pdf
test-data/statistics_table_out1.tabular
test-data/unmatched_peaks_out1.tabular
tool_dependencies.xml
b
diff -r 000000000000 -r a072f0f30ea3 repmatch_gff3.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/repmatch_gff3.py Wed Dec 23 09:25:42 2015 -0500
[
@@ -0,0 +1,49 @@
+# repmatch.py
+#
+# Replicate matching - matches paired peaks from two or more replicates
+#
+# Input: one or more gff files (matched_peak output from cwpair2, each a list of paired peaks from a replicate
+#
+# Output: list of matched groups and list of unmatched peaks
+# Files: statistics_table.tabular (file to replicate ID), matched_paired_peaks.tabular, detail.tabular, unmatched_peaks.tabular
+
+import argparse
+import repmatch_gff3_util
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--input', dest='inputs', action='append', nargs=2, help="Input datasets")
+    parser.add_argument('--method', dest='method', default='closest', help='Method of finding match')
+    parser.add_argument('--distance', dest='distance', type=int, default=50, help='Maximum distance between peaks in different replicates to allow merging')
+    parser.add_argument('--step', dest='step', type=int, default=0, help='Step size of distance for each iteration')
+    parser.add_argument('--replicates', dest='replicates', type=int, default=2, help='Minimum number of replicates that must be matched for merging to occur')
+    parser.add_argument('--low_limit', dest='low_limit', type=int, default=-1000, help='Lower limit for c-w distance filter')
+    parser.add_argument('--up_limit', dest='up_limit', type=int, default=1000, help='Upper limit for c-w distance filter')
+    parser.add_argument('--output_files', dest='output_files', default='all', help='Restrict output dataset collections.')
+    parser.add_argument('--output_matched_peaks', dest='output_matched_peaks', help='Matched groups in gff format')
+    parser.add_argument('--output_unmatched_peaks', dest='output_unmatched_peaks', default=None, help='Unmatched paired peaks in tabular format')
+    parser.add_argument('--output_detail', dest='output_detail', default=None, help='Details in tabular format')
+    parser.add_argument('--output_statistics_table', dest='output_statistics_table', default=None, help='Keys in tabular format')
+    parser.add_argument('--output_statistics_histogram', dest='output_statistics_histogram', default=None, help='Histogram')
+
+    args = parser.parse_args()
+
+    dataset_paths = []
+    hids = []
+    for (dataset_path, hid) in args.inputs:
+        dataset_paths.append(dataset_path)
+        hids.append(hid)
+    repmatch_gff3_util.process_files(dataset_paths,
+                                     hids,
+                                     args.method,
+                                     args.distance,
+                                     args.step,
+                                     args.replicates,
+                                     args.up_limit,
+                                     args.low_limit,
+                                     args.output_files,
+                                     args.output_matched_peaks,
+                                     args.output_unmatched_peaks,
+                                     args.output_detail,
+                                     args.output_statistics_table,
+                                     args.output_statistics_histogram)
b
diff -r 000000000000 -r a072f0f30ea3 repmatch_gff3.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/repmatch_gff3.xml Wed Dec 23 09:25:42 2015 -0500
[
b'@@ -0,0 +1,161 @@\n+<?xml version="1.0"?>\n+<tool id="repmatch_gff3" name="RepMatch" version="@WRAPPER_VERSION@.0">\n+    <description>Match paired peaks from two or more replicates</description>\n+    <macros>\n+        <import>repmatch_gff3_macros.xml</import>\n+    </macros>\n+    <expand macro="requirements" />\n+    <command>\n+        python $__tool_directory__/repmatch_gff3.py\n+        #for $i in $input:\n+             --input "${i}" "${i.hid}"\n+        #end for\n+        --method $method\n+        --distance $distance\n+        --replicates $replicates\n+        --output_files $output_files_cond.output_files\n+        --output_matched_peaks "$output_matched_peaks"\n+        #if str($output_files_cond.output_files) in ["all", "matched_peaks_unmatched_peaks"]:\n+            --output_unmatched_peaks "$output_unmatched_peaks"\n+        #end if\n+        #if str($output_files_cond.output_files) =="all":\n+            --output_detail "$output_detail"\n+            --output_statistics_table "$output_statistics_table"\n+            --output_statistics_histogram "$output_statistics_histogram"\n+        #end if\n+        #if str($advanced_options_cond.advanced_options) == "on":\n+            --step $advanced_options_cond.step\n+            --low_limit $advanced_options_cond.low_limit\n+            --up_limit $advanced_options_cond.up_limit\n+        #end if\n+    </command>\n+    <inputs>\n+        <param  name="input" type="data" format="gff" multiple="True" min="2" label="Match paired peaks on" />\n+        <param name="method" type="select" label="Method of finding match">\n+            <option value="closest" selected="True">Closest</option>\n+            <option value="largest">Largest</option>\n+            <option value="all">All</option>\n+        </param>\n+        <param name="distance" type="integer" value="50" min="0" label="Maximum distance between