Repository 'sklearn_fitted_model_eval'
hg clone https://toolshed.g2.bx.psu.edu/repos/bgruening/sklearn_fitted_model_eval

Changeset 0:eaddff553324 (2019-11-01)
Next changeset 1:da9f0b8ca61c (2019-11-07)
Commit message:
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
added:
README.rst
fitted_model_eval.py
fitted_model_eval.xml
keras_deep_learning.py
keras_macros.xml
main_macros.xml
ml_visualization_ex.py
model_prediction.py
search_model_validation.py
simple_model_fit.py
stacking_ensembles.py
test-data/GridSearchCV.zip
test-data/LinearRegression01.zip
test-data/LinearRegression02.zip
test-data/RF01704.fasta
test-data/RFE.zip
test-data/RandomForestClassifier.zip
test-data/RandomForestRegressor01.zip
test-data/StackingCVRegressor01.zip
test-data/StackingCVRegressor02.zip
test-data/StackingRegressor02.zip
test-data/StackingVoting03.zip
test-data/XGBRegressor01.zip
test-data/abc_model01
test-data/abc_result01
test-data/abr_model01
test-data/abr_result01
test-data/accuracy_score.txt
test-data/auc.txt
test-data/average_precision_score.txt
test-data/best_estimator_.zip
test-data/best_params_.txt
test-data/best_score_.tabular
test-data/blobs.txt
test-data/brier_score_loss.txt
test-data/circles.txt
test-data/class.txt
test-data/classification_report.txt
test-data/cluster_result01.txt
test-data/cluster_result02.txt
test-data/cluster_result03.txt
test-data/cluster_result04.txt
test-data/cluster_result05.txt
test-data/cluster_result06.txt
test-data/cluster_result07.txt
test-data/cluster_result08.txt
test-data/cluster_result09.txt
test-data/cluster_result10.txt
test-data/cluster_result11.txt
test-data/cluster_result12.txt
test-data/cluster_result13.txt
test-data/cluster_result14.txt
test-data/cluster_result15.txt
test-data/cluster_result16.txt
test-data/cluster_result17.txt
test-data/cluster_result18.txt
test-data/cluster_result19.txt
test-data/cluster_result20.txt
test-data/cluster_result21.txt
test-data/confusion_matrix.txt
test-data/converter_result01.json
test-data/converter_result02.json
test-data/csc_sparse1.mtx
test-data/csc_sparse2.mtx
test-data/csc_stack_result01.mtx
test-data/csr_sparse1.mtx
test-data/csr_sparse2.mtx
test-data/csr_stack_result01.mtx
test-data/deepsear_1feature.json
test-data/empty_file.txt
test-data/f1_score.txt
test-data/fbeta_score.txt
test-data/feature_importances_.tabular
test-data/feature_selection_result01
test-data/feature_selection_result02
test-data/feature_selection_result03
test-data/feature_selection_result04
test-data/feature_selection_result05
test-data/feature_selection_result06
test-data/feature_selection_result07
test-data/feature_selection_result08
test-data/feature_selection_result09
test-data/feature_selection_result10
test-data/feature_selection_result11
test-data/feature_selection_result12
test-data/feature_selection_result13
test-data/final_estimator.zip
test-data/fitted_keras_g_regressor01.zip
test-data/fitted_model_eval01.tabular
test-data/friedman1.txt
test-data/friedman2.txt
test-data/friedman3.txt
test-data/gaus.txt
test-data/gbc_model01
test-data/gbc_result01
test-data/gbr_model01
test-data/gbr_prediction_result01.tabular
test-data/get_params.tabular
test-data/get_params01.tabular
test-data/get_params02.tabular
test-data/get_params03.tabular
test-data/get_params04.tabular
test-data/get_params05.tabular
test-data/get_params06.tabular
test-data/get_params07.tabular
test-data/get_params08.tabular
test-data/get_params09.tabular
test-data/get_params10.tabular
test-data/get_params11.tabular
test-data/get_params12.tabular
test-data/glm_model01
test-data/glm_model02
test-data/glm_model03
test-data/glm_model04
test-data/glm_model05
test-data/glm_model06
test-data/glm_model07
test-data/glm_model08
test-data/glm_result01
test-data/glm_result02
test-data/glm_result03
test-data/glm_result04
test-data/glm_result05
test-data/glm_result06
test-data/glm_result07
test-data/glm_result08
test-data/grid_scores_.tabular
test-data/hamming_loss.txt
test-data/hastie.txt
test-data/hinge_loss.txt
test-data/imblearn_X.tabular
test-data/imblearn_y.tabular
test-data/jaccard_similarity_score.txt
test-data/keras01.json
test-data/keras02.json
test-data/keras03.json
test-data/keras04.json
test-data/keras_batch_model01
test-data/keras_batch_model02
test-data/keras_batch_model03
test-data/keras_batch_params01.tabular
test-data/keras_model01
test-data/keras_model02
test-data/keras_model04
test-data/keras_params04.tabular
test-data/keras_prefitted01.zip
test-data/keras_save_weights01.h5
test-data/lda_model01
test-data/lda_model02
test-data/lda_prediction_result01.tabular
test-data/lda_prediction_result02.tabular
test-data/log_loss.txt
test-data/matthews_corrcoef.txt
test-data/ml_vis01.html
test-data/ml_vis02.html
test-data/ml_vis03.html
test-data/ml_vis04.html
test-data/ml_vis05.html
test-data/ml_vis05.png
test-data/model_fit01
test-data/model_fit02
test-data/model_fit02.h5
test-data/model_pred01.tabular
test-data/model_pred02.tabular
test-data/moons.txt
test-data/mv_result02.tabular
test-data/mv_result03.tabular
test-data/mv_result05.tabular
test-data/named_steps.txt
test-data/nn_model01
test-data/nn_model02
test-data/nn_model03
test-data/nn_prediction_result01.tabular
test-data/nn_prediction_result02.tabular
test-data/nn_prediction_result03.tabular
test-data/numeric_values.tabular
test-data/pickle_blacklist
test-data/pipeline01
test-data/pipeline02
test-data/pipeline03
test-data/pipeline04
test-data/pipeline05
test-data/pipeline06
test-data/pipeline07
test-data/pipeline08
test-data/pipeline09
test-data/pipeline10
test-data/pipeline11
test-data/pipeline12
test-data/pipeline14
test-data/pipeline15
test-data/pipeline16
test-data/precision_recall_curve.txt
test-data/precision_recall_fscore_support.txt
test-data/precision_score.txt
test-data/prp_model01
test-data/prp_model02
test-data/prp_model03
test-data/prp_model04
test-data/prp_model05
test-data/prp_model06
test-data/prp_model07
test-data/prp_model08
test-data/prp_model09
test-data/prp_result01
test-data/prp_result02
test-data/prp_result03
test-data/prp_result04
test-data/prp_result05
test-data/prp_result06
test-data/prp_result07
test-data/prp_result08
test-data/prp_result09
test-data/prp_result10
test-data/pw_metric01.tabular
test-data/pw_metric02.tabular
test-data/pw_metric03.tabular
test-data/qda_model01
test-data/qda_prediction_result01.tabular
test-data/ranking_.tabular
test-data/recall_score.txt
test-data/regression.txt
test-data/regression_X.tabular
test-data/regression_groups.tabular
test-data/regression_metrics_result01
test-data/regression_metrics_result02
test-data/regression_metrics_result03
test-data/regression_metrics_result04
test-data/regression_metrics_result05
test-data/regression_metrics_result06
test-data/regression_test.tabular
test-data/regression_test_X.tabular
test-data/regression_test_y.tabular
test-data/regression_train.tabular
test-data/regression_y.tabular
test-data/regression_y_split_test01.tabular
test-data/rfc_model01
test-data/rfc_result01
test-data/rfc_result02
test-data/rfr_model01
test-data/rfr_result01
test-data/roc_auc_score.txt
test-data/roc_curve.txt
test-data/scurve.txt
test-data/searchCV01
test-data/searchCV02
test-data/sparse.mtx
test-data/sparse_u.txt
test-data/svc_model01
test-data/svc_model02
test-data/svc_model03
test-data/svc_prediction_result01.tabular
test-data/svc_prediction_result02.tabular
test-data/svc_prediction_result03.tabular
test-data/swiss_r.txt
test-data/test.tabular
test-data/test2.tabular
test-data/test3.tabular
test-data/test_set.tabular
test-data/train.tabular
test-data/train_set.tabular
test-data/train_test_eval01.tabular
test-data/train_test_eval03.tabular
test-data/train_test_eval_model01
test-data/train_test_eval_weights01.h5
test-data/train_test_eval_weights02.h5
test-data/train_test_split_test01.tabular
test-data/train_test_split_test02.tabular
test-data/train_test_split_test03.tabular
test-data/train_test_split_train01.tabular
test-data/train_test_split_train02.tabular
test-data/train_test_split_train03.tabular
test-data/vectorizer_result01.mtx
test-data/vectorizer_result02.mtx
test-data/vectorizer_result03.mtx
test-data/vectorizer_result04.mtx
test-data/y.tabular
test-data/y_score.tabular
test-data/y_true.tabular
test-data/zero_one_loss.txt
train_test_eval.py
train_test_split.py
b
diff -r 000000000000 -r eaddff553324 README.rst
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/README.rst Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,146 @@
+Galaxy wrapper for scikit-learn library
+***************************************
+
+Contents
+========
+
+- `What is scikit-learn?`_
+ - `Scikit-learn main package groups`_
+ - `Tools offered by this wrapper`_
+
+- `Machine learning workflows`_
+ - `Supervised learning workflows`_
+ - `Unsupervised learning workflows`_
+
+
+____________________________
+
+
+.. _What is scikit-learn?:
+
+What is scikit-learn?
