Repository 'marea'
hg clone https://toolshed.g2.bx.psu.edu/repos/bimib/marea

Changeset 15:d0e7f14b773f (2019-10-01)
Previous changeset 14:1a0c8c2780f2 (2019-02-13) Next changeset 16:c71ac0bb12de (2019-10-01)
Commit message:
Upload 1.0.1
added:
marea-1.0.1/local/HMRcoreMap.svg
marea-1.0.1/local/HMRcore_genes.p
marea-1.0.1/local/HMRcore_rules.p
marea-1.0.1/local/Recon_genes.p
marea-1.0.1/local/Recon_rules.p
marea-1.0.1/local/desktop.ini
marea-1.0.1/marea.py
marea-1.0.1/marea.xml
marea-1.0.1/marea_cluster.py
marea-1.0.1/marea_cluster.xml
marea-1.0.1/marea_macros.xml
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/HMRcoreMap.svg
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/local/HMRcoreMap.svg Tue Oct 01 06:03:12 2019 -0400
b
b'@@ -0,0 +1,7702 @@\n+<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n+<!-- Generator: Adobe Illustrator 22.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0)  -->\n+\n+<svg\n+   xmlns:dc="http://purl.org/dc/elements/1.1/"\n+   xmlns:cc="http://creativecommons.org/ns#"\n+   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"\n+   xmlns:svg="http://www.w3.org/2000/svg"\n+   xmlns="http://www.w3.org/2000/svg"\n+   xmlns:xlink="http://www.w3.org/1999/xlink"\n+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"\n+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"\n+   version="1.1"\n+   x="0px"\n+   y="0px"\n+   viewBox="0 0 1904.8016 1511.2752"\n+   xml:space="preserve"\n+   id="svg2"\n+   inkscape:version="0.91 r13725"\n+   sodipodi:docname="HMRcoreMap.svg"\n+   width="1904.8015"\n+   height="1511.2753"><metadata\n+     id="metadata2021"><rdf:RDF><cc:Work\n+         rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type\n+           rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title /></cc:Work></rdf:RDF></metadata><defs\n+     id="defs2019"><sodipodi:namedview\n+       showguides="true"\n+       showgrid="true"\n+       pagecolor="#ffffff"\n+       inkscape:zoom="1.4702451"\n+       inkscape:window-y="-8"\n+       inkscape:window-x="-8"\n+       inkscape:window-width="1920"\n+       inkscape:window-maximized="1"\n+       inkscape:window-height="1017"\n+       inkscape:snap-page="false"\n+       inkscape:snap-grids="true"\n+       inkscape:pageshadow="2"\n+       inkscape:pageopacity="0.0"\n+       inkscape:document-units="px"\n+       inkscape:cy="338.10986"\n+       inkscape:cx="1343.7768"\n+       inkscape:current-layer="layer1"\n+       id="base"\n+       fit-margin-top="0"\n+       fit-margin-right="0"\n+       fit-margin-left="0"\n+       fit-margin-bottom="0"\n+       borderopacity="1.0"\n+       bordercolor="#666666"><inkscape:grid\n+         type="xygrid"\n+         originy="72.926308"\n+         originx="-97.409688"\n+         id="grid3434"\n+         dotted="true" /></sodipodi:namedview></defs><sodipodi:namedview\n+     pagecolor="#ffffff"\n+     bordercolor="#666666"\n+     borderopacity="1"\n+     objecttolerance="10"\n+     gridtolerance="10"\n+     guidetolerance="10"\n+     inkscape:pageopacity="0"\n+     inkscape:pageshadow="2"\n+     inkscape:window-width="1920"\n+     inkscape:window-height="1017"\n+     id="namedview2017"\n+     showgrid="false"\n+     inkscape:zoom="0.44727204"\n+     inkscape:cx="497.63252"\n+     inkscape:cy="796.80241"\n+     inkscape:window-x="-8"\n+     inkscape:window-y="-8"\n+     inkscape:window-maximized="1"\n+     inkscape:current-layer="svg2"\n+     fit-margin-top="0"\n+     fit-margin-left="0"\n+     fit-margin-right="0"\n+     fit-margin-bottom="0" /><style\n+     type="text/css"\n+     id="style4">\n+\t.st0{display:none;}\n+\t.st1{display:inline;}\n+\t.st2{fill:none;stroke:#5AB6E7;stroke-width:7;stroke-linejoin:round;}\n+\t.st3{fill:none;stroke:#5AB6E7;stroke-width:7;stroke-linejoin:round;stroke-dasharray:11.9422,11.9422;}\n+\t.st4{fill:none;stroke:#5AB6E7;stroke-width:7;stroke-linejoin:round;stroke-dasharray:12.1815,12.1815;}\n+\t.st5{font-family:\'Helvetica\';}\n+\t.st6{font-size:30px;}\n+\t.st7{font-size:39.262px;}\n+\t.st8{fill:none;stroke:#0000FF;stroke-width:30;}\n+\t.st9{fill:none;stroke:#E41A1C;stroke-width:30;}\n+\t.st10{fill:none;stroke:#BEBEBE;stroke-width:30;}\n+\t.st11{stroke:#000000;stroke-width:30;}\n+\t.st12{fill:none;stroke:#BEBEBE;stroke-width:30;stroke-dasharray:30,30;stroke-dashoffset:6;}\n+\t.st13{fill:none;stroke:#000000;stroke-width:1.8444;}\n+\t.st14{fill:none;stroke:#000000;stroke-width:2.1821;}\n+\t.st15{font-family:\'Calibri-Bold\';}\n+\t.st16{font-size:16px;}\n+\t.st17{font-family:\'Calibri\';}\n+\t.st18{font-size:10px;}\n+\t.st19{fill:none;stroke:#000000;stroke-width:1.8856;}\n+\t.st20{fill:none;stroke:#000000;stroke-width:1.9459;}\n+\t.st21{fill:none;stroke:#000000;stroke-width:2.2892;}\n+\t.st22{fill:none;stroke:#000000;stroke-width:2.5;}\n+\t.st23{fill:none;stroke:#000000;stroke-width:1.9412;}\n+\t.st24{fill:none;str'..b'31.89,1231.8186 2.2,-7.3 2.2,7.3 -2.2,-1.8 -2.2,1.8 z"\n+     class="st14"\n+     inkscape:label="Glutamine_DM_COOP b"\n+     inkscape:connector-curvature="0"\n+     id="B_Glutamine_DM_COOP" /><path\n+     style="fill:none;stroke:#000000;stroke-width:2.18210006"\n+     d="m 1233.89,1279.4186 0,-48"\n+     class="st14"\n+     inkscape:label="Glutamine_DM_COOP"\n+     inkscape:connector-curvature="0"\n+     id="R_Glutamine_DM_COOP" /><flowRoot\n+     xml:space="preserve"\n+     