peaks in different replicates to allow merging" />\n+        <param name="replicates" type="integer" value="2" min="2" label="Minimum number of replicates that must be matched for merging to occur" />\n+        <conditional name="output_files_cond">\n+            <param name="output_files" type="select" label="Select output" help="Statistics will always be generated." >\n+                <option value="all" selected="True">everything</option>\n+                <option value="matched_peaks">matched paired peaks only</option>\n+                <option value="matched_peaks_unmatched_peaks">matched paired peaks and unmatched paired peaks only</option>\n+            </param>\n+            <when value="matched_peaks" />\n+            <when value="matched_peaks_unmatched_peaks" />\n+            <when value="all" />\n+        </conditional>\n+        <conditional name="advanced_options_cond">\n+            <param name="advanced_options" type="select" label="Advanced options">\n+                <option value="off" selected="true">Hide advanced options</option>\n+                <option value="on">Display advanced options</option>\n+            </param>\n+            <when value="on">\n+                <param name="step" type="integer" value="0" min="0" label="Step size" help="Distance for each iteration" />\n+                <param name="low_limit" type="integer" value="-1000" label="Lower limit for Crick-Watson distance filter" />\n+                <param name="up_limit" type="integer" value="1000" label="Upper limit for Crick-Watson distance filter" />\n+            </when>\n+            <when value="off" />\n+        </conditional>\n+    </inputs>\n+    <outputs>\n+        <data name="output_statistics_table" format="tabular" label="Statistics Table: ${tool.name} on ${on_string}">\n+            <filter>output_files_cond["output_files"] == "all"</filter>\n+       </data>\n+        <data name="output_statistics_histogram" format="pdf" label="Statistics Histogram: ${tool.name} on ${on_string}">\n+            <filter>output_files_cond["output_files"] == "all"</filter>\n+       </data>\n+        <data name="output_detail" format="tabular" label="Dat'..b'1.tabular" ftype="tabular" />\n+        <output name="output_matched_peaks" file="matched_peaks_out1.gff" ftype="gff" />\n+    </tests>\n+    <help>\n+**What it does**\n+\n+RepMatch accepts two or more input datasets, and starts by defining peak-pair midpoints in the first dataset.  It then\n+discovers all peak-pair midpoints in the second dataset that are within the distance, defined by the tool\'s **Maximum\n+distance between peaks in different replicates to allow merging** parameter, from the peak-pair midpoint coordinate in\n+the first dataset.  When encountering multiple candidates to match (one-to-many), RepMatch uses the method defined by\n+the tool\'s **Method of finding match** parameter so that there is at most only a one-to-one match across the two datasets.\n+This method provides the following options:\n+\n+ * **closest** - matches only the closest one in bp distance.\n+ * **largest** -  matches the one that contain the most number of reads.\n+ * **all** -  both methods are run separately.\n+\n+RepMatch matching is an iterative process, as it attempts to find the centroid coordinate amongst all replicates. As such,\n+the centroid is the point of reference for "distqnce" and "closest".  This process can be sped up by increasing the tool\'s\n+**Step size** parameter.\n+\n+The minimum number of replicates that can be matched for a match to occur is defined by the tool\'s **Minimum number of\n+replicates that must be matched for merging to occur** parameter.  Additional filters can be applied using the tool\'s\n+**Advanced options**, including a lower and upper limit for the C-W distance.\n+\n+.. image:: $PATH_TO_IMAGES/repmatch.png\n+\n+-----\n+\n+**Options**\n+\n+ * **Distance** - Maximum distance for discovering all peak-pair midpoints in a second dataset relative to the peak-pair midpoints in the first dataset\n+ * **Method** - Method to use when encountering multiple candidates to match so that there is at most only a one-to-one match across the two datasets.\n+ * **Step Size** - Distance for each iteration.\n+ * **Replicates** - Minimum number of replicates that can be matched for a match to occur.  This value must be at least 2.\n+ * **Lower Limit** - Lower limit for the Crick-Watson distance filter.\n+ * **Upper Limit** - Upper limit for the Crick-Watson distance filter.\n+\n+-----\n+\n+**Output Data Files**\n+\n+ * **Data MP** - gff file consisting of only peak pairs\n+\n+  - Columns are **chr**, **script**, **blank**, **peak start**, **peak end**, **blank**, **normalized tag counts**, **blank** and **info**.\n+  - Peak start and end are separated by one coordinate.\n+  - Normalized tag is the occupancy averaged across replicates.\n+  - Attributes include C-W distance, sum total of tag counts, number of replicates merged.\n+\n+ * **Data D** - tabular file consisting of the list of all matched replicates.\n+ * **Data UP** - tabular file consisting of all unmatched peak-pairs.\n+\n+**Output Statistics Files**\n+\n+ * **Statistics Table** - tabular file providing the description key of **Data D**.\n+ * **Statistics Histogram** - graph of the number of matched locations having the indicated replicate counts.\n+\n+**Comments on Replicates**\n+\n+Three types of replicates may be considered.  