+=====================
+
+Scikit-learn is an open-source machine learning library for the Python programming language. It offers various algorithms for performing supervised and unsupervised learning as well as data preprocessing and transformation, model selection and evaluation, and dataset utilities. It is built upon SciPy (Scientific Python) library.
+
+Scikit-learn source code can be accessed at https://github.com/scikit-learn/scikit-learn.
+Detailed installation instructions can be found at http://scikit-learn.org/stable/install.html
+
+
+.. _Scikit-learn main package groups:
+
+Scikit-learn main package groups
+================================
+
+Scikit-learn provides the users with several main groups of related operations.
+These are:
+
+- Classification
+    - Identifying to which category an object belongs.
+- Regression
+    - Predicting a continuous-valued attribute associated with an object.
+- Clustering
+    - Automatic grouping of similar objects into sets.
+- Preprocessing
+    - Feature extraction and normalization.
+- Model selection and evaluation
+    - Comparing, validating and choosing parameters and models.
+- Dimensionality reduction
+    - Reducing the number of random variables to consider.
+
+Each group consists of a number of well-known algorithms from the category. For example, one can find hierarchical, spectral, kmeans, and other clustering methods in sklearn.cluster package.
+
+
+.. _Tools offered by this wrapper:
+
+Available tools in the current wrapper
+======================================
+
+The current release of the wrapper offers a subset of the packages from scikit-learn library. You can find:
+
+- A subset of classification metric functions
+- Linear and quadratic discriminant classifiers
+- Random forest and Ada boost classifiers and regressors
+- All the clustering methods
+- All support vector machine classifiers
+- A subset of data preprocessing estimator classes
+- Pairwise metric measurement functions
+
+In addition, several tools for performing matrix operations, generating problem-specific datasets, and encoding text and extracting features have been prepared to help the user with more advanced operations.
+
+.. _Machine learning workflows:
+
+Machine learning workflows
+==========================
+
+Machine learning is about processes. No matter what machine learning algorithm we use, we can apply typical workflows and dataflows to produce more robust models and better predictions.
+Here we discuss supervised and unsupervised learning workflows.
+
+.. _Supervised learning workflows:
+
+Supervised machine learning workflows
+=====================================
+
+**What is supervised learning?**
+
+In this machine learning task, given sample data which are labeled, the aim is to build a model which can predict the labels for new observations.
+In practice, there are five steps which we can go through to start from raw input data and end up getting reasonable predictions for new samples:
+
+1. Preprocess the data::
+
+    * Change the collected data into the proper format and datatype.
+    * Adjust the data quality by filling the missing values, performing
+    required scaling and normalizations, etc.
+    * Extract features which are the most meaningfull for the learning task.
+    * Split the ready dataset into training and test samples.
+
+2. Choose an algorithm::
+
+    * These factors help one to choose a learning algorithm:
+        - Nature of the data (e.g. linear vs. nonlinear data)
+        - Structure of the predicted output (e.g. binary vs. multilabel classification)
+        - Memory and time usage of the training
+        - Predictive accuracy on new data
+        - Interpretability of the predictions
+
+3. Choose a validation method
+
+ Every machine learning model should be evaluated before being put into practicical use.
+ There are numerous performance metrics to evaluate machine learning models.
+ For supervised learning, usually classification or regression metrics are used.
+
+ A validation method helps to evaluate the performance metrics of a trained model in order
+ to optimize its performance or ultimately switch to a more efficient model.
+ Cross-validation is a known validation method.
+
+4. Fit a model
+
+   Given the learning algorithm, validation method, and performance metric(s)
+   repeat the following steps::
+
+    * Train the model.
+    * Evaluate based on metrics.
+    * Optimize unitl satisfied.
+
+5. Use fitted model for prediction::
+
+ This is a final evaluation in which, the optimized model is used to make predictions
+ on unseen (here test) samples. After this, the model is put into production.
+
+.. _Unsupervised learning workflows:
+
+Unsupervised machine learning workflows
+=======================================
+
+**What is unsupervised learning?**
+
+Unlike supervised learning and more liklely in real life, here the initial data is not labeled.
+The task is to extract the structure from the data and group the samples based on their similarities.
+Clustering and dimensionality reduction are two famous examples of unsupervised learning tasks.
+
+In this case, the workflow is as follows::
+
+    * Preprocess the data (without splitting to train and test).
+    * Train a model.
+    * Evaluate and tune parameters.
+    * Analyse the model and test on real data.
b
diff -r 000000000000 -r eaddff553324 fitted_model_eval.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fitted_model_eval.py Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,160 @@
+import argparse
+import json
+import pandas as pd
+import warnings
+
+from scipy.io import mmread
+from sklearn.pipeline import Pipeline
+from sklearn.metrics.scorer import _check_multimetric_scoring
+from sklearn.model_selection._validation import _score
+from galaxy_ml.utils import get_scoring, load_model, read_columns
+
+
+def _get_X_y(params, infile1, infile2):
+    """ read from inputs and output X and y
+
+    Parameters
+    ----------
+    params : dict
+        Tool inputs parameter
+    infile1 : str
+        File path to dataset containing features
+    infile2 : str
+        File path to dataset containing target values
+
+    """
+    # store read dataframe object
+    loaded_df = {}
+
+    input_type = params['input_options']['selected_input']
+    # tabular input
+    if input_type == 'tabular':
+        header = 'infer' if params['input_options']['header1'] else None
+        column_option = (params['input_options']['column_selector_options_1']
+                         ['selected_column_selector_option'])
+        if column_option in ['by_index_number', 'all_but_by_index_number',
+                             'by_header_name', 'all_but_by_header_name']:
+            c = params['input_options']['column_selector_options_1']['col1']
+        else:
+            c = None
+
+        df_key = infile1 + repr(header)
+        df = pd.read_csv(infile1, sep='\t', header=header,
+                         parse_dates=True)
+        loaded_df[df_key] = df
+
+        X = read_columns(df, c=c, c_option=column_option).astype(float)
+    # sparse input
+    elif input_type == 'sparse':
+        X = mmread(open(infile1, 'r'))
+
+    # Get target y
+    header = 'infer' if params['input_options']['header2'] else None
+    column_option = (params['input_options']['column_selector_options_2']
+                     ['selected_column_selector_option2'])
+    if column_option in ['by_index_number', 'all_but_by_index_number',
+                         'by_header_name', 'all_but_by_header_name']:
+        c = params['input_options']['column_selector_options_2']['col2']
+    else:
+        c = None
+
+    df_key = infile2 + repr(header)
+    if df_key in loaded_df:
+        infile2 = loaded_df[df_key]
+    else:
+        infile2 = pd.read_csv(infile2, sep='\t',
+                              header=header, parse_dates=True)
+        loaded_df[df_key] = infile2
+
+    y = read_columns(
+            infile2,
+            c=c,
+            c_option=column_option,
+            sep='\t',
+            header=header,
+            parse_dates=True)
+    if len(y.shape) == 2 and y.shape[1] == 1:
+        y = y.ravel()
+
+    return X, y
+
+
+def main(inputs, infile_estimator, outfile_eval,
+         infile_weights=None, infile1=None,
+         infile2=None):
+    """
+    Parameter
+    ---------
+    inputs : str
+        File path to galaxy tool parameter
+
+    infile_estimator : strgit
+        File path to trained estimator input
+
+    outfile_eval : str
+        File path to save the evalulation results, tabular
+
+    infile_weights : str
+        File path to weights input
+
+    infile1 : str
+        File path to dataset containing features
+
+    infile2 : str
+        File path to dataset containing target values
+    """
+    warnings.filterwarnings('ignore')
+
+    with open(inputs, 'r') as param_handler:
+        params = json.load(param_handler)
+
+    X_test, y_test = _get_X_y(params, infile1, infile2)
+
+    # load model
+    with open(infile_estimator, 'rb') as est_handler:
+        estimator = load_model(est_handler)
+
+    main_est = estimator
+    if isinstance(estimator, Pipeline):
+        main_est = estimator.steps[-1][-1]
+    if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'):
+        if not infile_weights or infile_weights == 'None':
+            raise ValueError("The selected model skeleton asks for weights, "
+                             "but no dataset for weights was provided!")
