Repository 'maldi_quant_peak_detection'
hg clone https://toolshed.g2.bx.psu.edu/repos/galaxyp/maldi_quant_peak_detection

Changeset 4:e9300ef37403 (2019-03-22)
Previous changeset 3:36d38d2cf88c (2019-02-15) Next changeset 5:e66f552a3c47 (2020-03-19)
Commit message:
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/MALDIquant commit ecdc3a64aa245d80dbc5487b2bf10a85a43adc6d
modified:
maldi_quant_peakdetection.xml
b
diff -r 36d38d2cf88c -r e9300ef37403 maldi_quant_peakdetection.xml
--- a/maldi_quant_peakdetection.xml Fri Feb 15 10:26:45 2019 -0500
+++ b/maldi_quant_peakdetection.xml Fri Mar 22 08:26:23 2019 -0400
[
b'@@ -1,4 +1,4 @@\n-<tool id="maldi_quant_peak_detection" name="MALDIquant peak detection" version="@VERSION@.3">\n+<tool id="maldi_quant_peak_detection" name="MALDIquant peak detection" version="@VERSION@.4">\n     <description>\n         Peak detection, binning and filtering for mass-spectrometry imaging data\n     </description>\n@@ -128,10 +128,12 @@\n ## plot input file spectrum: \n #if $centroids:\n     ## Choose random spectra for QC plots\n+    print(length(peaks))\n     random_spectra = sample(1:length(peaks), 4, replace=FALSE)\n+    random_spectra_name = pixelnames[random_spectra]\n     par(mfrow = c(2, 2), oma=c(0,0,2,0))\n     for (random_sample in random_spectra){\n-        plot(peaks[[random_sample]],sub="", main=paste0("spectrum ", random_sample))}\n+        plot(peaks[[random_sample]],sub="", main=paste0("spectrum ", pixelnames[random_sample]))}\n     title("Input spectra", outer=TRUE, line=0)\n \n #else\n@@ -139,7 +141,8 @@\n     random_spectra = sample(1:length(maldi_data), 4, replace=FALSE)\n     par(mfrow = c(2, 2), oma=c(0,0,2,0))\n     for (random_sample in random_spectra){\n-        plot(maldi_data[[random_sample]],sub="", main=paste0("spectrum ", random_sample))}\n+        plot(maldi_data[[random_sample]],sub="", main=paste0("spectrum ", pixelnames[random_sample]))\n+    }\n     title("Input spectra", outer=TRUE, line=0)\n #end if\n \n@@ -223,7 +226,7 @@\n         par(mfrow = c(2, 2), oma=c(0,0,2,0))\n         for (random_sample in random_spectra){\n             noise = estimateNoise(maldi_data[[random_sample]], method= "$method.methods_conditional.peak_method")\n-            plot(maldi_data[[random_sample]], sub="", main=paste0("spectrum ", random_sample))\n+            plot(maldi_data[[random_sample]], sub="", main=paste0("spectrum ", pixelnames[random_sample]))\n             lines(noise[,1], noise[,2]*$method.methods_conditional.snr, col="blue")\n             points(peaks[[random_sample]], col="green", pch=20)}\n             title("S/N in blue and picked peaks in green", outer=TRUE, line=0)\n@@ -231,7 +234,7 @@\n         ## plot new spectrum\n         par(mfrow = c(2, 2), oma=c(0,0,2,0))\n         for (random_sample in random_spectra){\n-            plot(peaks[[random_sample]], sub="", main=paste0("spectrum ", random_sample))}\n+            plot(peaks[[random_sample]], sub="", main=paste0("spectrum ", pixelnames[random_sample]))}\n         title("Picked peaks", outer=TRUE, line=0)\n \n         pixel_number = length(peaks)\n@@ -268,20 +271,20 @@\n \n         peaks = monoisotopicPeaks(peaks, minCor=$method.methods_conditional.minCor, \n                 tolerance=$method.methods_conditional.tolerance,\n-                distance=$method.methods_conditional.distance, \n+                distance=c($method.methods_conditional.distance),\n                 size=$method.methods_conditional.size)\n \n         ## plot old spectrum with picked isotopes as green dots\n         par(mfrow = c(2, 2), oma=c(0,0,2,0))\n         for (random_sample in random_spectra){\n-            plot(picked_peaks[[random_sample]], sub="", main=paste0("spectrum ", random_sample))\n+            plot(picked_peaks[[random_sample]], sub="", main=paste0("spectrum ", pixelnames[random_sample]))\n             points(peaks[[random_sample]], col="green", pch=20)}\n             title(paste0("Monoisotopic peaks in green"), outer=TRUE, line=0)\n \n \n         par(mfrow = c(2, 2), oma=c(0,0,2,0))\n         for (random_sample in random_spectra){\n-            plot(peaks[[random_sample]], sub="", main=paste0("spectrum ", random_sample))}\n+            plot(peaks[[random_sample]], sub="", main=paste0("spectrum ", pixelnames[random_sample]))}\n             title("Monoisotopic peaks", outer=TRUE, line=0)\n \n         minmz = round(min(unlist(lapply(peaks,mass))), digits=4)\n@@ -365,7 +368,7 @@\n         ## QC plot and numbers\n         par(mfrow = c(2, 2), oma=c(0,0,2,0))\n         for (random_sample in random_spectra){\n-            plot(peaks[[random_sample]], sub="", main=paste0("spectrum ", random_sample))}\n+            plot'..b'rn."