Biological replicates represent independently collected biological samples.\n+At least two biological replicate must be performed for each experiment from which a conclusion is being drawn, and the\n+conclusion must be evident in both biological replicates when analyzed separately.  Technical replicates represent a re-run\n+of the assay on the same biological material.  This is usually done when one replicate fails to produce quality data, and is\n+used to replace that earlier replicate.  Sequencing replicates represent additional sequencing of the same successful library\n+in order to obtain more reads should the analysis require it.  The reads from individual sequencing replicates are usually\n+merged without need for separate analysis.\n+\n+    </help>\n+    <expand macro="citations" />\n+</tool>\n'
b
diff -r 000000000000 -r a072f0f30ea3 repmatch_gff3_macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/repmatch_gff3_macros.xml Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,29 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<macros>
+    <token name="@WRAPPER_VERSION@">1.0</token>
+    <xml name="requirements">
+        <requirements>
+            <requirement type="package" version="2.3.0">anaconda</requirement>
+        </requirements>
+    </xml>
+    <xml name="stdio">
+        <stdio>
+            <exit_code range="1:"/>
+            <exit_code range=":-1"/>
+            <regex match="Error:"/>
+            <regex match="Exception:"/>
+        </stdio>
+    </xml>
+    <xml name="citations">
+        <citations>
+            <citation type="bibtex">
+                @unpublished{None,
+                author = {None},
+                title = {None},
+                year = {None},
+                eprint = {None},
+                url = {http://www.huck.psu.edu/content/research/independent-centers-excellence/center-for-eukaryotic-gene-regulation}
+            }</citation>
+        </citations>
+    </xml>
+</macros>
b
diff -r 000000000000 -r a072f0f30ea3 repmatch_gff3_util.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/repmatch_gff3_util.py Wed Dec 23 09:25:42 2015 -0500
[
b'@@ -0,0 +1,462 @@\n+import bisect\n+import csv\n+import os\n+import shutil\n+import sys\n+import tempfile\n+import matplotlib\n+matplotlib.use(\'Agg\')\n+from matplotlib import pyplot\n+\n+# Graph settings\n+Y_LABEL = \'Counts\'\n+X_LABEL = \'Number of matched replicates\'\n+TICK_WIDTH = 3\n+# Amount to shift the graph to make labels fit, [left, right, top, bottom]\n+ADJUST = [0.180, 0.9, 0.9, 0.1]\n+# Length of tick marks, use TICK_WIDTH for width\n+pyplot.rc(\'xtick.major\', size=10.00)\n+pyplot.rc(\'ytick.major\', size=10.00)\n+pyplot.rc(\'lines\', linewidth=4.00)\n+pyplot.rc(\'axes\', linewidth=3.00)\n+pyplot.rc(\'font\', family=\'Bitstream Vera Sans\', size=32.0)\n+\n+COLORS = \'krb\'\n+\n+\n+class Replicate(object):\n+\n+    def __init__(self, id, dataset_path):\n+        self.id = id\n+        self.dataset_path = dataset_path\n+        self.parse(csv.reader(open(dataset_path, \'rt\'), delimiter=\'\\t\'))\n+\n+    def parse(self, reader):\n+        self.chromosomes = {}\n+        for line in reader:\n+            if line[0].startswith("#") or line[0].startswith(\'"\'):\n+                continue\n+            cname, junk, junk, mid, midplus, value, strand, junk, attrs = line\n+            attrs = parse_gff_attrs(attrs)\n+            distance = attrs[\'cw_distance\']\n+            mid = int(mid)\n+            midplus = int(midplus)\n+            value = float(value)\n+            distance = int(distance)\n+            if cname not in self.chromosomes:\n+                self.chromosomes[cname] = Chromosome(cname)\n+            chrom = self.chromosomes[cname]\n+            chrom.add_peak(Peak(cname, mid, value, distance, self))\n+        for chrom in self.chromosomes.values():\n+            chrom.sort_by_index()\n+\n+    def filter(self, up_limit, low_limit):\n+        for chrom in self.chromosomes.values():\n+            chrom.filter(up_limit, low_limit)\n+\n+    def size(self):\n+        return sum([len(c.peaks) for c in self.chromosomes.values()])\n+\n+\n+class Chromosome(object):\n+\n+    def __init__(self, name):\n+        self.name = name\n+        self.peaks = []\n+\n+    def add_peak(self, peak):\n+        self.peaks.append(peak)\n+\n+    def sort_by_index(self):\n+        self.peaks.sort(key=lambda peak: peak.midpoint)\n+        self.keys = make_keys(self.peaks)\n+\n+    def remove_peak(self, peak):\n+        i = bisect.bisect_left(self.keys, peak.midpoint)\n+        # If the peak was actually found\n+        if i < len(self.peaks) and self.peaks[i].midpoint == peak.midpoint:\n+            del self.keys[i]\n+            del self.peaks[i]\n+\n+    def filter(self, up_limit, low_limit):\n+        self.peaks = [p for p in self.peaks if low_limit <= p.distance <= up_limit]\n+        self.keys = make_keys(self.peaks)\n+\n+\n+class Peak(object):\n+\n+    def __init__(self, chrom, midpoint, value, distance, replicate):\n+        self.chrom = chrom\n+        self.value = value\n+        self.midpoint = midpoint\n+        self.distance = distance\n+        self.replicate = replicate\n+\n+    def normalized_value(self, med):\n+        return self.value * med / self.replicate.median\n+\n+\n+class PeakGroup(object):\n+\n+    def __init__(self):\n+        self.peaks = {}\n+\n+    def add_peak(self, repid, peak):\n+        