id="flowRoot5366"\n+     style="font-style:normal;font-weight:normal;font-size:35px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"\n+     transform="translate(-20.6,18.418554)"><flowRegion\n+       id="flowRegion5368"><rect\n+         id="rect5370"\n+         width="1165.1471"\n+         height="77.465683"\n+         x="306.70087"\n+         y="-39.523308" /></flowRegion><flowPara\n+       id="flowPara5372" /></flowRoot><flowRoot\n+     xml:space="preserve"\n+     id="TitoloConfronto"\n+     style="font-style:normal;font-weight:normal;font-size:35px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"\n+     inkscape:label="TitoloConfronto"\n+     transform="translate(-18.364224,56.426743)"><flowRegion\n+       id="flowRegion5376"><rect\n+         id="rect5378"\n+         width="1869.6877"\n+         height="68.569115"\n+         x="301.95807"\n+         y="-69.56102" /></flowRegion><flowPara\n+       id="TitleText"\n+       style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:45px;font-family:sans-serif;-inkscape-font-specification:sans-serif">TITOLO: TITOLOTITOLO </flowPara></flowRoot><flowRoot\n+     xml:space="preserve"\n+     id="flowRoot5382"\n+     style="font-style:normal;font-weight:normal;font-size:35px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"\n+     transform="translate(-16.64767,38.180207)"><flowRegion\n+       id="flowRegion5384"><rect\n+         id="rect5386"\n+         width="275.00043"\n+         height="149.79698"\n+         x="1681.3033"\n+         y="204.59315" /></flowRegion><flowPara\n+       id="flowPara5390"\n+       style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-family:sans-serif;-inkscape-font-specification:\'sans-serif Bold\'">Fold Change</flowPara></flowRoot><flowRoot\n+     xml:space="preserve"\n+     id="FC_min"\n+     style="font-style:normal;font-weight:normal;font-size:35px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"\n+     transform="translate(-8.622366,131.05768)"\n+     inkscape:label="FC_min"><flowRegion\n+       id="flowRegion5384-2"><rect\n+         id="rect5386-9"\n+         width="275.00043"\n+         height="149.79698"\n+         x="1681.3033"\n+         y="204.59315" /></flowRegion><flowPara\n+       id="Val_FC_min">min: </flowPara></flowRoot><flowRoot\n+     xml:space="preserve"\n+     id="FC_max"\n+     style="font-style:normal;font-weight:normal;font-size:35px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"\n+     transform="translate(-17.492772,95.648076)"\n+     inkscape:label="FC_max"><flowRegion\n+       id="flowRegion5384-2-2"><rect\n+         id="rect5386-9-9"\n+         width="275.00043"\n+         height="149.79698"\n+         x="1681.3033"\n+         y="204.59315" /></flowRegion><flowPara\n+       id="Val_FC_max">max:</flowPara></flowRoot></svg>\n\\ No newline at end of file\n'
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/HMRcore_genes.p
b
Binary file marea-1.0.1/local/HMRcore_genes.p has changed
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/HMRcore_rules.p
b
Binary file marea-1.0.1/local/HMRcore_rules.p has changed
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/Recon_genes.p
b
Binary file marea-1.0.1/local/Recon_genes.p has changed
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/Recon_rules.p
b
Binary file marea-1.0.1/local/Recon_rules.p has changed
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/local/desktop.ini
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/local/desktop.ini Tue Oct 01 06:03:12 2019 -0400
[
@@ -0,0 +1,6 @@
+[.ShellClassInfo]
+IconResource=C:\WINDOWS\System32\SHELL32.dll,4
+[ViewState]
+Mode=
+Vid=
+FolderType=Generic
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/marea.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/marea.py Tue Oct 01 06:03:12 2019 -0400
[
b'@@ -0,0 +1,825 @@\n+from __future__ import division\n+import sys\n+import pandas as pd\n+import itertools as it\n+import scipy.stats as st\n+import collections\n+import lxml.etree as ET\n+import shutil\n+import pickle as pk\n+import math\n+import os\n+import argparse\n+from svglib.svglib import svg2rlg\n+from reportlab.graphics import renderPDF\n+\n+########################## argparse ##########################################\n+\n+def process_args(args):\n+    parser = argparse.ArgumentParser(usage = \'%(prog)s [options]\',\n+                                     description = \'process some value\\\'s\'+\n+                                     \' genes to create a comparison\\\'s map.\')\n+    parser.add_argument(\'-rs\', \'--rules_selector\', \n+                        type = str,\n+                        default = \'HMRcore\',\n+                        choices = [\'HMRcore\', \'Recon\', \'Custom\'], \n+                        help = \'chose which type of dataset you want use\')\n+    parser.add_argument(\'-cr\', \'--custom\',\n+                        type = str,\n+                        help=\'your dataset if you want custom rules\')\n+    parser.add_argument(\'-na\', \'--names\', \n+                        type = str,\n+                        nargs = \'+\', \n+                        help = \'input names\')\n+    parser.add_argument(\'-n\', \'--none\',\n+                        type = str,\n+                        default = \'true\',\n+                        choices = [\'true\', \'false\'], \n+                        help = \'compute Nan values\')\n+    parser.add_argument(\'-pv\' ,\'--pValue\', \n+                        type = float, \n+                        default = 0.05, \n+                        help = \'P-Value threshold (default: %(default)s)\')\n+    parser.add_argument(\'-fc\', \'--fChange\', \n+                        type = float, \n+                        default = 1.5, \n+                        help = \'Fold-Change threshold (default: %(default)s)\')\n+    parser.add_argument(\'-td\', \'--tool_dir\',\n+                        type = str,\n+                        required = True,\n+                        help = \'your tool directory\')\n+    parser.add_argument(\'-op\', \'--option\', \n+                        type = str, \n+                        choices = [\'datasets\', \'dataset_class\'],\n+                        help=\'dataset or dataset and class\')\n+    parser.add_argument(\'-ol\', \'--out_log\', \n+                        help = "Output log")    \n+    parser.add_argument(\'-ids\', \'--input_datas\', \n+                        type = str,\n+                        nargs = \'+\', \n+                        help = \'input datasets\')\n+    parser.add_argument(\'-id\', \'--input_data\',\n+                        type = str,\n+                        help = \'input dataset\')\n+    parser.add_argument(\'-ic\', \'--input_class\', \n+                        type = str, \n+                        help = \'sample group specification\')\n+    parser.add_argument(\'-cm\', \'--custom_map\', \n+                        type = str, \n+                        help = \'custom map\')\n+    parser.add_argument(\'-yn\', \'--yes_no\', \n+                        type = str,\n+                        choices = [\'yes\', \'no\'],\n+                        help = \'if make or not custom map\')\n+    parser.add_argument(\'-gs\', \'--generate_svg\',\n+                        type = str,\n+                        default = \'true\',\n+                        choices = [\'true\', \'false\'], \n+                        help = \'generate svg map\')\n+    parser.add_argument(\'-gp\', \'--generate_pdf\',\n+                        type = str,\n+                        default = \'true\',\n+                        choices = [\'true\', \'false\'], \n+                        help = \'generate pdf map\')\n+    parser.add_argument(\'-gr\', \'--generate_ras\',\n+                        type = str,\n+                        default = \'true\',\n+                        choices = [\'true\', \'false\'],\n+                        help = \'generate reaction activity score\')\n+    args = parser.parse_args()\n+    return args\n+\n+########################### warning ######'..b' #############################################\n+\n+def main():\n+    args = process_args(sys.argv)\n+    \n+    create_svg = check_bool(args.generate_svg)\n+    create_pdf = check_bool(args.generate_pdf)\n+    generate_ras = check_bool(args.generate_ras)\n+    \n+    os.makedirs(\'result\')\n+\n+    if generate_ras:\n+        os.makedirs(\'ras\')\n+    \n+    if args.rules_selector == \'HMRcore\':        \n+        recon = pk.load(open(args.tool_dir + \'/local/HMRcore_rules.p\', \'rb\'))\n+    elif args.rules_selector == \'Recon\':\n+        recon = pk.load(open(args.tool_dir + \'/local/Recon_rules.p\', \'rb\'))\n+    elif args.rules_selector == \'Custom\':\n+        ids, rules, gene_in_rule = make_recon(args.custom)\n+        \n+    resolve_none = check_bool(args.none)\n+    \n+    class_pat = {}\n+    \n+    if args.option == \'datasets\':\n+        num = 1\n+        for i, j in zip(args.input_datas, args.names):\n+\n+            name = name_dataset(j, num)\n+            dataset = read_dataset(i, name)\n+\n+            dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)\n+\n+            type_gene = gene_type(dataset.iloc[0, 0], name) \n+            \n+            if args.rules_selector != \'Custom\':\n+                genes = data_gene(dataset, type_gene, name, None)\n+                ids, rules = load_id_rules(recon.get(type_gene))\n+            elif args.rules_selector == \'Custom\':\n+                genes = data_gene(dataset, type_gene, name, gene_in_rule)\n+                \n+            resolve_rules, err = resolve(genes, rules, ids, resolve_none, name)\n+\n+            if generate_ras:\n+                create_ras(resolve_rules, name)\n+                \n+            \n+            if err != None and err:\n+                warning(\'Warning: gene\\n\' + str(err) + \'\\nnot found in class \'\n+                    + name + \', the expression level for this gene \' +\n+                    \'will be considered NaN\\n\')\n+            if resolve_rules != None:\n+                class_pat[name] = list(map(list, zip(*resolve_rules.values())))\n+            num += 1\n+    elif args.option == \'dataset_class\':\n+        name = \'RNAseq\'\n+        dataset = read_dataset(args.input_data, name)\n+        dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)\n+        type_gene = gene_type(dataset.iloc[0, 0], name)\n+        classes = read_dataset(args.input_class, \'class\')\n+        if not len(classes.columns) == 2:\n+            warning(\'Warning: more than 2 columns in class file. Extra\' +\n+                    \'columns have been