+        main_est.load_weights(infile_weights)
+
+    # handle scorer, convert to scorer dict
+    scoring = params['scoring']
+    scorer = get_scoring(scoring)
+    scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer)
+
+    if hasattr(estimator, 'evaluate'):
+        scores = estimator.evaluate(X_test, y_test=y_test,
+                                    scorer=scorer,
+                                    is_multimetric=True)
+    else:
+        scores = _score(estimator, X_test, y_test, scorer,
+                        is_multimetric=True)
+
+    # handle output
+    for name, score in scores.items():
+        scores[name] = [score]
+    df = pd.DataFrame(scores)
+    df = df[sorted(df.columns)]
+    df.to_csv(path_or_buf=outfile_eval, sep='\t',
+              header=True, index=False)
+
+
+if __name__ == '__main__':
+    aparser = argparse.ArgumentParser()
+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
+    aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator")
+    aparser.add_argument("-w", "--infile_weights", dest="infile_weights")
+    aparser.add_argument("-X", "--infile1", dest="infile1")
+    aparser.add_argument("-y", "--infile2", dest="infile2")
+    aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval")
+    args = aparser.parse_args()
+
+    main(args.inputs, args.infile_estimator, args.outfile_eval,
+         infile_weights=args.infile_weights, infile1=args.infile1,
+         infile2=args.infile2)
b
diff -r 000000000000 -r eaddff553324 fitted_model_eval.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fitted_model_eval.xml Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,87 @@
+<tool id="sklearn_fitted_model_eval" name="Evaluate a Fitted Model" version="@VERSION@">
+    <description>using a new batch of labeled data</description>
+    <macros>
+        <import>main_macros.xml</import>
+        <import>keras_macros.xml</import>
+    </macros>
+    <expand macro="python_requirements"/>
+    <expand macro="macro_stdio"/>
+    <version_command>echo "@VERSION@"</version_command>
+    <command>
+        <![CDATA[
+        export HDF5_USE_FILE_LOCKING='FALSE';
+        python '$__tool_directory__/fitted_model_eval.py'
+            --inputs '$inputs'
+            --infile_estimator '$infile_estimator'
+            --outfile_eval '$outfile_eval'
+            --infile_weights '$infile_weights'
+            --infile1 '$input_options.infile1'
+            --infile2 '$input_options.infile2'
+        ]]>
+    </command>
+    <configfiles>
+        <inputs name="inputs" />
+    </configfiles>
+    <inputs>
+        <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object"/>
+        <param name="infile_weights" type="data" format="h5" optional="true" label="Choose the dataset containing weights for the estimator above" help="Optional. For deep learning only."/>
+        <expand macro="scoring_selection"/>
+        <conditional name="input_options">
+            <expand macro="data_input_options"/>
+            <when value="tabular">
+                <expand macro="samples_tabular" label1="Dataset containing features:" multiple1="true" multiple2="false"/>
+            </when>
+            <when value="sparse">
+                <expand macro="sparse_target"/>
+            </when>
+    </conditional>
+    </inputs>
+    <outputs>
+        <data format="tabular" name="outfile_eval"/>
+    </outputs>
+    <tests>
+        <test>
+            <param name="infile_estimator" value="searchCV01" ftype="zip"/>
+            <conditional name="scoring">
+                <param name="primary_scoring" value="r2"/>
+            </conditional>
+            <param name="infile1" value="train_test_split_test01.tabular" ftype="tabular"/>
+            <param name="header1" value="true" />
+            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
+            <param name="infile2" value="regression_y_split_test01.tabular" ftype="tabular"/>
+            <param name="header2" value="true"/>
+            <param name="col2" value="1"/>
+            <output name="outfile_eval" file="fitted_model_eval01.tabular"/>
+        </test>
+    </tests>
+    <help>
+        <![CDATA[
+**What it does**
+
+Given a fitted estimator and a labeled dataset, this tool outputs the performances of the fitted estimator on the labeled dataset with selected scorers.
+
+For the estimator, this tool supports fitted sklearn estimators (pickled) and trained deep learning models (model skeleton + weights). For input datasets, it supports the following:
+
+- tabular
+
+- sparse
+
+
+**Output**
+
+A tabular file containing performance scores,
+e.g.:
+
+======== ======== =========
+accuracy f1_macro precision
+======== ======== =========
+ 0.8613   0.6759   0.7928
+======== ======== =========
+
+        ]]>
+    </help>
+    <expand macro="sklearn_citation">
+        <expand macro="keras_citation"/>
+        <expand macro="selene_citation"/>
+    </expand>
+</tool>
b
diff -r 000000000000 -r eaddff553324 keras_deep_learning.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/keras_deep_learning.py Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,370 @@\n+import argparse\n+import json\n+import keras\n+import pandas as pd\n+import pickle\n+import six\n+import warnings\n+\n+from ast import literal_eval\n+from keras.models import Sequential, Model\n+from galaxy_ml.utils import try_get_attr, get_search_params, SafeEval\n+\n+\n+safe_eval = SafeEval()\n+\n+\n+def _handle_shape(literal):\n+    """Eval integer or list/tuple of integers from string\n+\n+    Parameters:\n+    -----------\n+    literal : str.\n+    """\n+    literal = literal.strip()\n+    if not literal:\n+        return None\n+    try:\n+        return literal_eval(literal)\n+    except NameError as e:\n+        print(e)\n+        return literal\n+\n+\n+def _handle_regularizer(literal):\n+    """Construct regularizer from string literal\n+\n+    Parameters\n+    ----------\n+    literal : str. E.g. \'(0.1, 0)\'\n+    """\n+    literal = literal.strip()\n+    if not literal:\n+        return None\n+\n+    l1, l2 = literal_eval(literal)\n+\n+    if not l1 and not l2:\n+        return None\n+\n+    if l1 is None:\n+        l1 = 0.\n+    if l2 is None:\n+        l2 = 0.\n+\n+    return keras.regularizers.l1_l2(l1=l1, l2=l2)\n+\n+\n+def _handle_constraint(config):\n+    """Construct constraint from galaxy tool parameters.\n+    Suppose correct dictionary format\n+\n+    Parameters\n+    ----------\n+    config : dict. E.g.\n+        "bias_constraint":\n+            {"constraint_options":\n+                {"max_value":1.0,\n+                "min_value":0.0,\n+                "axis":"[0, 1, 2]"\n+                },\n+            "constraint_type":\n+                "MinMaxNorm"\n+            }\n+    """\n+    constraint_type = config[\'constraint_type\']\n+    if constraint_type == \'None\':\n+        return None\n+\n+    klass = getattr(keras.constraints, constraint_type)\n+    options = config.get(\'constraint_options\', {})\n+    if \'axis\' in options:\n+        options[\'axis\'] = literal_eval(options[\'axis\'])\n+\n+    return klass(**options)\n+\n+\n+def _handle_lambda(literal):\n+    return None\n+\n+\n+def _handle_layer_parameters(params):\n+    """Access to handle all kinds of parameters\n+    """\n+    for key, value in six.iteritems(params):\n+        if value == \'None\':\n+            params[key] = None\n+            continue\n+\n+        if type(value) in [int, float, bool]\\\n+                or (type(value) is str and value.isalpha()):\n+            continue\n+\n+        if key in [\'input_shape\', \'noise_shape\', \'shape\', \'batch_shape\',\n+                   \'target_shape\', \'dims\', \'kernel_size\', \'strides\',\n+                   \'dilation_rate\', \'output_padding\', \'cropping\', \'size\',\n+                   \'padding\', \'pool_size\', \'axis\', \'shared_axes\'] \\\n+                and isinstance(value, str):\n+            params[key] = _handle_shape(value)\n+\n+        elif key.endswith(\'_regularizer\') and isinstance(value, dict):\n+            params[key] = _handle_regularizer(value)\n+\n+        elif key.endswith(\'_constraint\') and isinstance(value, dict):\n+            params[key] = _handle_constraint(value)\n+\n+        elif key == \'function\':  # No support for lambda/function eval\n+            params.pop(key)\n+\n+    return params\n+\n+\n+def get_sequential_model(config):\n+    """Construct keras Sequential model from Galaxy tool parameters\n+\n+    Parameters:\n+    -----------\n+    config : dictionary, galaxy tool parameters