self.peaks[repid] = peak\n+\n+    @property\n+    def chrom(self):\n+        return self.peaks.values()[0].chrom\n+\n+    @property\n+    def midpoint(self):\n+        return median([peak.midpoint for peak in self.peaks.values()])\n+\n+    @property\n+    def num_replicates(self):\n+        return len(self.peaks)\n+\n+    @property\n+    def median_distance(self):\n+        return median([peak.distance for peak in self.peaks.values()])\n+\n+    @property\n+    def value_sum(self):\n+        return sum([peak.value for peak in self.peaks.values()])\n+\n+    def normalized_value(self, med):\n+        values = []\n+        for peak in self.peaks.values():\n+            values.append(peak.normalized_value(med))\n+        return median(values)\n+\n+    @property\n+    def peakpeak_distance(self):\n+        keys = self.peaks.keys()\n+        return abs(self.peaks[keys[0]].midpo'..b"           old_peaks = group.peaks.values()[:]\n+                    search_for_matches(group)\n+                    for peak in group.peaks.values():\n+                        if peak not in old_peaks:\n+                            peak.replicate.chromosomes[chromosome.name].remove_peak(peak)\n+                # Attempt to find new peaks groups.  For each peak in the\n+                # main replicate, search for matches in the other replicates\n+                for peak in peaks_by_value:\n+                    matches = PeakGroup()\n+                    matches.add_peak(main.id, peak)\n+                    search_for_matches(matches)\n+                    # Were enough replicates matched?\n+                    if matches.num_replicates >= num_required:\n+                        for peak in matches.peaks.values():\n+                            peak.replicate.chromosomes[chromosome.name].remove_peak(peak)\n+                        peak_groups.append(matches)\n+    # Zero or less = no stepping\n+    if step <= 0:\n+        do_match(replicates, distance)\n+    else:\n+        for d in range(0, distance, step):\n+            do_match(replicates, d)\n+    for group in peak_groups:\n+        freq.add(group.num_replicates)\n+    # Collect together the remaining unmatched_peaks\n+    for replicate in replicates:\n+        for chromosome in replicate.chromosomes.values():\n+            for peak in chromosome.peaks:\n+                freq.add(1)\n+                unmatched_peaks.append(peak)\n+    # Average the unmatched_peaks count in the graph by # replicates\n+    med = median([peak.value for group in peak_groups for peak in group.peaks.values()])\n+    for replicate in replicates:\n+        replicate.median = median([peak.value for group in peak_groups for peak in group.peaks.values() if peak.replicate == replicate])\n+        statistics_table_output.writerow((replicate.id, replicate.median))\n+    for group in peak_groups:\n+        # Output matched_peaks (matched pairs).\n+        matched_peaks_output.writerow(gff_row(cname=group.chrom,\n+                                              start=group.midpoint,\n+                                              end=group.midpoint+1,\n+                                              source='repmatch',\n+                                              score=group.normalized_value(med),\n+                                              attrs={'median_distance': group.median_distance,\n+                                                     'replicates': group.num_replicates,\n+                                                     'value_sum': group.value_sum}))\n+        if output_detail_file:\n+            matched_peaks = (group.chrom,\n+                             group.midpoint,\n+                             group.midpoint+1,\n+                             group.normalized_value(med),\n+                             group.num_replicates,\n+                             group.median_distance,\n+                             group.value_sum)\n+            for peak in group.peaks.values():\n+                matched_peaks += (peak.chrom, peak.midpoint, peak.midpoint+1, peak.value, peak.distance, peak.replicate.id)\n+            detail_output.writerow(matched_peaks)\n+    if output_unmatched_peaks_file:\n+        for unmatched_peak in unmatched_peaks:\n+            unmatched_peaks_output.writerow((unmatched_peak.chrom,\n+                                             unmatched_peak.midpoint,\n+                                             unmatched_peak.midpoint+1,\n+                                             unmatched_peak.value,\n+                                             unmatched_peak.distance,\n+                                             unmatched_peak.replicate.id))\n+    if output_statistics_histogram_file:\n+        tmp_statistics_histogram_path = get_temporary_plot_path()\n+        frequency_histogram([freq], tmp_statistics_histogram_path)\n+        shutil.move(tmp_statistics_histogram_path, output_statistics_histogram)\n+    return {'distribution': freq}\n"
b
diff -r 000000000000 -r a072f0f30ea3 static/images/repmatch.png
b
Binary file static/images/repmatch.png has changed
b
diff -r 000000000000 -r a072f0f30ea3 test-data/closest_matched_pairs_input1.gff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/closest_matched_pairs_input1.gff Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,66 @@
+chr1 cwpair . 59 60 2881.0 . . cw_distance=2
+chr1 cwpair . 123 124 4204.0 . . cw_distance=52
+chr1 cwpair . 156 157 2177.0 . . cw_distance=59