disregarded\\n\')\n+        classes = classes.astype(str)\n+        if args.rules_selector != \'Custom\':\n+            genes = data_gene(dataset, type_gene, name, None)\n+            ids, rules = load_id_rules(recon.get(type_gene))\n+        elif args.rules_selector == \'Custom\':\n+            genes = data_gene(dataset, type_gene, name, gene_in_rule)\n+        resolve_rules, err = resolve(genes, rules, ids, resolve_none, name)\n+        if err != None and err:\n+            warning(\'Warning: gene\\n\'+str(err)+\'\\nnot found in class \'\n+                    + name + \', the expression level for this gene \' +\n+                    \'will be considered NaN\\n\')\n+        if resolve_rules != None:\n+            class_pat = split_class(classes, resolve_rules)\n+            \n+    if args.rules_selector == \'Custom\':\n+        if args.yes_no == \'yes\':\n+            try:\n+                core_map = ET.parse(args.custom_map)\n+            except (ET.XMLSyntaxError, ET.XMLSchemaParseError):\n+                sys.exit(\'Execution aborted: custom map in wrong format\')\n+        elif args.yes_no == \'no\':\n+            core_map = ET.parse(args.tool_dir + \'/local/HMRcoreMap.svg\')\n+    else:       \n+        core_map = ET.parse(args.tool_dir+\'/local/HMRcoreMap.svg\')\n+        \n+    maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf)\n+        \n+    print(\'Execution succeded\')\n+\n+    return None\n+\n+###############################################################################\n+\n+if __name__ == "__main__":\n+    main()\n'
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/marea.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/marea.xml Tue Oct 01 06:03:12 2019 -0400
[
b'@@ -0,0 +1,223 @@\n+<tool id="MaREA" name="Metabolic Enrichment Analysis" version="1.0.1">\n+    <description>for Galaxy - 1.0.1</description>\n+    <macros>\n+        <import>marea_macros.xml</import>\n+    </macros>\n+    <requirements>\n+        <requirement type="package" version="0.23.0">pandas</requirement>\n+        <requirement type="package" version="1.1.0">scipy</requirement>\n+        <requirement type="package" version="0.10.1">cobra</requirement>\n+        <requirement type="package" version="4.2.1">lxml</requirement>\n+        <requirement type="package" version="0.8.1">svglib</requirement>\n+        <requirement type="package" version="3.4.0">reportlab</requirement>\n+    </requirements>\n+    <command detect_errors="exit_code">\n+        <![CDATA[\n+      \tpython $__tool_directory__/marea.py\n+        --rules_selector $cond_rule.rules_selector\n+        #if $cond_rule.rules_selector == \'Custom\':\n+            --custom ${cond_rule.Custom_rules}\n+            --yes_no ${cond_rule.cond_map.yes_no}\n+            #if $cond_rule.cond_map.yes_no == \'yes\':\n+                --custom_map $cond_rule.cond_map.Custom_map\n+            #end if\n+        #end if\n+\t#if $advanced.choice == \'true\':\n+      \t    --none ${advanced.None}\n+      \t    --pValue ${advanced.pValue}\n+      \t    --fChange ${advanced.fChange}\n+\t    --generate_svg ${advanced.generateSvg}\n+\t    --generate_pdf ${advanced.generatePdf}\n+\t    --generate_ras ${advanced.generateRas}\n+\t#else \n+\t    --none true\n+\t    --pValue 0.05\n+\t    --fChange 1.5\n+\t    --generate_svg false\n+\t    --generate_pdf true\n+\t    --generate_ras false\n+\t#end if\n+      \t--tool_dir $__tool_directory__\n+      \t--option $cond.type_selector\n+        --out_log $log\t\t\n+\t\n+        #if $cond.type_selector == \'datasets\':\n+            --input_datas\n+            #for $data in $cond.input_Datasets:\n+                ${data.input}\n+            #end for\n+            --names\n+            #for $data in $cond.input_Datasets:\n+                ${data.input_name}\n+            #end for\n+        #elif $cond.type_selector == \'dataset_class\':\n+            --input_data ${input_data}\n+            --input_class ${input_class}\n+        #end if\n+        ]]>\n+    </command>\n+\n+    <inputs>\n+        <conditional name="cond_rule">\n+            <expand macro="options"/>\n+            <when value="HMRcore">\n+            </when>\n+            <when value="Recon">\n+            </when>\n+            <when value="Custom">\n+                <param name="Custom_rules" type="data" format="tabular, csv, tsv, xml" label="Custom rules" />\n+                <conditional name="cond_map">\n+                    <param name="yes_no" type="select" label="Custom map? (optional)">\n+                        <option value="no" selected="true">no</option>\n+                        <option value="yes">yes</option>\n+                    </param>\n+                    <when value="yes">\n+                        <param name="Custom_map" argument="--custom_map" type="data" format="xml, svg" label="custom-map.svg"/>\n+                    </when>\n+                    <when value="no">\n+                    </when>\n+                </conditional>\n+            </when>\n+        </conditional>\n+        <conditional name="cond">\n+            <param name="type_selector" argument="--option" type="select" label="Input format:">\n+                <option value="datasets" selected="true">RNAseq of group 1 + RNAseq of group 2 + ... + RNAseq of group N</option>\n+                <option value="dataset_class">RNAseq