Repository '2d_local_threshold'
hg clone https://toolshed.g2.bx.psu.edu/repos/imgteam/2d_local_threshold

Changeset 0:a20c14eb5f98 (2019-07-18)
Next changeset 1:c90b91f4a07b (2019-07-23)
Commit message:
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/2d_auto_local_threshold/ commit f3903c908786b9b0ea5a46e9cc35ee025770ecda
added:
auto_local_threshold.py
auto_local_threshold.xml
test-data/out.tif
test-data/sample.tif
b
diff -r 000000000000 -r a20c14eb5f98 auto_local_threshold.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/auto_local_threshold.py Thu Jul 18 09:22:07 2019 -0400
[
@@ -0,0 +1,31 @@
+import argparse
+import sys
+import skimage.io
+import skimage.filters
+import skimage.util
+
+threshOptions = {
+    'gaussian': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='gaussian'),
+    'mean': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='mean'),
+    'median': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='median')
+}
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description='Segment Foci')
+    parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file')
+    parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)')
+    parser.add_argument('block_size', type=int, default=5, help='Odd size of pixel neighborhood which is used to calculate the threshold value')
+    parser.add_argument('thresh_type', choices=threshOptions.keys(), help='thresholding method')
+    parser.add_argument('dark_background', default=True, type=bool, help='True if background is dark')
+    args = parser.parse_args()
+
+    img_in = skimage.io.imread(args.input_file.name)
+    thresh = threshOptions[args.thresh_type](img_in, args.block_size)
+
+    if args.dark_background:
+        res = img_in > thresh
+    else:
+        res = img_in <= thresh
+
+    res = skimage.util.img_as_uint(res)
+    skimage.io.imsave(args.out_file.name, res, plugin="tifffile")
b
diff -r 000000000000 -r a20c14eb5f98 auto_local_threshold.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/auto_local_threshold.xml Thu Jul 18 09:22:07 2019 -0400
[
@@ -0,0 +1,42 @@
+<tool id="ip_localthreshold" name="Local Threshold" version="0.0.1">
+   <description>applies a local threshold algorithm to an image</description>
+   <requirements>
+        <requirement type="package" version="0.14.2">scikit-image</requirement>
+        <requirement type="package" version="1.15.4">numpy</requirement>
+        <requirement type="package" version="5.3.0">pillow</requirement>
+        <requirement type="package" version="0.15.1">tifffile</requirement>
+   </requirements>
+   <command detect_errors="aggressive">
+   <![CDATA[
+   python '$__tool_directory__/auto_local_threshold.py' '$input' '$output' $block_size $thresh_type $dark_background
+   ]]>
+   </command>
+   <inputs>
+        <param name="input" type="data" format="tiff" label="Source file" />
+        <param name="thresh_type" type="select" label="Threshold Algorithm">
+          <option value="gaussian" selected="True">Gaussian</option>
+          <option value="median">Median</option>
+          <option value="mean">Mean</option>
+        </param>        
+        <param name="block_size" type="integer" value="5" label="Odd size of pixel neighborhood which is used to calculate the threshold value" />
+        <param name="dark_background" type="boolean" checked="true" truevalue="True" falsevalue="False" label="Dark Background" />
+    </inputs>
+    <outputs>
+       <data format="tiff" name="output" />
+    </outputs>
+    <tests>
+        <test>
+            <param name="input" value="sample.tif"/>
+            <output name="output" value="out.tif" ftype="tiff" compare="sim_size"/>
+            <param name="thresh_type" value="gaussian"/>
+            <param name="block_size" value="429"/>
+            <param name="dark_backgroud" value="True"/>
+        </test>
+    </tests>
+    <help>
+        Applies a local threshold algorithm to an image.
+    </help>
+    <citations>
+        <citation type="doi">10.1016/j.jbiotec.2017.07.019</citation>
+    </citations>
+</tool>
b
diff -r 000000000000 -r a20c14eb5f98 test-data/out.tif
b
Binary file test-data/out.tif has changed
b
diff -r 000000000000 -r a20c14eb5f98 test-data/sample.tif
b
Binary file test-data/sample.tif has changed