+chr1 cwpair . 218 219 4022.0 . . cw_distance=14
+chr1 cwpair . 265 266 2474.0 . . cw_distance=48
+chr1 cwpair . 268 269 4088.0 . . cw_distance=6
+chr1 cwpair . 325 326 1171.0 . . cw_distance=16
+chr1 cwpair . 370 371 899.0 . . cw_distance=25
+chr1 cwpair . 388 389 359.0 . . cw_distance=20
+chr1 cwpair . 452 453 504.0 . . cw_distance=8
+chr1 cwpair . 500 501 569.0 . . cw_distance=-44
+chr1 cwpair . 668 669 319.0 . . cw_distance=-48
+chr1 cwpair . 6218 6219 2125.0 . . cw_distance=91
+chr1 cwpair . 6454 6455 1249.0 . . cw_distance=63
+chr1 cwpair . 6714 6715 433.0 . . cw_distance=-4
+chr1 cwpair . 19213 19214 778.0 . . cw_distance=-25
+chr1 cwpair . 22580 22581 863.0 . . cw_distance=-2
+chr1 cwpair . 25305 25306 1183.0 . . cw_distance=99
+chr1 cwpair . 31670 31671 490.0 . . cw_distance=66
+chr1 cwpair . 32483 32484 478.0 . . cw_distance=48
+chr1 cwpair . 39076 39077 1350.0 . . cw_distance=-29
+chr1 cwpair . 39237 39238 362.0 . . cw_distance=61
+chr1 cwpair . 45670 45671 493.0 . . cw_distance=-35
+chr1 cwpair . 55548 55549 956.0 . . cw_distance=86
+chr1 cwpair . 59228 59229 565.0 . . cw_distance=56
+chr1 cwpair . 65160 65161 618.0 . . cw_distance=-4
+chr1 cwpair . 70792 70793 2146.0 . . cw_distance=12
+chr1 cwpair . 72731 72732 710.0 . . cw_distance=100
+chr1 cwpair . 72805 72806 869.0 . . cw_distance=29
+chr1 cwpair . 86982 86983 2013.0 . . cw_distance=37
+chr1 cwpair . 87044 87045 1191.0 . . cw_distance=30
+chr1 cwpair . 87109 87110 2259.0 . . cw_distance=3
+chr1 cwpair . 87162 87163 5531.0 . . cw_distance=11
+chr1 cwpair . 87194 87195 3643.0 . . cw_distance=27
+chr1 cwpair . 92421 92422 1388.0 . . cw_distance=0
+chr1 cwpair . 92567 92568 789.0 . . cw_distance=28
+chr1 cwpair . 92645 92646 2397.0 . . cw_distance=8
+chr1 cwpair . 95955 95956 689.0 . . cw_distance=51
+chr1 cwpair . 96919 96920 12.0 . . cw_distance=3
+chr1 cwpair . 98551 98552 122.0 . . cw_distance=27
+chr1 cwpair . 101399 101400 2361.0 . . cw_distance=-44
+chr1 cwpair . 106047 106048 572.0 . . cw_distance=7
+chr1 cwpair . 108611 108612 573.0 . . cw_distance=-45
+chr1 cwpair . 113782 113783 716.0 . . cw_distance=-20
+chr1 cwpair . 116649 116650 773.0 . . cw_distance=-41
+chr1 cwpair . 124306 124307 761.0 . . cw_distance=-43
+chr1 cwpair . 134230 134231 659.0 . . cw_distance=100
+chr1 cwpair . 136369 136370 365.0 . . cw_distance=-14
+chr1 cwpair . 138876 138877 711.0 . . cw_distance=-4
+chr1 cwpair . 139230 139231 1179.0 . . cw_distance=15
+chr1 cwpair . 151365 151366 595.0 . . cw_distance=-28
+chr1 cwpair . 155079 155080 1573.0 . . cw_distance=83
+chr1 cwpair . 169095 169096 1887.0 . . cw_distance=-43
+chr1 cwpair . 170134 170135 657.0 . . cw_distance=10
+chr1 cwpair . 173276 173277 546.0 . . cw_distance=8
+chr1 cwpair . 180331 180332 97.0 . . cw_distance=82
+chr1 cwpair . 185109 185110 1371.0 . . cw_distance=46
+chr1 cwpair . 197535 197536 5.0 . . cw_distance=73
+chr1 cwpair . 199413 199414 810.0 . . cw_distance=-30
+chr1 cwpair . 203863 203864 1476.0 . . cw_distance=-37
+chr1 cwpair . 228672 228673 626.0 . . cw_distance=58
+chr1 cwpair . 229759 229760 4531.0 . . cw_distance=16
+chr1 cwpair . 229762 229763 699.0 . . cw_distance=63
+chr1 cwpair . 230125 230126 44.0 . . cw_distance=10
+chr1 cwpair . 230157 230158 15.0 . . cw_distance=5
+chr1 cwpair . 230178 230179 56.0 . . cw_distance=10
b
diff -r 000000000000 -r a072f0f30ea3 test-data/detail_out1.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/detail_out1.tabular Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,65 @@
+chrom median midpoint median midpoint+1 median normalized reads replicates median c-w distance reads sum chrom median midpoint median midpoint+1 c-w sum c-w distance replicate id chrom median midpoint median midpoint+1 c-w sum c-w distance replicate id
+chr1 87168 87169 4488.704113924051 2 -1 9006.0 chr1 87162 87163 5531.0 11 1 chr1 87174 87175 3475.0 -13 2
+chr1 229759 229760 4512.3598101265825 2 16 9062.0 chr1 229759 229760 4531.0 16 1 chr1 229759 229760 4531.0 16 2
+chr1 123 124 4186.70506329114 2 52 8408.0 chr1 123 124 4204.0 52 1 chr1 123 124 4204.0 52 2
+chr1 262 263 3246.0278481012656 2 18 6512.0 chr1 268 269 4088.0 6 1 chr1 256 257 2424.0 30 2
+chr1 231 232 4699.198417721519 2 -13 9443.0 chr1 218 219 4022.0 14 1 chr1 245 246 5421.0 -40 2
+chr1 87188 87189 4647.554746835443 2 39 9342.0 chr1 87194 87195 3643.0 27 1 chr1 87182 87183 5699.0 51 2
+chr1 59 60 2869.1477848101267 2 2 5762.0 chr1 59 60 2881.0 2 1 chr1 59 60 2881.0 2 2
+chr1 257 258 2595.2319620253165 2 63 5213.0 chr1 265 266 2474.0 48 1 chr1 250 251 2739.0 78 2
+chr1 92651 92652 1420.1610759493672 2 20 2844.0 chr1 92645 92646 2397.0 8 1 chr1 92657 92658 447.0 33 2
+chr1 101399 101400 2351.2870253164556 2 -44 4722.0 chr1 101399 101400 2361.0 -44 1 chr1 101399 101400 2361.0 -44 2
+chr1 87109 87110 2249.7066455696204 2 3 4518.0 chr1 87109 87110 2259.0 3 1 chr1 87109 87110 2259.0 3 2
+chr1 156 157 2168.043987341772 2 59 4354.0 chr1 156 157 2177.0 59 1 chr1 156 157 2177.0 59 2
+chr1 70792 70793 2137.171518987342 2 12 4292.0 chr1 70792 70793 2146.0 12 1 chr1 70792 70793 2146.0 12 2
+chr1 6218 6219 2116.257911392405 2 91 4250.0 chr1 6218 6219 2125.0 91 1 chr1 6218 6219 2125.0 91 2
+chr1 86996 86997 2181.75 2 66 4383.0 chr1 86982 86983 2013.0 37 1 chr1 87011 87012 2370.0 95 2
+chr1 169095 169096 1879.2370253164559 2 -43 3774.0 chr1 169095 169096 1887.0 -43 1 chr1 169095 169096 1887.0 -43 2
+chr1 155079 155080 1566.5287974683545 2 83 3146.0 chr1 155079 155080 1573.0 83 1 chr1 155079 155080 1573.0 83 2