loaded by JSON\n+    """\n+    model = Sequential()\n+    input_shape = _handle_shape(config[\'input_shape\'])\n+    layers = config[\'layers\']\n+    for layer in layers:\n+        options = layer[\'layer_selection\']\n+        layer_type = options.pop(\'layer_type\')\n+        klass = getattr(keras.layers, layer_type)\n+        kwargs = options.pop(\'kwargs\', \'\')\n+\n+        # parameters needs special care\n+        options = _handle_layer_parameters(options)\n+\n+        if kwargs:\n+            kwargs = safe_eval(\'dict(\' + kwargs + \')\')\n+            options.update(kwargs)\n+\n+        # add input_shape to the first layer only\n+        if not getattr(model, \'_layers\') and input_shape is not None:\n+            options[\'input_shape\'] = in'..b'\'Sequential\':\n+        options[\'model_type\'] = \'sequential\'\n+        klass = Sequential\n+    elif json_model[\'class_name\'] == \'Model\':\n+        options[\'model_type\'] = \'functional\'\n+        klass = Model\n+    else:\n+        raise ValueError("Unknow Keras model class: %s"\n+                         % json_model[\'class_name\'])\n+\n+    # load prefitted model\n+    if inputs[\'mode_selection\'][\'mode_type\'] == \'prefitted\':\n+        estimator = klass.from_config(config)\n+        estimator.load_weights(infile_weights)\n+    # build train model\n+    else:\n+        cls_name = inputs[\'mode_selection\'][\'learning_type\']\n+        klass = try_get_attr(\'galaxy_ml.keras_galaxy_models\', cls_name)\n+\n+        options[\'loss\'] = (inputs[\'mode_selection\']\n+                           [\'compile_params\'][\'loss\'])\n+        options[\'optimizer\'] =\\\n+            (inputs[\'mode_selection\'][\'compile_params\']\n+             [\'optimizer_selection\'][\'optimizer_type\']).lower()\n+\n+        options.update((inputs[\'mode_selection\'][\'compile_params\']\n+                        [\'optimizer_selection\'][\'optimizer_options\']))\n+\n+        train_metrics = (inputs[\'mode_selection\'][\'compile_params\']\n+                         [\'metrics\']).split(\',\')\n+        if train_metrics[-1] == \'none\':\n+            train_metrics = train_metrics[:-1]\n+        options[\'metrics\'] = train_metrics\n+\n+        options.update(inputs[\'mode_selection\'][\'fit_params\'])\n+        options[\'seed\'] = inputs[\'mode_selection\'][\'random_seed\']\n+\n+        if batch_mode:\n+            generator = get_batch_generator(inputs[\'mode_selection\']\n+                                            [\'generator_selection\'])\n+            options[\'data_batch_generator\'] = generator\n+            options[\'prediction_steps\'] = \\\n+                inputs[\'mode_selection\'][\'prediction_steps\']\n+            options[\'class_positive_factor\'] = \\\n+                inputs[\'mode_selection\'][\'class_positive_factor\']\n+        estimator = klass(config, **options)\n+        if outfile_params:\n+            hyper_params = get_search_params(estimator)\n+            # TODO: remove this after making `verbose` tunable\n+            for h_param in hyper_params:\n+                if h_param[1].endswith(\'verbose\'):\n+                    h_param[0] = \'@\'\n+            df = pd.DataFrame(hyper_params, columns=[\'\', \'Parameter\', \'Value\'])\n+            df.to_csv(outfile_params, sep=\'\\t\', index=False)\n+\n+    print(repr(estimator))\n+    # save model by pickle\n+    with open(outfile, \'wb\') as f:\n+        pickle.dump(estimator, f, pickle.HIGHEST_PROTOCOL)\n+\n+\n+if __name__ == \'__main__\':\n+    warnings.simplefilter(\'ignore\')\n+\n+    aparser = argparse.ArgumentParser()\n+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)\n+    aparser.add_argument("-m", "--model_json", dest="model_json")\n+    aparser.add_argument("-t", "--tool_id", dest="tool_id")\n+    aparser.add_argument("-w", "--infile_weights", dest="infile_weights")\n+    aparser.add_argument("-o", "--outfile", dest="outfile")\n+    aparser.add_argument("-p", "--outfile_params", dest="outfile_params")\n+    args = aparser.parse_args()\n+\n+    input_json_path = args.inputs\n+    with open(input_json_path, \'r\') as param_handler:\n+        inputs = json.load(param_handler)\n+\n+    tool_id = args.tool_id\n+    outfile = args.outfile\n+    outfile_params = args.outfile_params\n+    model_json = args.model_json\n+    infile_weights = args.infile_weights\n+\n+    # for keras_model_config tool\n+    if tool_id == \'keras_model_config\':\n+        config_keras_model(inputs, outfile)\n+\n+    # for keras_model_builder tool\n+    else:\n+        batch_mode = False\n+        if tool_id == \'keras_batch_models\':\n+            batch_mode = True\n+\n+        build_keras_model(inputs=inputs,\n+                          model_json=model_json,\n+                          infile_weights=infile_weights,\n+                          batch_mode=batch_mode,\n+                          outfile=outfile,\n+                          outfile_params=outfile_params)\n'
b
diff -r 000000000000 -r eaddff553324 keras_macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/keras_macros.xml Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,985 @@\n+<macros>\n+  <token name="@KERAS_VERSION@">0.4.2</token>\n+\n+  <xml name="macro_stdio">\n+    <stdio>\n+        <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error"/>\n+    </stdio>\n+  </xml>\n+\n+  <xml name="keras_optimizer_common" token_lr="0.01">\n+    <section name="optimizer_options" title="Optimizer Advanced Options" expanded="false">\n+      <param argument="lr" type="float" value="@LR@" optional="true" label="Learning rate" help="float >= 0"/>\n+      <yield/>\n+      <!--param argument="clipnorm" type="float" value="" optional="true" label="clipnorm" help="float >= 0"/-->\n+      <!--param argument="clipvalue" type="float" value="" optional="true" label="clipvalue" help="float >= 0"/-->\n+    </section>\n+  </xml>\n+\n+  <xml name="keras_optimizer_common_more" token_lr="0.001">\n+    <expand macro="keras_optimizer_common" lr="@LR@">\n+      <param argument="epsilon" type="float" value="" label="epsilon" optional="true" help="Fuzz factor. If `None`, defaults to `K.epsilon()`"/>\n+      <param argument="decay" type="float" value="0" optional="true" label="decay" help="Learning rate decay over each update."/>\n+      <yield/>\n+    </expand>\n+  </xml>\n+\n+  <xml name="keras_activations" token_none="true" token_tanh="false">\n+    <param argument="activation" type="select" label="Activation function">\n+      <option value="linear" selected="@NONE@">None / linear (default)</option>\n+      <option value="softmax">softmax</option>\n+      <option value="elu">elu</option>\n+      <option value="selu">selu</option>\n+      <option value="softplus">softplus</option>\n+      <option value="softsign">softsign</option>\n+      <option value="relu">relu</option>\n+      <option value="tanh" selected="@TANH@">tanh</option>\n+      <option value="sigmoid">sigmoid</option>\n+      <option value="hard_sigmoid">hard_sigmoid</option>\n+      <option value="exponential">tanh</option>\n+    </param>\n+  </xml>\n+\n+  <xml name="keras_initializers" token_argument="kernel_initializer" token_default_glorot_uniform="false" token_default_zeros="false" token_default_random_uniform="false" token_default_ones="false">\n+    <param argument="@ARGUMENT@" type="select" label="@ARGUMENT@">\n+      <option value="zeros" selected="@DEFAULT_ZEROS@">zero / zeros / Zeros</option>\n+      <option value="ones" selected="@DEFAULT_ONES@">one / ones / Ones</option>\n+      <option value="constant">constant / Constant</option>\n+      <option value="random_normal">normal / random_normal / RandomNormal</option>\n+      <option value="random_uniform" selected="@DEFAULT_RANDOM_UNIFORM@">uniform / random_uniform / RandomUniform</option>\n+      <option value="truncated_normal">truncated_normal / TruncatedNormal</option>\n+      <option value="orthogonal">orthogonal / Orthogonal</option>\n+      <option value="identity">identity / Identity</option>\n+      <option value="glorot_normal">glorot_normal</option>\n+      <option value="glorot_uniform" selected="@DEFAULT_GLOROT_UNIFORM@">glorot_uniform</option>\n+      <option value="he_normal">he_normal</option>\n+      <option value="he_uniform">he_uniform</option>\n+      <option value="lecun_normal">lecun_normal</option>\n+      <option value="lecun_uniform">lecun_uniform</option>\n+    </param>\n+  </xml>\n+\n+  <xml name="keras_regularizers" token_argument="kernel_regularizer">\n+    <param argument="@ARGUMENT@" type="text" value="(0. , 