/>\n+                    <param name="tolerance" type="float" label="Tolerance" value="0.0001"\n+                        help="Maximal relative deviation of a peak position (m/z) to be considered as identical: abs(((mass[i]+distance)-mass[i+1])/mass[i]) smaller than \'tolerance\'. For 100ppm use 0.0001" />\n+                    <param name="distance" type="text" label="Distance" value="1.00235" help="Distance between two consecutive peaks in an isotopic pattern. 1.00235 is average distance for polypeptides. Multiple values can be used to find multiple charged pattern e.g. 1, 0.5 ,0.33">\n+                        <sanitizer invalid_char="">\n+                            <valid initial="string.digits">\n+                                <add value="," />\n+                                <add value=":" />\n+                                <add value="." />\n+                            </valid>\n+                        </sanitizer>\n+                    </param>\n+                    <param name="size" type="text" label="Size" value="3:10" help="Size (length) of isotopic pattern, longer patterns are prefered over shorter ones, min size is 2, a range can be used.">\n+                        <sanitizer invalid_char="">\n+                            <valid initial="string.digits">\n+                                <add value=":" />\n+                            </valid>\n+                        </sanitizer>\n+                    </param>\n                 </when>\n \n                 <when value="Align">\n@@ -614,7 +631,7 @@\n                 <when value="Binning">\n                     <param name="bin_tolerance" type="float" value="0.002" label="Tolerance"\n                         help="After the alignment the peak positions (mass) are very similar but not identical. The binning is needed to make similar peak mass values identical."/>\n-                    <param name="bin_method" display="radio" type="select" label="Bin creation rule" help="strict - creates bins never containing two or more peaks of the sampe sample. relaxed - allows multiple peaks of the same sample in one bin.">\n+                    <param name="bin_method" display="radio" type="select" label="Bin creation rule" help="strict - creates bins never containing two or more peaks of the same sample. relaxed - allows multiple peaks of the same sample in one bin.">\n                     <option value="strict" selected="True" >strict</option>\n                     <option value="relaxed" >relaxed</option>\n                 </param>\n@@ -673,6 +690,7 @@\n                 <conditional name="methods_conditional">\n                 <param name="method" value="monoisotopic_peaks"/>\n                 <param name="tolerance" value="0.0004"/>\n+                <param name="size" value="3"/>\n             </conditional>\n             </repeat>\n             <output name="plots" file="peakdetection2_QC.pdf" compare="sim_size"/>\n@@ -802,6 +820,13 @@\n \n - Monoisotopic peaks: Keeps only the monoisotopic peaks\n \n+    - Based on poisson model for isotopic patterns as decribed in (`Breen et al. <https://doi.org/10.1002/1522-2683(20000601)21:11%3C2243::AID-ELPS2243%3E3.0.CO;2-K>`_)\n+    - Isotopic pattern can be characterized and recognized by\n+\n+        - the similarity of the experimental pattern with the modelled pattern\n+        - the distance between consecutive isotopic peaks. For polypeptides the average distance is 1.00235 (`Park et al. <https://pubs.acs.org/doi/abs/10.1021/ac800913b>`_). Multiply charged analytes have smaller distances between the peaks (e.g. z = 1 distance = ~1; z = 2: distance = ~0.5; z = 3: distance = ~0.3333) To search for differently charged isotopic pattern multiple distances can be applied - the order matters because the first distance that matches is reported (1, 0.5, 0.3333). \n+        - the size (length) of the pattern, multiple values can be applied, longer patterns are prefered over shorter ones.\n+\n \n - Spectra alignment (warping): alignment for (re)calibration of m/z values. \n \n'