+chr1 203863 203864 1469.9278481012657 2 -37 2952.0 chr1 203863 203864 1476.0 -37 1 chr1 203863 203864 1476.0 -37 2
+chr1 92421 92422 1382.2898734177215 2 0 2776.0 chr1 92421 92422 1388.0 0 1 chr1 92421 92422 1388.0 0 2
+chr1 185109 185110 1365.3598101265823 2 46 2742.0 chr1 185109 185110 1371.0 46 1 chr1 185109 185110 1371.0 46 2
+chr1 39076 39077 1344.4462025316457 2 -29 2700.0 chr1 39076 39077 1350.0 -29 1 chr1 39076 39077 1350.0 -29 2
+chr1 6454 6455 1243.8617088607593 2 63 2498.0 chr1 6454 6455 1249.0 63 1 chr1 6454 6455 1249.0 63 2
+chr1 87029 87030 1009.0689873417721 2 1 2025.0 chr1 87044 87045 1191.0 30 1 chr1 87015 87016 834.0 -28 2
+chr1 25305 25306 1178.1332278481013 2 99 2366.0 chr1 25305 25306 1183.0 99 1 chr1 25305 25306 1183.0 99 2
+chr1 139230 139231 1174.1496835443038 2 15 2358.0 chr1 139230 139231 1179.0 15 1 chr1 139230 139231 1179.0 15 2
+chr1 335 336 1173.125 2 -5 2356.0 chr1 325 326 1171.0 16 1 chr1 345 346 1185.0 -25 2
+chr1 55548 55549 952.067088607595 2 86 1912.0 chr1 55548 55549 956.0 86 1 chr1 55548 55549 956.0 86 2
+chr1 360 361 888.3591772151899 2 45 1784.0 chr1 370 371 899.0 25 1 chr1 350 351 885.0 66 2
+chr1 72795 72796 961.6268987341772 2 9 1932.0 chr1 72805 72806 869.0 29 1 chr1 72786 72787 1063.0 -10 2
+chr1 22580 22581 859.4496835443038 2 -2 1726.0 chr1 22580 22581 863.0 -2 1 chr1 22580 22581 863.0 -2 2
+chr1 199413 199414 806.6677215189873 2 -30 1620.0 chr1 199413 199414 810.0 -30 1 chr1 199413 199414 810.0 -30 2
+chr1 92584 92585 1800.832911392405 2 62 3625.0 chr1 92567 92568 789.0 28 1 chr1 92601 92602 2836.0 96 2
+chr1 19213 19214 774.7993670886076 2 -25 1556.0 chr1 19213 19214 778.0 -25 1 chr1 19213 19214 778.0 -25 2
+chr1 116649 116650 769.8199367088607 2 -41 1546.0 chr1 116649 116650 773.0 -41 1 chr1 116649 116650 773.0 -41 2
+chr1 124306 124307 757.8693037974683 2 -43 1522.0 chr1 124306 124307 761.0 -43 1 chr1 124306 124307 761.0 -43 2
+chr1 113782 113783 713.0544303797469 2 -20 1432.0 chr1 113782 113783 716.0 -20 1 chr1 113782 113783 716.0 -20 2
+chr1 138876 138877 708.075 2 -4 1422.0 chr1 138876 138877 711.0 -4 1 chr1 138876 138877 711.0 -4 2
+chr1 229762 229763 696.1243670886076 2 63 1398.0 chr1 229762 229763 699.0 63 1 chr1 229762 229763 699.0 63 2
+chr1 95955 95956 686.1655063291139 2 51 1378.0 chr1 95955 95956 689.0 51 1 chr1 95955 95956 689.0 51 2
+chr1 134230 134231 656.2889240506329 2 100 1318.0 chr1 134230 134231 659.0 100 1 chr1 134230 134231 659.0 100 2
+chr1 170134 170135 654.2971518987342 2 10 1314.0 chr1 170134 170135 657.0 10 1 chr1 170134 170135 657.0 10 2
+chr1 228672 228673 623.4246835443038 2 58 1252.0 chr1 228672 228673 626.0 58 1 chr1 228672 228673 626.0 58 2
+chr1 65160 65161 615.4575949367088 2 -4 1236.0 chr1 65160 65161 618.0 -4 1 chr1 65160 65161 618.0 -4 2
+chr1 151365 151366 592.5522151898734 2 -28 1190.0 chr1 151365 151366 595.0 -28 1 chr1 151365 151366 595.0 -28 2
+chr1 108611 108612 570.6427215189874 2 -45 1146.0 chr1 108611 108612 573.0 -45 1 chr1 108611 108612 573.0 -45 2
+chr1 106047 106048 569.646835443038 2 7 1144.0 chr1 106047 106048 572.0 7 1 chr1 106047 106048 572.0 7 2
+chr1 481 482 682.2006329113924 2 -7 1371.0 chr1 500 501 569.0 -44 1 chr1 463 464 802.0 30 2
+chr1 59228 59229 562.6756329113924 2 56 1130.0 chr1 59228 59229 565.0 56 1 chr1 59228 59229 565.0 56 2
+chr1 173276 173277 543.7537974683544 2 8 1092.0 chr1 173276 173277 546.0 8 1 chr1 173276 173277 546.0 8 2
+chr1 434 435 431.5107594936709 2 43 866.0 chr1 452 453 504.0 8 1 chr1 417 418 362.0 78 2
+chr1 45670 45671 490.971835443038 2 -35 986.0 chr1 45670 45671 493.0 -35 1 chr1 45670 45671 493.0 -35 2
+chr1 31670 31671 487.9841772151899 2 66 980.0 chr1 31670 31671 490.0 66 1 chr1 31670 31671 490.0 66 2
+chr1 32483 32484 476.0335443037975 2 48 956.0 chr1 32483 32484 478.0 48 1 chr1 32483 32484 478.0 48 2
+chr1 6714 6715 431.218670886076 2 -4 866.0 chr1 6714 6715 433.0 -4 1 chr1 6714 6715 433.0 -4 2
+chr1 136369 136370 363.498417721519 2 -14 730.0 chr1 136369 136370 365.0 -14 1 chr1 136369 136370 365.0 -14 2
+chr1 39237 39238 360.5107594936709 2 61 724.0 chr1 39237 39238 362.0 61 1 chr1 39237 39238 362.0 61 2
+chr1 668 669 317.6876582278481 2 -48 638.0 chr1 668 669 319.0 -48 1 chr1 668 669 319.0 -48 2
+chr1 98551 98552 121.49810126582278 2 27 244.0 chr1 98551 98552 122.0 27 1 chr1 98551 98552 122.0 27 2
+chr1 180331 180332 96.60094936708862 2 82 194.0 chr1 180331 180332 97.0 82 1 chr1 180331 180332 97.0 82 2
+chr1 230172 230173 42.87658227848101 2 -2 86.0 chr1 230178 230179 56.0 10 1 chr1 230166 230167 30.0 -13 2
+chr1 230133 230134 26.95886075949367 2 -8 54.0 chr1 230125 230126 44.0 10 1 chr1 230142 230143 10.0 -25 2
+chr1 230154 230155 44.69145569620253 2 34 90.0 chr1 230157 230158 15.0 5 1 chr1 230151 230152 75.0 63 2
+chr1 96919 96920 11.950632911392404 2 3 24.0 chr1 96919 96920 12.0 3 1 chr1 96919 96920 12.0 3 2
+chr1 197535 197536 4.9794303797468356 2 73 10.0 chr1 197535 197536 5.0 73 1 chr1 197535 197536 5.0 73 2
b
diff -r 000000000000 -r a072f0f30ea3 test-data/largest_matched_pairs_input1.gff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/largest_matched_pairs_input1.gff Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,64 @@
+chr1 cwpair . 59 60 2881.0 . . cw_distance=2
+chr1 cwpair . 123 124 4204.0 . . cw_distance=52
+chr1 cwpair . 156 157 2177.0 . . cw_distance=59
+chr1 cwpair . 245 246 5421.0 . . cw_distance=-40