0.)" optional="true" label="@ARGUMENT@"\n+            help="(l1, l2). l1/l2: float; L1/l2 regularization factor. (0., 0.) is equivalent to `None`"/>\n+  </xml>\n+\n+  <xml name="keras_constraints_options">\n+    <section name="constraint_options" title="Constraint Advanced Options" expanded="false">\n+      <yield/>\n+      <param argument="axis" type="text" value="0" help="Integer or list of integers. axis along which to calculate weight norms">\n+        <sanitizer>\n+          <valid initial="default">\n+            <add value="["/>\n+            <add value="]"/>\n+          </valid'..b'ple="true" label="Select metrics">\n+        <option value="acc" selected="true">acc / accruracy</option>\n+        <option value="binary_accuracy">binary_accuracy</option>\n+        <option value="categorical_accuracy">categorical_accuracy</option>\n+        <option value="sparse_categorical_accuracy">sparse_categorical_accuracy</option>\n+        <option value="mse">mse / MSE / mean_squared_error</option>\n+        <option value="mae">mae / MAE / mean_absolute_error</option>\n+        <option value="mae">mape / MAPE / mean_absolute_percentage_error</option>\n+        <option value="cosine_proximity">cosine_proximity</option>\n+        <option value="cosine">cosine</option>\n+        <option value="none">none</option>\n+      </param>\n+    </section>\n+  </xml>\n+\n+  <xml name="keras_fit_params_section">\n+    <section name="fit_params" title="Fit Parameters" expanded="true">\n+      <param name="epochs" type="integer" value="1" min="1" label="epochs"/>\n+      <param name="batch_size" type="integer" value="32" optional="true" label="batch_size" help="Integer or blank for 32"/>\n+      <param name="steps_per_epoch" type="integer" value="" optional="true" label="steps_per_epoch" help="The number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. The default None is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined."/>\n+      <param name="validation_steps" type="integer" value="" optional="true" label="validation_steps" help="Default None. Total number of steps (batches of samples) to validate before stopping." />\n+      <!--`validation_freq` will be available in next keras version-->\n+      <!--param name="validation_freq" type="integer" value="1" optional="true" label="validation_freq" help="Integer only at current moment. If an integer, specifies how many training epochs to run before a new validation run is performed."/-->\n+      <expand macro="keras_callbacks"/>\n+    </section>\n+  </xml>\n+\n+ <!--Citation-->\n+  <xml name="keras_citation">\n+    <citation type="bibtex">\n+      @misc{chollet2015keras,\n+        title={Keras},\n+        url={https://keras.io},\n+        author={Chollet, Fran\\c{c}ois and others},\n+        year={2015},\n+        howpublished={https://keras.io},\n+      }\n+    </citation>\n+  </xml>\n+\n+  <xml name="tensorflow_citation">\n+    <citation type="bibtex">\n+      @misc{tensorflow2015-whitepaper,\n+        title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},\n+        url={https://www.tensorflow.org/},\n+        note={Software available from tensorflow.org},\n+        author={\n+            Mart\\\'{\\i}n~Abadi and\n+            Ashish~Agarwal and\n+            Paul~Barham and\n+            Eugene~Brevdo and\n+            Zhifeng~Chen and\n+            Craig~Citro and\n+            Greg~S.~Corrado and\n+            Andy~Davis and\n+            Jeffrey~Dean and\n+            Matthieu~Devin and\n+            Sanjay~Ghemawat and\n+            Ian~Goodfellow and\n+            Andrew~Harp and\n+            Geoffrey~Irving and\n+            Michael~Isard and\n+            Yangqing Jia and\n+            Rafal~Jozefowicz and\n+            Lukasz~Kaiser and\n+            Manjunath~Kudlur and\n+            Josh~Levenberg and\n+            Dandelion~Man\\\'{e} and\n+            Rajat~Monga and\n+            Sherry~Moore and\n+            Derek~Murray and\n+            Chris~Olah and\n+            Mike~Schuster and\n+            Jonathon~Shlens and\n+            Benoit~Steiner and\n+            Ilya~Sutskever and\n+            Kunal~Talwar and\n+            Paul~Tucker and\n+            Vincent~Vanhoucke and\n+            Vijay~Vasudevan and\n+            Fernanda~Vi\\\'{e}gas and\n+            Oriol~Vinyals and\n+            Pete~Warden and\n+            Martin~Wattenberg and\n+            Martin~Wicke and\n+            Yuan~Yu and\n+            Xiaoqiang~Zheng},\n+          year={2015},\n+      }\n+    </citation>\n+  </xml>\n+\n+</macros>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 main_macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main_macros.xml Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,1997 @@\n+<macros>\n+  <token name="@VERSION@">1.0.7.12</token>\n+\n+  <token name="@ENSEMBLE_VERSION@">0.2.0</token>\n+\n+  <xml name="python_requirements">\n+      <requirements>\n+          <requirement type="package" version="3.6">python</requirement>\n+          <requirement type="package" version="0.7.12">Galaxy-ML</requirement>\n+          <yield/>\n+      </requirements>\n+  </xml>\n+\n+  <xml name="macro_stdio">\n+    <stdio>\n+        <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error"/>\n+    </stdio>\n+  </xml>\n+\n+\n+  <!--Generic interface-->\n+\n+  <xml name="sl_Conditional" token_train="tabular" token_data="tabular" token_model="txt">\n+    <conditional name="selected_tasks">\n+        <param name="selected_task" type="select" label="Select a Classification Task">\n+            <option value="train" selected="true">Train a model</option>\n+            <option value="load">Load a model and predict</option>\n+        </param>\n+        <when value="load">\n+            <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/>\n+            <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/>\n+            <param name="header" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />\n+            <conditional name="prediction_options">\n+                <param name="prediction_option" type="select" label="Select the type of prediction">\n+                    <option value="predict">Predict class labels</option>\n+                    <option value="advanced">Include advanced options</option>\n+                </param>\n+                <when value="predict">\n+                </when>\n+                <when value="advanced">\n+                </when>\n+            </conditional>\n+        </when>\n+        <when value="train">\n+            <conditional name="selected_algorithms">\n+                <yield />\n+            </conditional>\n+        </when>\n+    </conditional>\n+  </xml>\n+\n+  <xml name="advanced_section">\n+    <section name="options" title="Advanced Options" expanded="False">\n+      <yield />\n+    </section>\n+  </xml>\n+\n+\n+  <!--Generalized Linear Models-->\n+  <xml name="loss" token_help=" " token_select="false">\n+    <param argument="loss" type="select" label="Loss function"  help="@HELP@">\n+        <option value="squared_loss" selected="@SELECT@">squared loss</option>\n+        <option value="huber">huber</option>\n+        <option value="epsilon_insensitive">epsilon insensitive</option>\n+        <option value="squared_epsilon_insensitive">squared epsilon insensitive</option>\n+        <yield/>\n+    </param>\n+  </xml>\n+\n+  <xml name="penalty" token_help=" ">\n+    <param argument="penalty" type="select" label="Penalty (regularization term)"  help="@HELP@">\n+        <option value="l2" selected="true">l2</option>\n+        <option value="l1">l1</option>\n+        <option value="elasticnet">elastic net</option>\n+        <option value="none">none</option>\n+        <yield/>\n+    </param>\n+  </xml>\n+\n+  <xml name="l1_ratio" token_default_value="0.15" token_help=" ">\n+    <param argument="l1_ratio" type="float" value="@DEFAULT_VALUE@" label="Elastic Net mixing parameter" help="@HELP@"/>\n+  </xml>\n+\n+  <xml name="epsilon" token_default_value="0.1" token_help="Used if loss is \xe2\x80\x98huber\xe2\x80\x99, \xe2\x80\x98epsilon_insensitive\xe2\x80\x99, or \xe2\x80\x98squared_epsilon_insensitive\xe2\x80\x99. ">\n+    <param argument="epsilon" type="float" value="@DEFAULT_VALUE@" label="Epsilon (epsilon-sensitive loss functions only)" help="@HELP@"/>\n+  </xml>\n+\n+  <xml name="learning_rate_s" token_help=" " token_selected1="false" token_selected2="false">\n+    <param argument="learning_rate" type="select" optional="true" label="Learning rate schedule"  help="@HELP@">\n+        <option