of all samples + sample group specification</option>\n+            </param>\n+            <when value="datasets">\n+                <repeat name="input_Datasets" title="RNAseq" min="2">\n+                    <param name="input" argument="--input_datas" type="data" format="tabular, csv, tsv" label="add dataset" />\t\n+                    <param name="input_name" argument="--names" type="text" label="Dataset\'s name:" value="Dataset" help="Default: Dataset" />\n+                </repeat>\n+         '..b'ity Score for each table" help="Generate Reaction Activity Score for each table" />\t\t\n+\t\t</when>\n+    \t</conditional>\n+    </inputs>\n+\n+    <outputs>\n+        <data format="txt" name="log" label="${tool.name} - Log" />\n+        <collection name="results" type="list" label="${tool.name} - Results">\n+            <discover_datasets pattern="__name_and_ext__" directory="result"/>\n+        </collection>\n+\t<collection name="ras" type="list" label="${tool.name} - RAS" format_source="tabular">\n+\t    <filter>advanced[\'choice\'] and advanced[\'generateRas\']</filter>\n+    \t    <discover_datasets pattern="__name_and_ext__" directory="ras" format="tabular"/>\n+\t</collection>\n+    </outputs>\n+    <tests>\n+        <test>\n+            <param name="pValue" value="0.56"/>\n+            <output name="log" file="log.txt"/>\n+        </test>\n+    </tests>\n+    <help>\n+<![CDATA[\n+\n+What it does\n+-------------\n+\n+This tool analyzes RNA-seq dataset(s) as described in Graudenzi et al."`MaREA`_: Metabolic feature extraction, enrichment and visualization of RNAseq data" bioRxiv (2018): 248724.\n+\n+Accepted files are: \n+    - option 1) two or more RNA-seq datasets, each referring to samples in a given condition/class. The user can specify a label for each class (as e.g. "*classA*" and "*classB*");\n+    - option 2) one RNA dataset and one class-file specifying the class/condition each sample belongs to.\n+\n+Optional files:\n+    - custom GPR (Gene-Protein-Reaction) rules. Two accepted formats:\n+\n+\t* (Cobra Toolbox and CobraPy compliant) xml of metabolic model;\n+\t* .csv file specifyig for each reaction ID (column 1) the corresponding GPR rule (column 2).\n+    - custom svg map. Graphical elements must have the same IDs of reactions. See HmrCore svg map for an example.\n+\n+The tool generates:\n+    1) a tab-separated file: reporting fold-change and p-values of reaction activity scores (RASs) between a pair of conditions/classes;\n+    2) a metabolic map file (downlodable as .svg): visualizing up- and down-regulated reactions between a pair of conditions/classes;\n+    3) a log file (.txt).\n+\n+RNA-seq datasets format: tab-separated text files, reporting the expression level (e.g., TPM, RPKM, ...) of each gene (row) for a given sample (column). Header: sample ID.\n+\n+Class-file format: each row of the class-file reports the sample ID (column1) and the label of the class/condition the sample belongs to (column 2).\n+\n+To calculate P-Values and Fold-Changes and to generate maps, comparisons are performed for each possible pair of classes.\n+\n+Output files will be named as classA_vs_classB. Reactions will conventionally be reported as up-regulated (down-regulated) if they are significantly more (less) active in class having label "classA".\n+\n+\n+Example input\n+-------------\n+\n+**"Custom Rules"** option:\n+\n+Custom Rules Dastaset:\n+\n+@CUSTOM_RULES_EXEMPLE@\n+\n+**"RNAseq of group 1 + RNAseq of group 2 + ... + RNAseq of group N"** option:\n+\n+RNA-seq Dataset 1:\t\t\t\t\t\t\n+\n+@DATASET_EXEMPLE1@\n+\n+RNA-seq Dataset 2:\n+\n+@DATASET_EXEMPLE2@\n+\n+**"RNAseq of all samples + sample group specification"** option:\n+\n+RNA-seq Dataset:\n+\n+@DATASET_EXEMPLE1@\n+\n+Class-file:\n+\n++------------+------------+   \n+| Patient_ID |    class   |   \n++============+============+   \n+| TCGAAA3529 |     MSI    |   \n++------------+------------+    \n+| TCGAA62671 |     MSS    |    \n++------------+------------+    \n+| TCGAA62672 |     MSI    |   \n++------------+------------+\n+\n+|\n+\n+.. class:: infomark\n+\n+**TIP**: If your data is not TAB delimited, use `Convert delimiters to TAB`_.\n+\n+.. class:: infomark\n+\n+**TIP**: If your dataset is not split into classes, use `MaREA cluster analysis`_.\n+\n+@REFERENCE@\n+\n+.. _MaREA: https://www.biorxiv.org/content/early/2018/01/16/248724\n+.. _Convert delimiters to TAB: https://usegalaxy.org/?tool_id=Convert+characters1&version=1.0.0&__identifer=6t22teyofhj\n+.. _MaREA cluster analysis: http://link del tool di cluster.org\n+\n+]]>\n+    </help>\n+    <expand macro="citations" />\n+</tool>\n+\t\n'
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/marea_cluster.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/marea_cluster.py Tue Oct 01 06:03:12 2019 -0400
[