+chr1 cwpair . 250 251 2739.0 . . cw_distance=78
+chr1 cwpair . 256 257 2424.0 . . cw_distance=30
+chr1 cwpair . 345 346 1185.0 . . cw_distance=-25
+chr1 cwpair . 350 351 885.0 . . cw_distance=66
+chr1 cwpair . 417 418 362.0 . . cw_distance=78
+chr1 cwpair . 463 464 802.0 . . cw_distance=30
+chr1 cwpair . 668 669 319.0 . . cw_distance=-48
+chr1 cwpair . 6218 6219 2125.0 . . cw_distance=91
+chr1 cwpair . 6454 6455 1249.0 . . cw_distance=63
+chr1 cwpair . 6714 6715 433.0 . . cw_distance=-4
+chr1 cwpair . 19213 19214 778.0 . . cw_distance=-25
+chr1 cwpair . 22580 22581 863.0 . . cw_distance=-2
+chr1 cwpair . 25305 25306 1183.0 . . cw_distance=99
+chr1 cwpair . 31670 31671 490.0 . . cw_distance=66
+chr1 cwpair . 32483 32484 478.0 . . cw_distance=48
+chr1 cwpair . 39076 39077 1350.0 . . cw_distance=-29
+chr1 cwpair . 39237 39238 362.0 . . cw_distance=61
+chr1 cwpair . 45670 45671 493.0 . . cw_distance=-35
+chr1 cwpair . 55548 55549 956.0 . . cw_distance=86
+chr1 cwpair . 59228 59229 565.0 . . cw_distance=56
+chr1 cwpair . 65160 65161 618.0 . . cw_distance=-4
+chr1 cwpair . 70792 70793 2146.0 . . cw_distance=12
+chr1 cwpair . 72786 72787 1063.0 . . cw_distance=-10
+chr1 cwpair . 87011 87012 2370.0 . . cw_distance=95
+chr1 cwpair . 87015 87016 834.0 . . cw_distance=-28
+chr1 cwpair . 87109 87110 2259.0 . . cw_distance=3
+chr1 cwpair . 87174 87175 3475.0 . . cw_distance=-13
+chr1 cwpair . 87182 87183 5699.0 . . cw_distance=51
+chr1 cwpair . 92421 92422 1388.0 . . cw_distance=0
+chr1 cwpair . 92601 92602 2836.0 . . cw_distance=96
+chr1 cwpair . 92657 92658 447.0 . . cw_distance=33
+chr1 cwpair . 95955 95956 689.0 . . cw_distance=51
+chr1 cwpair . 96919 96920 12.0 . . cw_distance=3
+chr1 cwpair . 98551 98552 122.0 . . cw_distance=27
+chr1 cwpair . 101399 101400 2361.0 . . cw_distance=-44
+chr1 cwpair . 106047 106048 572.0 . . cw_distance=7
+chr1 cwpair . 108611 108612 573.0 . . cw_distance=-45
+chr1 cwpair . 113782 113783 716.0 . . cw_distance=-20
+chr1 cwpair . 116649 116650 773.0 . . cw_distance=-41
+chr1 cwpair . 124306 124307 761.0 . . cw_distance=-43
+chr1 cwpair . 134230 134231 659.0 . . cw_distance=100
+chr1 cwpair . 136369 136370 365.0 . . cw_distance=-14
+chr1 cwpair . 138876 138877 711.0 . . cw_distance=-4
+chr1 cwpair . 139230 139231 1179.0 . . cw_distance=15
+chr1 cwpair . 151365 151366 595.0 . . cw_distance=-28
+chr1 cwpair . 155079 155080 1573.0 . . cw_distance=83
+chr1 cwpair . 169095 169096 1887.0 . . cw_distance=-43
+chr1 cwpair . 170134 170135 657.0 . . cw_distance=10
+chr1 cwpair . 173276 173277 546.0 . . cw_distance=8
+chr1 cwpair . 180331 180332 97.0 . . cw_distance=82
+chr1 cwpair . 185109 185110 1371.0 . . cw_distance=46
+chr1 cwpair . 197535 197536 5.0 . . cw_distance=73
+chr1 cwpair . 199413 199414 810.0 . . cw_distance=-30
+chr1 cwpair . 203863 203864 1476.0 . . cw_distance=-37
+chr1 cwpair . 228672 228673 626.0 . . cw_distance=58
+chr1 cwpair . 229759 229760 4531.0 . . cw_distance=16
+chr1 cwpair . 229762 229763 699.0 . . cw_distance=63
+chr1 cwpair . 230142 230143 10.0 . . cw_distance=-25
+chr1 cwpair . 230151 230152 75.0 . . cw_distance=63
+chr1 cwpair . 230166 230167 30.0 . . cw_distance=-13
b
diff -r 000000000000 -r a072f0f30ea3 test-data/matched_peaks_out1.gff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/matched_peaks_out1.gff Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,64 @@
+chr1 repmatch . 87168 87169 4488.704113924051 . . median_distance=-1;value_sum=9006.0;replicates=2
+chr1 repmatch . 229759 229760 4512.3598101265825 . . median_distance=16;value_sum=9062.0;replicates=2
+chr1 repmatch . 123 124 4186.70506329114 . . median_distance=52;value_sum=8408.0;replicates=2
+chr1 repmatch . 262 263 3246.0278481012656 . . median_distance=18;value_sum=6512.0;replicates=2
+chr1 repmatch . 231 232 4699.198417721519 . . median_distance=-13;value_sum=9443.0;replicates=2
+chr1 repmatch . 87188 87189 4647.554746835443 . . median_distance=39;value_sum=9342.0;replicates=2
+chr1 repmatch . 59 60 2869.1477848101267 . . median_distance=2;value_sum=5762.0;replicates=2
+chr1 repmatch . 257 258 2595.2319620253165 . . median_distance=63;value_sum=5213.0;replicates=2
+chr1 repmatch . 92651 92652 1420.1610759493672 . . median_distance=20;value_sum=2844.0;replicates=2
+chr1 repmatch . 101399 101400 2351.2870253164556 . . median_distance=-44;value_sum=4722.0;replicates=2
+chr1 repmatch . 87109 87110 2249.7066455696204 . . median_distance=3;value_sum=4518.0;replicates=2
+chr1 repmatch . 156 157 2168.043987341772 . . median_distance=59;value_sum=4354.0;replicates=2
+chr1 repmatch . 70792 70793 2137.171518987342 . . median_distance=12;value_sum=4292.0;replicates=2
+chr1 repmatch . 6218 6219 2116.257911392405 . . median_distance=91;value_sum=4250.0;replicates=2
+chr1 repmatch . 86996 86997 2181.75 . . median_distance=66;value_sum=4383.0;replicates=2
+chr1 repmatch . 169095 169096 1879.2370253164559 . . median_distance=-43;value_sum=3774.0;replicates=2
+chr1 repmatch . 155079 155080 1566.5287974683545 . . median_distance=83;value_sum=3146.0;replicates=2
+chr1 repmatch . 203863 203864 1469.9278481012657 . . median_distance=-37;value_sum=2952.0;replicates=2
+chr1 repmatch . 92421 92422 1382.2898734177215 . . median_distance=0;value_sum=2776.0;replicates=2
+chr1 repmatch . 185109 185110 1365.3598101265823 . . median_distance=46;value_sum=2742.0;replicates=2
+chr1 repmatch . 39076 39077 1344.4462025316457 . . median_distance=-29;value_sum=2700.0;replicates=2