value="optimal" selected="@SELECTED1@">optimal</option>\n+        <option value="constan'..b'citations>\n+  </xml>\n+\n+  <xml name="sklearn_citation">\n+    <citations>\n+        <citation type="bibtex">\n+          @article{scikit-learn,\n+            title={Scikit-learn: Machine Learning in {P}ython},\n+            author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n+                    and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n+                    and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n+                    Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n+            journal={Journal of Machine Learning Research},\n+            volume={12},\n+            pages={2825--2830},\n+            year={2011}\n+          }\n+        </citation>\n+        <yield/>\n+    </citations>\n+  </xml>\n+\n+  <xml name="scipy_citation">\n+    <citations>\n+        <citation type="bibtex">\n+          @Misc{,\n+          author =    {Eric Jones and Travis Oliphant and Pearu Peterson and others},\n+          title =     {{SciPy}: Open source scientific tools for {Python}},\n+          year =      {2001--},\n+          url = "http://www.scipy.org/",\n+          note = {[Online; accessed 2016-04-09]}\n+        }\n+        </citation>\n+    </citations>\n+  </xml>\n+\n+  <xml name="skrebate_citation">\n+    <citation type="bibtex">\n+      @article{DBLP:journals/corr/abs-1711-08477,\n+        author    = {Ryan J. Urbanowicz and\n+                    Randal S. Olson and\n+                    Peter Schmitt and\n+                    Melissa Meeker and\n+                    Jason H. Moore},\n+        title     = {Benchmarking Relief-Based Feature Selection Methods},\n+        journal   = {CoRR},\n+        volume    = {abs/1711.08477},\n+        year      = {2017},\n+        url       = {http://arxiv.org/abs/1711.08477},\n+        archivePrefix = {arXiv},\n+        eprint    = {1711.08477},\n+        timestamp = {Mon, 13 Aug 2018 16:46:04 +0200},\n+        biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1711-08477},\n+        bibsource = {dblp computer science bibliography, https://dblp.org}\n+      }\n+    </citation>\n+  </xml>\n+\n+  <xml name="xgboost_citation">\n+    <citation type="bibtex">\n+      @inproceedings{Chen:2016:XST:2939672.2939785,\n+        author = {Chen, Tianqi and Guestrin, Carlos},\n+        title = {{XGBoost}: A Scalable Tree Boosting System},\n+        booktitle = {Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},\n+        series = {KDD \'16},\n+        year = {2016},\n+        isbn = {978-1-4503-4232-2},\n+        location = {San Francisco, California, USA},\n+        pages = {785--794},\n+        numpages = {10},\n+        url = {http://doi.acm.org/10.1145/2939672.2939785},\n+        doi = {10.1145/2939672.2939785},\n+        acmid = {2939785},\n+        publisher = {ACM},\n+        address = {New York, NY, USA},\n+        keywords = {large-scale machine learning},\n+      }\n+    </citation>\n+  </xml>\n+\n+  <xml name="imblearn_citation">\n+    <citation type="bibtex">\n+      @article{JMLR:v18:16-365,\n+        author  = {Guillaume  Lema{{\\^i}}tre and Fernando Nogueira and Christos K. Aridas},\n+        title   = {Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning},\n+        journal = {Journal of Machine Learning Research},\n+        year    = {2017},\n+        volume  = {18},\n+        number  = {17},\n+        pages   = {1-5},\n+        url     = {http://jmlr.org/papers/v18/16-365.html}\n+      }\n+    </citation>\n+  </xml>\n+\n+  <xml name="selene_citation">\n+    <citation type="bibtex">\n+      @article{chen2019selene,\n+        title={Selene: a PyTorch-based deep learning library for sequence data},\n+        author={Chen, Kathleen M and Cofer, Evan M and Zhou, Jian and Troyanskaya, Olga G},\n+        journal={Nature methods},\n+        volume={16},\n+        number={4},\n+        pages={315},\n+        year={2019},\n+        publisher={Nature Publishing Group}\n+      }\n+    </citation>\n+  </xml>\n+\n+</macros>\n'
b
diff -r 000000000000 -r eaddff553324 ml_visualization_ex.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ml_visualization_ex.py Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,306 @@\n+import argparse\n+import json\n+import numpy as np\n+import pandas as pd\n+import plotly\n+import plotly.graph_objs as go\n+import warnings\n+\n+from keras.models import model_from_json\n+from keras.utils import plot_model\n+from sklearn.feature_selection.base import SelectorMixin\n+from sklearn.metrics import precision_recall_curve, average_precision_score\n+from sklearn.metrics import roc_curve, auc\n+from sklearn.pipeline import Pipeline\n+from galaxy_ml.utils import load_model, read_columns, SafeEval\n+\n+\n+safe_eval = SafeEval()\n+\n+\n+def main(inputs, infile_estimator=None, infile1=None,\n+         infile2=None, outfile_result=None,\n+         outfile_object=None, groups=None,\n+         ref_seq=None, intervals=None,\n+         targets=None, fasta_path=None,\n+         model_config=None):\n+    """\n+    Parameter\n+    ---------\n+    inputs : str\n+        File path to galaxy tool parameter\n+\n+    infile_estimator : str, default is None\n+        File path to estimator\n+\n+    infile1 : str, default is None\n+        File path to dataset containing features or true labels.\n+\n+    infile2 : str, default is None\n+        File path to dataset containing target values or predicted\n+        probabilities.\n+\n+    outfile_result : str, default is None\n+        File path to save the results, either cv_results or test result\n+\n+    outfile_object : str, default is None\n+        File path to save searchCV object\n+\n+    groups : str, default is None\n+        File path to dataset containing groups labels\n+\n+    ref_seq : str, default is None\n+        File path to dataset containing genome sequence file\n+\n+    intervals : str, default is None\n+        File path to dataset containing interval file\n+\n+    targets : str, default is None\n+        File path to dataset compressed target bed file\n+\n+    fasta_path : str, default is None\n+        File path to dataset containing fasta file\n+\n+    model_config : str, default is None\n+        File path to dataset containing JSON config for neural networks\n+    """\n+    warnings.simplefilter(\'ignore\')\n+\n+    with open(inputs, \'r\') as param_handler:\n+        params = json.load(param_handler)\n+\n+    title = params[\'plotting_selection\'][\'title\'].strip()\n+    plot_type = params[\'plotting_selection\'][\'plot_type\']\n+    if plot_type == \'feature_importances\':\n+        with open(infile_estimator, \'rb\') as estimator_handler:\n+            estimator = load_model(estimator_handler)\n+\n+        column_option = (params[\'plotting_selection\']\n+                               [\'column_selector_options\']\n+                               [\'selected_column_selector_option\'])\n+        if column_option in [\'by_index_number\', \'all_but_by_index_number\',\n+                             \'by_header_name\', \'all_but_by_header_name\']:\n+            c = (params[\'plotting_selection\']\n+                       [\'column_selector_options\'][\'col1\'])\n+        else:\n+            c = None\n+\n+        _, input_df = read_columns(infile1, c=c,\n+                                   c_option=column_option,\n+                                   return_df=True,\n+                                   sep=\'\\t\', header=\'infer\',\n+                                   parse_dates=True)\n+\n+        feature_names = input_df.columns.values\n+\n+        if isinstance(estimator, Pipeline):\n+            for st in estimator.steps[:-1]:\n+                if isinstance(st[-1], SelectorMixin):\n+                    mask = st[-1].get_support()\n+                    feature_names = feature_names[mask]\n+            estimator = estimator.steps[-1][-1]\n+\n+        if hasattr(estimator, \'coef_\'):\n+            coefs = estimator.coef_\n+        else:\n+            coefs = getattr(estimator, \'feature_importances_\', None)\n+        if coefs is None:\n+            raise RuntimeError(\'The classifier does not expose \'\n+                               \'"coef_" or "feature_importances_" \'\n+                               \'attributes\')\n+\n+        threshold = params[\'plotting_selection\'][\'threshold\']\n+        if '..b'go.Scatter(x=[0, 1], y=[0, 1],\n+                           mode=\'lines\', \n+                           line=dict(color=\'black\', dash=\'dash\'),\n+                           