b'@@ -0,0 +1,417 @@\n+# -*- coding: utf-8 -*-\n+"""\n+Created on Mon Jun 3 19:51:00 2019\n+\n+@author: Narger\n+"""\n+\n+import sys\n+import argparse\n+import os\n+from sklearn.datasets import make_blobs\n+from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering\n+from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster\n+import matplotlib.pyplot as plt\n+import scipy.cluster.hierarchy as shc   \n+import matplotlib.cm as cm\n+import numpy as np\n+import pandas as pd\n+\n+################################# process args ###############################\n+\n+def process_args(args):\n+    parser = argparse.ArgumentParser(usage = \'%(prog)s [options]\',\n+                                     description = \'process some value\\\'s\' +\n+                                     \' genes to create class.\')\n+\n+    parser.add_argument(\'-ol\', \'--out_log\', \n+                        help = "Output log")\n+    \n+    parser.add_argument(\'-in\', \'--input\',\n+                        type = str,\n+                        help = \'input dataset\')\n+    \n+    parser.add_argument(\'-cy\', \'--cluster_type\',\n+                        type = str,\n+                        choices = [\'kmeans\', \'meanshift\', \'dbscan\', \'hierarchy\'],\n+                        default = \'kmeans\',\n+                        help = \'choose clustering algorythm\')\n+    \n+    parser.add_argument(\'-k1\', \'--k_min\', \n+                        type = int,\n+                        default = 2,\n+                        help = \'choose minimun cluster number to be generated\')\n+    \n+    parser.add_argument(\'-k2\', \'--k_max\', \n+                        type = int,\n+                        default = 7,\n+                        help = \'choose maximum cluster number to be generated\')\n+    \n+    parser.add_argument(\'-el\', \'--elbow\', \n+                        type = str,\n+                        default = \'false\',\n+                        choices = [\'true\', \'false\'],\n+                        help = \'choose if you want to generate an elbow plot for kmeans\')\n+    \n+    parser.add_argument(\'-si\', \'--silhouette\', \n+                        type = str,\n+                        default = \'false\',\n+                        choices = [\'true\', \'false\'],\n+                        help = \'choose if you want silhouette plots\')\n+    \n+    parser.add_argument(\'-db\', \'--davies\', \n+                        type = str,\n+                        default = \'false\',\n+                        choices = [\'true\', \'false\'],\n+                        help = \'choose if you want davies bouldin scores\')\n+    \n+    parser.add_argument(\'-td\', \'--tool_dir\',\n+                        type = str,\n+                        required = True,\n+                        help = \'your tool directory\')\n+                        \n+    parser.add_argument(\'-ms\', \'--min_samples\',\n+                        type = int,\n+                        help = \'min samples for dbscan (optional)\')\n+                        \n+    parser.add_argument(\'-ep\', \'--eps\',\n+                        type = int,\n+                        help = \'eps for dbscan (optional)\')\n+    \n+    \n+    args = parser.parse_args()\n+    return args\n+\n+########################### warning ###########################################\n+\n+def warning(s):\n+    args = process_args(sys.argv)\n+    with open(args.out_log, \'a\') as log:\n+        log.write(s + "\\n\\n")\n+    print(s)\n+\n+########################## read dataset ######################################\n+    \n+def read_dataset(dataset):\n+    try:\n+        dataset = pd.read_csv(dataset, sep = \'\\t\', header = 0)\n+    except pd.errors.EmptyDataError:\n+        sys.exit(\'Execution aborted: wrong format of dataset\\n\')\n+    if len(dataset.columns) < 2:\n+        sys.exit(\'Execution aborted: wrong format of dataset\\n\')\n+    return dataset\n+\n+############################ rewrite_input ###################################\n+    \n+def rewrite_input(dataset):\n+    #Riscrivo il dataset come dizionario di liste, \n+    #non come dizionario di dizionari\n+    \n+    for'..b'   warning("For n_clusters =" + str(n_clusters_) + \n+              "The average silhouette_score is :" + str(silhouette_avg))\n+    \n+    ##TODO: PLOT SU DBSCAN (no centers) e HIERARCHICAL\n+\n+    # Black removed and is used for noise instead.\n+    unique_labels = set(labels)\n+    colors = [plt.cm.Spectral(each)\n+          for each in np.linspace(0, 1, len(unique_labels))]\n+    for k, col in zip(unique_labels, colors):\n+        if k == -1:\n+            # Black used for noise.\n+            col = [0, 0, 0, 1]\n+\n+        class_member_mask = (labels == k)\n+    \n+        xy = dataset[class_member_mask & core_samples_mask]\n+        plt.plot(xy[:, 0], xy[:, 1], \'o\', markerfacecolor=tuple(col),\n+                 markeredgecolor=\'k\', markersize=14)\n+    \n+        xy = dataset[class_member_mask & ~core_samples_mask]\n+        plt.plot(xy[:, 0], xy[:, 1], \'o\', markerfacecolor=tuple(col),\n+                 markeredgecolor=\'k\', markersize=6)\n+\n+    plt.title(\'Estimated number of clusters: %d\' % n_clusters_)\n+    s = \'clustering/dbscan_output/dbscan_plot.png\'\n+    fig = plt.gcf()\n+    fig.set_size_inches(18.5, 10.5, forward = True)\n+    fig.savefig(s, dpi=100)\n+    \n+    \n+    write_to_csv(dataset, labels, \'clustering/dbscan_output/dbscan_results.tsv\')\n+    \n+########################## hierachical #######################################\n+    \n+def hierachical_agglomerative(dataset, k_min, k_max):\n+\n+    if not os.path.exists(\'clustering/agglomerative_output\'):\n+        os.makedirs(\'clustering/agglomerative_output\')\n+    \n+    plt.figure(figsize=(10, 7))  \n+    plt.title("Customer Dendograms")  \n+    shc.dendrogram(shc.linkage(dataset, method=\'ward\'))  \n+    fig = plt.gcf()\n+    fig.savefig(\'clustering/agglomerative_output/dendogram.png\', dpi=200)\n+    \n+    range_n_clusters = [i for i in range(k_min, k_max+1)]\n+\n+    for n_clusters in range_n_clusters:\n+        \n+        cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity=\'euclidean\', linkage=\'ward\')  \n+        cluster.fit_predict(dataset)  \n+        cluster_labels = cluster.labels_\n+        \n+        silhouette_avg = silhouette_score(dataset, cluster_labels)\n+        warning("For n_clusters =", n_clusters,\n+              "The average silhouette_score is :", silhouette_avg)\n+        \n+        plt.clf()\n+        plt.figure(figsize=(10, 7))  \n+        plt.title("Agglomerative Hierarchical Clustering\\nwith " + str(n_clusters) + " clusters and " + str(silhouette_avg) + " silhouette score")\n+        plt.scatter(dataset[:,0], dataset[:,1], c = cluster_labels, cmap=\'rainbow\') \n+        s = \'clustering/agglomerative_output/hierachical_\' + str(n_clusters) + \'_clusters.png\'\n+        fig = plt.gcf()\n+        fig.set_size_inches(10, 7, forward = True)\n+        fig.savefig(s, dpi=200)\n+        \n+        write_to_csv(dataset, cluster_labels, \'clustering/agglomerative_output/agglomerative_hierarchical_with_\' + str(n_clusters) + \'_clusters.tsv\')\n+        \n+       \n+\n+    \n+############################# main ###########################################\n+\n+\n+def main():\n+    if not os.path.exists(\'clustering\'):\n+        os.makedirs(\'clustering\')\n+\n+    args = process_args(sys.argv)\n+    \n+    #Data read\n+    \n+    X = read_dataset(args.input)\n+    X = pd.DataFrame.to_dict(X, orient=\'list\')\n+    X = rewrite_input(X)\n+    X = pd.DataFrame.from_dict(X, orient = \'index\')\n+    \n+    for i in X.columns:\n+        tmp = X[i][0]\n+        if tmp == None:\n+            X = X.drop(columns=[i])\n+                \n+    X = pd.DataFrame.to_numpy(X)\n+    \n+    \n+    if args.cluster_type == \'kmeans\':\n+        kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.davies)\n+    \n+    if args.cluster_type == \'dbscan\':\n+        dbscan(X, args.eps, args.min_samples)\n+        \n+    if args.cluster_type == \'hierarchy\':\n+        hierachical_agglomerative(X, args.k_min, args.k_max)\n+        \n+##############################################################################\n+\n+if __name__ == "__main__":\n+    main()\n'
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/marea_cluster.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/marea_cluster.xml Tue Oct 01 06:03:12 2019 -0400
[
@@ -0,0 +1,92 @@
+<tool id="MaREA_cluester" name="MaREA cluster analysis" version="1.0.1">
+    <description>of Reaction Activity Scores - 1.0.1</description>
+    <macros>
+        <import>marea_macros.xml</import>
+    </macros>
+    <requirements>
+        <requirement type="package" version="0.23.0">pandas</requirement>
+        <requirement type="package" version="1.1.0">scipy</requirement>
+        <requirement type="package" version="0.10.1">cobra</requirement>
+        <requirement type="package" version="0.21.3">scikit-learn</requirement>
+        <requirement type="package" version="2.2.2">matplotlib</requirement>
+ <requirement type="package" version="1.17">numpy</requirement>
+    </requirements>
+    <command detect_errors="exit_code">
+        <![CDATA[
+       python $__tool_directory__/marea_cluster.py
+        --input $input
+       --tool_dir $__tool_directory__
+        --out_log $log
+        #if $data.clust_type == 'kmeans':
+         --k_min ${data.k_min}
+         --k_max ${data.k_max}
+         --elbow ${data.elbow}
+         --silhouette ${data.silhouette}
+        #end if
+        #if $data.clust_type == 'dbscan':
+         #if $data.dbscan_advanced.advanced == 'true'
+         --eps ${data.dbscan_advanced.eps}
+         --min_samples ${data.dbscan_advanced.min_samples}
+         #end if
+        #end if
+        #if $data.clust_type == 'hierarchy':
+         --k_min ${data.k_min}
+         --k_max ${data.k_max}
+       #end if
+        ]]>
+    </command>
+    <inputs>
+        <param name="input" argument="--input" type="data" format="tabular, csv, tsv" label="RNAseq of all samples" />
+        
+        <conditional name="data">
+ <param name="clust_type" argument="--cluster_type" type="select" label="Choose clustering type:">
+                 <option value="kmeans" selected="true">KMeans</option>
+                 <option value="dbscan">DBSCAN</option>
+                 <option value="hierarchy">Agglomerative Hierarchical</option>
+         </param>
+         <when value="kmeans">
+         <param name="k_min" argument="--k_min" type="integer" min="2" max="99" value="3" label="Min number of clusters (k) to be tested" />
+         <param name="k_max" argument="--k_max" type="integer" min="3" max="99" value="5" label="Max number of clusters (k) to be tested" />
+         <param name="elbow" argument="--elbow" type="boolean" value="true" label="Draw the elbow plot from k-min to k-max"/>
+         <param name="silhouette" argument="--silhouette" type="boolean" value="true" label="Draw the Silhouette plot from k-min to k-max"/>
+         </when>
+         <when value="dbscan">
+         <conditional name="dbscan_advanced">