+chr1 repmatch . 6454 6455 1243.8617088607593 . . median_distance=63;value_sum=2498.0;replicates=2
+chr1 repmatch . 87029 87030 1009.0689873417721 . . median_distance=1;value_sum=2025.0;replicates=2
+chr1 repmatch . 25305 25306 1178.1332278481013 . . median_distance=99;value_sum=2366.0;replicates=2
+chr1 repmatch . 139230 139231 1174.1496835443038 . . median_distance=15;value_sum=2358.0;replicates=2
+chr1 repmatch . 335 336 1173.125 . . median_distance=-5;value_sum=2356.0;replicates=2
+chr1 repmatch . 55548 55549 952.067088607595 . . median_distance=86;value_sum=1912.0;replicates=2
+chr1 repmatch . 360 361 888.3591772151899 . . median_distance=45;value_sum=1784.0;replicates=2
+chr1 repmatch . 72795 72796 961.6268987341772 . . median_distance=9;value_sum=1932.0;replicates=2
+chr1 repmatch . 22580 22581 859.4496835443038 . . median_distance=-2;value_sum=1726.0;replicates=2
+chr1 repmatch . 199413 199414 806.6677215189873 . . median_distance=-30;value_sum=1620.0;replicates=2
+chr1 repmatch . 92584 92585 1800.832911392405 . . median_distance=62;value_sum=3625.0;replicates=2
+chr1 repmatch . 19213 19214 774.7993670886076 . . median_distance=-25;value_sum=1556.0;replicates=2
+chr1 repmatch . 116649 116650 769.8199367088607 . . median_distance=-41;value_sum=1546.0;replicates=2
+chr1 repmatch . 124306 124307 757.8693037974683 . . median_distance=-43;value_sum=1522.0;replicates=2
+chr1 repmatch . 113782 113783 713.0544303797469 . . median_distance=-20;value_sum=1432.0;replicates=2
+chr1 repmatch . 138876 138877 708.075 . . median_distance=-4;value_sum=1422.0;replicates=2
+chr1 repmatch . 229762 229763 696.1243670886076 . . median_distance=63;value_sum=1398.0;replicates=2
+chr1 repmatch . 95955 95956 686.1655063291139 . . median_distance=51;value_sum=1378.0;replicates=2
+chr1 repmatch . 134230 134231 656.2889240506329 . . median_distance=100;value_sum=1318.0;replicates=2
+chr1 repmatch . 170134 170135 654.2971518987342 . . median_distance=10;value_sum=1314.0;replicates=2
+chr1 repmatch . 228672 228673 623.4246835443038 . . median_distance=58;value_sum=1252.0;replicates=2
+chr1 repmatch . 65160 65161 615.4575949367088 . . median_distance=-4;value_sum=1236.0;replicates=2
+chr1 repmatch . 151365 151366 592.5522151898734 . . median_distance=-28;value_sum=1190.0;replicates=2
+chr1 repmatch . 108611 108612 570.6427215189874 . . median_distance=-45;value_sum=1146.0;replicates=2
+chr1 repmatch . 106047 106048 569.646835443038 . . median_distance=7;value_sum=1144.0;replicates=2
+chr1 repmatch . 481 482 682.2006329113924 . . median_distance=-7;value_sum=1371.0;replicates=2
+chr1 repmatch . 59228 59229 562.6756329113924 . . median_distance=56;value_sum=1130.0;replicates=2
+chr1 repmatch . 173276 173277 543.7537974683544 . . median_distance=8;value_sum=1092.0;replicates=2
+chr1 repmatch . 434 435 431.5107594936709 . . median_distance=43;value_sum=866.0;replicates=2
+chr1 repmatch . 45670 45671 490.971835443038 . . median_distance=-35;value_sum=986.0;replicates=2
+chr1 repmatch . 31670 31671 487.9841772151899 . . median_distance=66;value_sum=980.0;replicates=2
+chr1 repmatch . 32483 32484 476.0335443037975 . . median_distance=48;value_sum=956.0;replicates=2
+chr1 repmatch . 6714 6715 431.218670886076 . . median_distance=-4;value_sum=866.0;replicates=2
+chr1 repmatch . 136369 136370 363.498417721519 . . median_distance=-14;value_sum=730.0;replicates=2
+chr1 repmatch . 39237 39238 360.5107594936709 . . median_distance=61;value_sum=724.0;replicates=2
+chr1 repmatch . 668 669 317.6876582278481 . . median_distance=-48;value_sum=638.0;replicates=2
+chr1 repmatch . 98551 98552 121.49810126582278 . . median_distance=27;value_sum=244.0;replicates=2
+chr1 repmatch . 180331 180332 96.60094936708862 . . median_distance=82;value_sum=194.0;replicates=2
+chr1 repmatch . 230172 230173 42.87658227848101 . . median_distance=-2;value_sum=86.0;replicates=2
+chr1 repmatch . 230133 230134 26.95886075949367 . . median_distance=-8;value_sum=54.0;replicates=2
+chr1 repmatch . 230154 230155 44.69145569620253 . . median_distance=34;value_sum=90.0;replicates=2
+chr1 repmatch . 96919 96920 11.950632911392404 . . median_distance=3;value_sum=24.0;replicates=2
+chr1 repmatch . 197535 197536 4.9794303797468356 . . median_distance=73;value_sum=10.0;replicates=2
b
diff -r 000000000000 -r a072f0f30ea3 test-data/statistics_histogram_out1.pdf
b
Binary file test-data/statistics_histogram_out1.pdf has changed
b
diff -r 000000000000 -r a072f0f30ea3 test-data/statistics_table_out1.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/statistics_table_out1.tabular Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,3 @@
+data median read count
+1 783.5
+2 790.0
b
diff -r 000000000000 -r a072f0f30ea3 test-data/unmatched_peaks_out1.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/unmatched_peaks_out1.tabular Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,3 @@
+chrom midpoint midpoint+1 c-w sum c-w distance replicate id
+chr1 388 389 359.0 20 1
+chr1 72731 72732 710.0 100 1
b
diff -r 000000000000 -r a072f0f30ea3 tool_dependencies.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml Wed Dec 23 09:25:42 2015 -0500
b
@@ -0,0 +1,6 @@
+<?xml version="1.0"?>
+<tool_dependency>
+    <package name="anaconda" version="2.3.0">
+        <repository changeset_revision="94d978ebbfd4" name="package_anaconda_2_3_0" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" />
+    </package>
+</tool_dependency>