showlegend=False)\n+        data.append(trace)\n+\n+        layout = go.Layout(\n+            title=title or "Receiver operating characteristic curve",\n+            xaxis=dict(title=\'False Positive Rate\'),\n+            yaxis=dict(title=\'True Positive Rate\')\n+        )\n+\n+        fig = go.Figure(data=data, layout=layout)\n+\n+    elif plot_type == \'rfecv_gridscores\':\n+        input_df = pd.read_csv(infile1, sep=\'\\t\', header=\'infer\')\n+        scores = input_df.iloc[:, 0]\n+        steps = params[\'plotting_selection\'][\'steps\'].strip()\n+        steps = safe_eval(steps)\n+\n+        data = go.Scatter(\n+            x=list(range(len(scores))),\n+            y=scores,\n+            text=[str(_) for _ in steps] if steps else None,\n+            mode=\'lines\'\n+        )\n+        layout = go.Layout(\n+            xaxis=dict(title="Number of features selected"),\n+            yaxis=dict(title="Cross validation score"),\n+            title=title or None\n+        )\n+\n+        fig = go.Figure(data=[data], layout=layout)\n+\n+    elif plot_type == \'learning_curve\':\n+        input_df = pd.read_csv(infile1, sep=\'\\t\', header=\'infer\')\n+        plot_std_err = params[\'plotting_selection\'][\'plot_std_err\']\n+        data1 = go.Scatter(\n+            x=input_df[\'train_sizes_abs\'],\n+            y=input_df[\'mean_train_scores\'],\n+            error_y=dict(\n+                array=input_df[\'std_train_scores\']\n+            ) if plot_std_err else None,\n+            mode=\'lines\',\n+            name="Train Scores",\n+        )\n+        data2 = go.Scatter(\n+            x=input_df[\'train_sizes_abs\'],\n+            y=input_df[\'mean_test_scores\'],\n+            error_y=dict(\n+                array=input_df[\'std_test_scores\']\n+            ) if plot_std_err else None,\n+            mode=\'lines\',\n+            name="Test Scores",\n+        )\n+        layout = dict(\n+            xaxis=dict(\n+                title=\'No. of samples\'\n+            ),\n+            yaxis=dict(\n+                title=\'Performance Score\'\n+            ),\n+            title=title or \'Learning Curve\'\n+        )\n+        fig = go.Figure(data=[data1, data2], layout=layout)\n+\n+    elif plot_type == \'keras_plot_model\':\n+        with open(model_config, \'r\') as f:\n+            model_str = f.read()\n+        model = model_from_json(model_str)\n+        plot_model(model, to_file="output.png")\n+        __import__(\'os\').rename(\'output.png\', \'output\')\n+\n+        return 0\n+\n+    plotly.offline.plot(fig, filename="output.html",\n+                        auto_open=False)\n+    # to be discovered by `from_work_dir`\n+    __import__(\'os\').rename(\'output.html\', \'output\')\n+\n+\n+if __name__ == \'__main__\':\n+    aparser = argparse.ArgumentParser()\n+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)\n+    aparser.add_argument("-e", "--estimator", dest="infile_estimator")\n+    aparser.add_argument("-X", "--infile1", dest="infile1")\n+    aparser.add_argument("-y", "--infile2", dest="infile2")\n+    aparser.add_argument("-O", "--outfile_result", dest="outfile_result")\n+    aparser.add_argument("-o", "--outfile_object", dest="outfile_object")\n+    aparser.add_argument("-g", "--groups", dest="groups")\n+    aparser.add_argument("-r", "--ref_seq", dest="ref_seq")\n+    aparser.add_argument("-b", "--intervals", dest="intervals")\n+    aparser.add_argument("-t", "--targets", dest="targets")\n+    aparser.add_argument("-f", "--fasta_path", dest="fasta_path")\n+    aparser.add_argument("-c", "--model_config", dest="model_config")\n+    args = aparser.parse_args()\n+\n+    main(args.inputs, args.infile_estimator, args.infile1, args.infile2,\n+         args.outfile_result, outfile_object=args.outfile_object,\n+         groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals,\n+         targets=args.targets, fasta_path=args.fasta_path,\n+         model_config=args.model_config)\n'
b
diff -r 000000000000 -r eaddff553324 model_prediction.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/model_prediction.py Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,262 @@\n+import argparse\n+import json\n+import numpy as np\n+import pandas as pd\n+import tabix\n+import warnings\n+\n+from scipy.io import mmread\n+from sklearn.pipeline import Pipeline\n+\n+from galaxy_ml.externals.selene_sdk.sequences import Genome\n+from galaxy_ml.utils import (load_model, read_columns,\n+                             get_module, try_get_attr)\n+\n+\n+N_JOBS = int(__import__(\'os\').environ.get(\'GALAXY_SLOTS\', 1))\n+\n+\n+def main(inputs, infile_estimator, outfile_predict,\n+         infile_weights=None, infile1=None,\n+         fasta_path=None, ref_seq=None,\n+         vcf_path=None):\n+    """\n+    Parameter\n+    ---------\n+    inputs : str\n+        File path to galaxy tool parameter\n+\n+    infile_estimator : strgit\n+        File path to trained estimator input\n+\n+    outfile_predict : str\n+        File path to save the prediction results, tabular\n+\n+    infile_weights : str\n+        File path to weights input\n+\n+    infile1 : str\n+        File path to dataset containing features\n+\n+    fasta_path : str\n+        File path to dataset containing fasta file\n+\n+    ref_seq : str\n+        File path to dataset containing the reference genome sequence.\n+\n+    vcf_path : str\n+        File path to dataset containing variants info.\n+    """\n+    warnings.filterwarnings(\'ignore\')\n+\n+    with open(inputs, \'r\') as param_handler:\n+        params = json.load(param_handler)\n+\n+    # load model\n+    with open(infile_estimator, \'rb\') as est_handler:\n+        estimator = load_model(est_handler)\n+\n+    main_est = estimator\n+    if isinstance(estimator, Pipeline):\n+        main_est = estimator.steps[-1][-1]\n+    if hasattr(main_est, \'config\') and hasattr(main_est, \'load_weights\'):\n+        if not infile_weights or infile_weights == \'None\':\n+            raise ValueError("The selected model skeleton asks for weights, "\n+                             "but dataset for weights wan not selected!")\n+        main_est.load_weights(infile_weights)\n+\n+    # handle data input\n+    input_type = params[\'input_options\'][\'selected_input\']\n+    # tabular input\n+    if input_type == \'tabular\':\n+        header = \'infer\' if params[\'input_options\'][\'header1\'] else None\n+        column_option = (params[\'input_options\']\n+                               [\'column_selector_options_1\']\n+                               [\'selected_column_selector_option\'])\n+        if column_option in [\'by_index_number\', \'all_but_by_index_number\',\n+                             \'by_header_name\', \'all_but_by_header_name\']:\n+            c = params[\'input_options\'][\'column_selector_options_1\'][\'col1\']\n+        else:\n+            c = None\n+\n+        df = pd.read_csv(infile1, sep=\'\\t\', header=header, parse_dates=True)\n+\n+        X = read_columns(df, c=c, c_option=column_option).astype(float)\n+\n+        if params[\'method\'] == \'predict\':\n+            preds = estimator.predict(X)\n+        else:\n+            preds = estimator.predict_proba(X)\n+\n+    # sparse input\n+    elif input_type == \'sparse\':\n+        X = mmread(open(infile1, \'r\'))\n+        if params[\'method\'] == \'predict\':\n+            preds = estimator.predict(X)\n+        else:\n+            preds = estimator.predict_proba(X)\n+\n+    # fasta input\n+    elif input_type == \'seq_fasta\':\n+        if not hasattr(estimator, \'data_batch_generator\'):\n+            raise ValueError(\n+                "To do prediction on sequences in fasta input, "\n+                "the estimator must be a `KerasGBatchClassifier`"\n+                "equipped with data_batch_generator!")