+         <param name="advanced" type="boolean" value="false" label="Want to use custom params for DBSCAN? (if not optimal values will be used)">
+         <option value="true">Yes</option>
+         <option value="false">No</option>
+         </param>
+         <when value="false"></when>
+         <when value="true">
+         <param name="eps" argument="--eps" type="float" value="0.5" label="Epsilon - The maximum distance between two samples for one to be considered as in the neighborhood of the other" />
+         <param name="min_samples" argument="min_samples" type="integer" value="5" label="Min samples - The number of samples in a neighborhood for a point to be considered as a core point (this includes the point itself)"/>
+        
+         </when>
+         </conditional>   
+         </when>
+         <when value="hierarchy">
+         <param name="k_min" argument="--k_min" type="integer" min="2" max="99" value="3" label="Min number of clusters (k) to be tested" />
+         <param name="k_max" argument="--k_max" type="integer" min="3" max="99" value="5" label="Max number of clusters (k) to be tested" />
+         </when>
+ </conditional>
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="log" label="${tool.name} - Log" />
+        <collection name="results" type="list" label="${tool.name} - Results">
+            <discover_datasets pattern="__name_and_ext__" directory="clustering"/>
+        </collection>
+    </outputs>
+    <help>
+<![CDATA[
+
+What it does
+-------------
+
+
+]]>
+    </help>
+    <expand macro="citations" />
+</tool>
+
+
b
diff -r 1a0c8c2780f2 -r d0e7f14b773f marea-1.0.1/marea_macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/marea-1.0.1/marea_macros.xml Tue Oct 01 06:03:12 2019 -0400
b
@@ -0,0 +1,92 @@
+<macros>
+
+    <xml name="options">
+        <param name="rules_selector" argument="--rules_selector" type="select" label="Gene-Protein-Reaction rules:">
+            <option value="HMRcore" selected="true">HMRcore rules</option>
+            <option value="Recon">Recon 2.2 rules</option>
+            <option value="Custom">Custom rules</option>
+        </param>
+    </xml>
+
+   <token name="@CUSTOM_RULES_EXEMPLE@">
+
++--------------------+-------------------------------+
+|         id         |     rule (with entrez-id)     |
++====================+===============================+
+|        SHMT1       |        155060 or 10357        |
++--------------------+-------------------------------+
+|        NIT2        |      155060 or 100134869      |
++--------------------+-------------------------------+
+| GOT1_GOT2_GOT1L1_2 | 155060 and 100134869 or 10357 |
++--------------------+-------------------------------+
+
+|
+
+    </token>
+
+    <token name="@DATASET_EXEMPLE1@">
+
++------------+------------+------------+------------+   
+|  Hugo_ID   | TCGAA62670 | TCGAA62671 | TCGAA62672 |   
++============+============+============+============+   
+| HGNC:24086 |  0.523167  |  0.371355  |  0.925661  |   
++------------+------------+------------+------------+    
+| HGNC:24086 |  0.568765  |  0.765567  |  0.456789  |    
++------------+------------+------------+------------+    
+| HGNC:9876  |  0.876545  |  0.768933  |  0.987654  |   
++------------+------------+------------+------------+    
+| HGNC:9     |  0.456788  |  0.876543  |  0.876542  |   
++------------+------------+------------+------------+    
+| HGNC:23    |  0.876543  |  0.786543  |  0.897654  |   
++------------+------------+------------+------------+ 
+   
+|
+
+    </token>
+
+    <token name="@DATASET_EXEMPLE2@">
+
++-------------+------------+------------+------------+
+| Hugo_Symbol | TCGAA62670 | TCGAA62671 | TCGAA62672 |
++=============+============+============+============+
+|    A1BG     |  0.523167  |  0.371355  |  0.925661  |
++-------------+------------+------------+------------+
+|    A1CF     |  0.568765  |  0.765567  |  0.456789  |
++-------------+------------+------------+------------+
+|     A2M     |  0.876545  |  0.768933  |  0.987654  |
++-------------+------------+------------+------------+
+|    A4GALT   |  0.456788  |  0.876543  |  0.876542  |
++-------------+------------+------------+------------+
+|   M664Y65   |  0.876543  |  0.786543  |  0.897654  |
++-------------+------------+------------+------------+
+
+|
+
+    </token>
+
+    <token name="@REFERENCE@">
+
+This tool is developed by the `BIMIB`_ at the `Department of Informatics, Systems and Communications`_ of `University of Milan - Bicocca`_.
+
+.. _BIMIB: http://sito di bio.org
+.. _Department of Informatics, Systems and Communications: http://www.disco.unimib.it/go/Home/English
+.. _University of Milan - Bicocca: https://www.unimib.it/
+
+    </token>
+
+    <xml name="citations">
+        <citations> <!--esempio di citazione-->
+            <citation type="bibtex">
+@online{lh32017,
+  author = {Alex Graudenzi, Davide Maspero, Cluadio Isella, Marzia Di Filippo, Giancarlo Mauri, Enzo Medico, Marco Antoniotti, Chiara Damiani},
+  year = {2018},
+  title = {MaREA: Metabolic feature extraction, enrichment and visualization of RNAseq},
+  publisher = {bioRxiv},
+  journal = {bioRxiv},
+  url = {https://www.biorxiv.org/content/early/2018/01/16/248724},
+}
+            </citation>
+        </citations>
+    </xml>
+
+</macros>