Repository 'ramclustr'
hg clone https://toolshed.g2.bx.psu.edu/repos/recetox/ramclustr

Changeset 11:da7722f665f4 (2024-05-30)
Previous changeset 10:2d94da58904b (2024-05-22)
Commit message:
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ramclustr commit bc3445f7c41271b0062c7674108f57708d08dd28
modified:
macros.xml
ramclustr.xml
ramclustr_wrapper.R
b
diff -r 2d94da58904b -r da7722f665f4 macros.xml
--- a/macros.xml Wed May 22 08:04:21 2024 +0000
+++ b/macros.xml Thu May 30 14:52:11 2024 +0000
b
@@ -66,7 +66,7 @@
     </xml>
 
     <xml name="parameters_recetox_aplcms">
-        <section name="ms_dataframe" title="Input MS Data as parquet (output from recetox-aplcms)" expanded="true">
+        <section name="ms_dataframe" title="Input MS Data as parquet/tabular (output from recetox-aplcms)" expanded="true">
             <param label="Input MS1 featureDefinitions" name="ms1_featureDefinitions" type="data" format="parquet,tabular"
                    help="Metadata with columns: mz, rt, feature names containing MS data."/>
             <param label="Input MS1 featureValues" name="ms1_featureValues" type="data" format="parquet,tabular"
b
diff -r 2d94da58904b -r da7722f665f4 ramclustr.xml
--- a/ramclustr.xml Wed May 22 08:04:21 2024 +0000
+++ b/ramclustr.xml Thu May 30 14:52:11 2024 +0000
b
@@ -1,4 +1,4 @@
-<tool id="ramclustr" name="RAMClustR" version="@TOOL_VERSION@+galaxy6" profile="21.09">
+<tool id="ramclustr" name="RAMClustR" version="@TOOL_VERSION@+galaxy7" profile="21.09">
     <description>A feature clustering algorithm for non-targeted mass spectrometric metabolomics data.</description>
     <macros>
         <import>macros.xml</import>
b
diff -r 2d94da58904b -r da7722f665f4 ramclustr_wrapper.R
--- a/ramclustr_wrapper.R Wed May 22 08:04:21 2024 +0000
+++ b/ramclustr_wrapper.R Thu May 30 14:52:11 2024 +0000
[
b'@@ -2,42 +2,42 @@\n                          output_merge_msp,\n                          output_spec_abundance,\n                          msp_file) {\n-  RAMClustR::write.msp(ramclustr_obj, one.file = output_merge_msp)\n-  write.table(ramclustr_obj$SpecAbund,\n-    file = output_spec_abundance,\n-    row.names = TRUE, quote = FALSE, col.names = NA, sep = "\\t"\n-  )\n+    RAMClustR::write.msp(ramclustr_obj, one.file = output_merge_msp)\n+    write.table(ramclustr_obj$SpecAbund,\n+        file = output_spec_abundance,\n+        row.names = TRUE, quote = FALSE, col.names = NA, sep = "\\t"\n+    )\n \n-  if (!is.null(msp_file)) {\n-    exp_name <- ramclustr_obj$ExpDes[[1]][which(\n-      row.names(ramclustr_obj$ExpDes[[1]]) == "Experiment"\n-    ), 1]\n-    filename <- paste("spectra/", exp_name, ".msp", sep = "")\n-    file.copy(from = filename, to = msp_file, overwrite = TRUE)\n-  }\n+    if (!is.null(msp_file)) {\n+        exp_name <- ramclustr_obj$ExpDes[[1]][which(\n+            row.names(ramclustr_obj$ExpDes[[1]]) == "Experiment"\n+        ), 1]\n+        filename <- paste("spectra/", exp_name, ".msp", sep = "")\n+        file.copy(from = filename, to = msp_file, overwrite = TRUE)\n+    }\n }\n \n load_experiment_definition <- function(filename) {\n-  experiment <- RAMClustR::defineExperiment(csv = filename)\n-  return(experiment)\n+    experiment <- RAMClustR::defineExperiment(csv = filename)\n+    return(experiment)\n }\n \n read_metadata <- function(filename) {\n-  data <- read.csv(filename, header = TRUE, stringsAsFactors = FALSE)\n+    data <- read.csv(filename, header = TRUE, stringsAsFactors = FALSE)\n \n-  if (!"qc" %in% colnames(data)) {\n-    if ("sampleType" %in% colnames(data)) {\n-      data$qc <- ifelse(data$sampleType == "qc", TRUE, FALSE)\n+    if (!"qc" %in% colnames(data)) {\n+        if ("sampleType" %in% colnames(data)) {\n+            data$qc <- ifelse(data$sampleType == "qc", TRUE, FALSE)\n+        }\n     }\n-  }\n \n-  if (!"order" %in% colnames(data)) {\n-    if ("injectionOrder" %in% colnames(data)) {\n-      names(data)[names(data) == "injectionOrder"] <- "order"\n+    if (!"order" %in% colnames(data)) {\n+        if ("injectionOrder" %in% colnames(data)) {\n+            names(data)[names(data) == "injectionOrder"] <- "order"\n+        }\n     }\n-  }\n \n-  return(data)\n+    return(data)\n }\n \n read_ramclustr_aplcms <- function(ms1_featuredefinitions = NULL,\n@@ -49,52 +49,55 @@\n                                   ensure_no_na = TRUE,\n                                   ms1_featuredefinitions_ext = "parquet",\n                                   ms1_featurevalues_ext = "parquet") {\n-  if (ms1_featuredefinitions_ext == "parquet") {\n-    ms1_featuredefinitions <- arrow::read_parquet(ms1_featuredefinitions)\n-  } else {\n-    ms1_featuredefinitions <- read.csv(ms1_featuredefinitions,\n-      header = TRUE, sep = "\\t"\n-    )\n-  }\n+    if (ms1_featuredefinitions_ext == "parquet") {\n+        ms1_featuredefinitions <- arrow::read_parquet(ms1_featuredefinitions)\n+    } else {\n+        ms1_featuredefinitions <- read.csv(ms1_featuredefinitions,\n+            header = TRUE, sep = "\\t", check.names = FALSE\n+        )\n+    }\n \n-  if (ms1_featurevalues_ext == "parquet") {\n-    ms1_featurevalues <- arrow::read_parquet(ms1_featurevalues)\n-  } else {\n-    ms1_featurevalues <- read.csv(ms1_featurevalues, header = TRUE, sep = "\\t")\n-  }\n-\n-  if (!is.null(df_phenodata)) {\n-    if (phenodata_ext == "csv") {\n-      df_phenodata <- read.csv(\n-        file = df_phenodata,\n-        header = TRUE, check.names = FALSE\n-      )\n+    if (ms1_featurevalues_ext == "parquet") {\n+        ms1_featurevalues <- arrow::read_parquet(ms1_featurevalues)\n     } else {\n-      df_phenodata <- read.csv(\n-        file = df_phenodata,\n-        header = TRUE, check.names = FALSE, sep = "\\t"\n-      )\n+        ms1_featurevalues <- read.csv(ms1_featurevalues,\n+            header = TRUE,\n+            sep = "\\t", check.names = FALSE\n+        )\n     }\n-  }\n-  if (!is.null(exp_des)) {\n-    exp_des <- load_experiment_de'..b'+        } else {\n+            df_phenodata <- read.csv(\n+                file = df_phenodata,\n+                header = TRUE, check.names = FALSE, sep = "\\t"\n+            )\n+        }\n+    }\n+    if (!is.null(exp_des)) {\n+        exp_des <- load_experiment_definition(exp_des)\n+    }\n \n-  ramclustr_obj <- RAMClustR::rc.get.df.data(\n-    ms1_featureDefinitions = feature_definitions,\n-    ms1_featureValues = feature_values,\n-    phenoData = df_phenodata,\n-    ExpDes = exp_des,\n-    st = st,\n-    ensure.no.na = ensure_no_na\n-  )\n-  return(ramclustr_obj)\n+    feature_values <- ms1_featurevalues[-1]\n+    feature_values <- t(feature_values)\n+    colnames(feature_values) <- ms1_featurevalues[[1]]\n+\n+    feature_definitions <- data.frame(ms1_featuredefinitions)\n+\n+    ramclustr_obj <- RAMClustR::rc.get.df.data(\n+        ms1_featureDefinitions = feature_definitions,\n+        ms1_featureValues = feature_values,\n+        phenoData = df_phenodata,\n+        ExpDes = exp_des,\n+        st = st,\n+        ensure.no.na = ensure_no_na\n+    )\n+    return(ramclustr_obj)\n }\n \n apply_normalisation <- function(ramclustr_obj = NULL,\n@@ -104,49 +107,49 @@\n                                 p_cut,\n                                 rsq_cut,\n                                 p_adjust) {\n-  batch <- NULL\n-  order <- NULL\n-  qc <- NULL\n+    batch <- NULL\n+    order <- NULL\n+    qc <- NULL\n \n-  if (normalize_method == "TIC") {\n-    ramclustr_obj <- RAMClustR::rc.feature.normalize.tic(\n-      ramclustObj =\n-        ramclustr_obj\n-    )\n-  } else if (normalize_method == "quantile") {\n-    ramclustr_obj <- RAMClustR::rc.feature.normalize.quantile(ramclustr_obj)\n-  } else if (normalize_method == "batch.qc") {\n-    if (!(is.null(metadata_file) || metadata_file == "None")) {\n-      metadata <- read_metadata(metadata_file)\n-      batch <- metadata$batch\n-      order <- metadata$order\n-      qc <- metadata$qc\n-    }\n+    if (normalize_method == "TIC") {\n+        ramclustr_obj <- RAMClustR::rc.feature.normalize.tic(\n+            ramclustObj =\n+                ramclustr_obj\n+        )\n+    } else if (normalize_method == "quantile") {\n+        ramclustr_obj <- RAMClustR::rc.feature.normalize.quantile(ramclustr_obj)\n+    } else if (normalize_method == "batch.qc") {\n+        if (!(is.null(metadata_file) || metadata_file == "None")) {\n+            metadata <- read_metadata(metadata_file)\n+            batch <- metadata$batch\n+            order <- metadata$order\n+            qc <- metadata$qc\n+        }\n \n-    ramclustr_obj <- RAMClustR::rc.feature.normalize.batch.qc(\n-      order = order,\n-      batch = batch,\n-      qc = qc,\n-      ramclustObj = ramclustr_obj,\n-      qc.inj.range = qc_inj_range\n-    )\n-  } else {\n-    if (!(is.null(metadata_file) || metadata_file == "None")) {\n-      metadata <- read_metadata(metadata_file)\n-      batch <- metadata$batch\n-      order <- metadata$order\n-      qc <- metadata$qc\n+        ramclustr_obj <- RAMClustR::rc.feature.normalize.batch.qc(\n+            order = order,\n+            batch = batch,\n+            qc = qc,\n+            ramclustObj = ramclustr_obj,\n+            qc.inj.range = qc_inj_range\n+        )\n+    } else {\n+        if (!(is.null(metadata_file) || metadata_file == "None")) {\n+            metadata <- read_metadata(metadata_file)\n+            batch <- metadata$batch\n+            order <- metadata$order\n+            qc <- metadata$qc\n+        }\n+\n+        ramclustr_obj <- RAMClustR::rc.feature.normalize.qc(\n+            order = order,\n+            batch = batch,\n+            qc = qc,\n+            ramclustObj = ramclustr_obj,\n+            p.cut = p_cut,\n+            rsq.cut = rsq_cut,\n+            p.adjust = p_adjust\n+        )\n     }\n-\n-    ramclustr_obj <- RAMClustR::rc.feature.normalize.qc(\n-      order = order,\n-      batch = batch,\n-      qc = qc,\n-      ramclustObj = ramclustr_obj,\n-      p.cut = p_cut,\n-      rsq.cut = rsq_cut,\n-      p.adjust = p_adjust\n-    )\n-  }\n-  return(ramclustr_obj)\n+    return(ramclustr_obj)\n }\n'