\n+        pyfaidx = get_module(\'pyfaidx\')\n+        sequences = pyfaidx.Fasta(fasta_path)\n+        n_seqs = len(sequences.keys())\n+        X = np.arange(n_seqs)[:, np.newaxis]\n+        seq_length = estimator.data_batch_generator.seq_length\n+        batch_size = getattr(estimator, \'batch_size\', 32)\n+        steps = (n_seqs + batch_size - 1) // batch_size\n+\n+        seq_type = params[\'input_options\'][\'seq_type\']\n+        klass = try_get_attr(\n+            \'galaxy_ml.preprocessors\', seq_type'..b'-1]\n+                try:\n+                    rows = blacklist_tabix.query(chrom, start, end)\n+                    found = 0\n+                    for row in rows:\n+                        found = 1\n+                        break\n+                    if found:\n+                        continue\n+                except tabix.TabixError:\n+                    pass\n+\n+                clean_variants.append((chrom, pos, name, ref, alt, strand))\n+        else:\n+            clean_variants = variants\n+\n+        setattr(pred_data_generator, \'variants\', clean_variants)\n+\n+        variants = np.array(clean_variants)\n+        # predict 1600 sample at once then write to file\n+        gen_flow = pred_data_generator.flow(batch_size=1600)\n+\n+        file_writer = open(outfile_predict, \'w\')\n+        header_row = \'\\t\'.join([\'chrom\', \'pos\', \'name\', \'ref\',\n+                                \'alt\', \'strand\'])\n+        file_writer.write(header_row)\n+        header_done = False\n+\n+        steps_done = 0\n+\n+        # TODO: multiple threading\n+        try:\n+            while steps_done < len(gen_flow):\n+                index_array = next(gen_flow.index_generator)\n+                batch_X = gen_flow._get_batches_of_transformed_samples(\n+                    index_array)\n+\n+                if params[\'method\'] == \'predict\':\n+                    batch_preds = estimator.predict(\n+                        batch_X,\n+                        # The presence of `pred_data_generator` below is to\n+                        # override model carrying data_generator if there\n+                        # is any.\n+                        data_generator=pred_data_generator)\n+                else:\n+                    batch_preds = estimator.predict_proba(\n+                        batch_X,\n+                        # The presence of `pred_data_generator` below is to\n+                        # override model carrying data_generator if there\n+                        # is any.\n+                        data_generator=pred_data_generator)\n+\n+                if batch_preds.ndim == 1:\n+                    batch_preds = batch_preds[:, np.newaxis]\n+\n+                batch_meta = variants[index_array]\n+                batch_out = np.column_stack([batch_meta, batch_preds])\n+\n+                if not header_done:\n+                    heads = np.arange(batch_preds.shape[-1]).astype(str)\n+                    heads_str = \'\\t\'.join(heads)\n+                    file_writer.write("\\t%s\\n" % heads_str)\n+                    header_done = True\n+\n+                for row in batch_out:\n+                    row_str = \'\\t\'.join(row)\n+                    file_writer.write("%s\\n" % row_str)\n+\n+                steps_done += 1\n+\n+        finally:\n+            file_writer.close()\n+            # TODO: make api `pred_data_generator.close()`\n+            pred_data_generator.close()\n+        return 0\n+    # end input\n+\n+    # output\n+    if len(preds.shape) == 1:\n+        rval = pd.DataFrame(preds, columns=[\'Predicted\'])\n+    else:\n+        rval = pd.DataFrame(preds)\n+\n+    rval.to_csv(outfile_predict, sep=\'\\t\', header=True, index=False)\n+\n+\n+if __name__ == \'__main__\':\n+    aparser = argparse.ArgumentParser()\n+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)\n+    aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator")\n+    aparser.add_argument("-w", "--infile_weights", dest="infile_weights")\n+    aparser.add_argument("-X", "--infile1", dest="infile1")\n+    aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict")\n+    aparser.add_argument("-f", "--fasta_path", dest="fasta_path")\n+    aparser.add_argument("-r", "--ref_seq", dest="ref_seq")\n+    aparser.add_argument("-v", "--vcf_path", dest="vcf_path")\n+    args = aparser.parse_args()\n+\n+    main(args.inputs, args.infile_estimator, args.outfile_predict,\n+         infile_weights=args.infile_weights, infile1=args.infile1,\n+         fasta_path=args.fasta_path, ref_seq=args.ref_seq,\n+         vcf_path=args.vcf_path)\n'
b
diff -r 000000000000 -r eaddff553324 search_model_validation.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/search_model_validation.py Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,581 @@\n+import argparse\n+import collections\n+import imblearn\n+import joblib\n+import json\n+import numpy as np\n+import pandas as pd\n+import pickle\n+import skrebate\n+import sklearn\n+import sys\n+import xgboost\n+import warnings\n+from imblearn import under_sampling, over_sampling, combine\n+from scipy.io import mmread\n+from mlxtend import classifier, regressor\n+from sklearn.base import clone\n+from sklearn import (cluster, compose, decomposition, ensemble,\n+                     feature_extraction, feature_selection,\n+                     gaussian_process, kernel_approximation, metrics,\n+                     model_selection, naive_bayes, neighbors,\n+                     pipeline, preprocessing, svm, linear_model,\n+                     tree, discriminant_analysis)\n+from sklearn.exceptions import FitFailedWarning\n+from sklearn.model_selection._validation import _score, cross_validate\n+from sklearn.model_selection import _search, _validation\n+\n+from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model,\n+                             read_columns, try_get_attr, get_module)\n+\n+\n+_fit_and_score = try_get_attr(\'galaxy_ml.model_validations\', \'_fit_and_score\')\n+setattr(_search, \'_fit_and_score\', _fit_and_score)\n+setattr(_validation, \'_fit_and_score\', _fit_and_score)\n+\n+N_JOBS = int(__import__(\'os\').environ.get(\'GALAXY_SLOTS\', 1))\n+CACHE_DIR = \'./cached\'\n+NON_SEARCHABLE = (\'n_jobs\', \'pre_dispatch\', \'memory\', \'_path\',\n+                  \'nthread\', \'callbacks\')\n+ALLOWED_CALLBACKS = (\'EarlyStopping\', \'TerminateOnNaN\', \'ReduceLROnPlateau\',\n+                     \'CSVLogger\', \'None\')\n+\n+\n+def _eval_search_params(params_builder):\n+    search_params = {}\n+\n+    for p in params_builder[\'param_set\']:\n+        search_list = p[\'sp_list\'].strip()\n+        if search_list == \'\':\n+            continue\n+\n+        param_name = p[\'sp_name\']\n+        if param_name.lower().endswith(NON_SEARCHABLE):\n+            print("Warning: `%s` is not eligible for search and was "\n+                  "omitted!" % param_name)\n+            continue\n+\n+        if not search_list.startswith(\':\'):\n+            safe_eval = SafeEval(load_scipy=True, load_numpy=True)\n+            ev = safe_eval(search_list)\n+            search_params[param_name] = ev\n+        else:\n+            # Have `:` before search list, asks for estimator evaluatio\n+            safe_eval_es = SafeEval(load_estimators=True)\n+            search_list = search_list[1:].strip()\n+            # TODO maybe add regular express check\n+            ev = safe_eval_es(search_list)\n+            preprocessings = (\n+                preprocessing.StandardScaler(), preprocessing.Binarizer(),\n+                preprocessing.MaxAbsScaler(),\n+                preprocessing.Normalizer(), preprocessing.MinMaxScaler(),\n+                preprocessing.PolynomialFeatures(),\n+                preprocessing.RobustScaler(), feature_selection.SelectKBest(),\n+                feature_selection.GenericUnivariateSelect(),\n+                feature_selection.SelectPercentile(),\n+                feature_selection.SelectFpr(), feature_selection.SelectFdr(),\n+                feature_selection.SelectFwe(),\n+                feature_selection.VarianceThreshold(),\n+                decomposition.FactorAnalysis(random_state=0),\n+                decomposition.FastICA(random_state=0),\n+                decomposition.IncrementalPCA(),\n+                decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS),\n+                decomposition.LatentDirichletAllocation(\n+                    random_state=0, n_jobs=N_JOBS),\n+                decomposition.MiniBatchDictionaryLearning(\n+                    random_state=0, n_jobs=N_JOBS),\n+                decomposition.MiniBatchSparsePCA(\n+                    random_state=0, n_jobs=N_JOBS),\n+                decomposition.NMF(random_state=0),\n+                decomposition.PCA(random_state=0),\n+                decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS),\n+                decomposition.TruncatedSVD('..b's)]\n+            cv_results.to_csv(path_or_buf=outfile_result, sep=\'\\t\',\n+                              header=True, index=False)\n+\n+        # train_test_split, output test result using best_estimator_\n+        # or rebuild the trained estimator using weights if applicable.\n+        else:\n+            scorer_ = searcher.scorer_\n+            if isinstance(scorer_, collections.Mapping):\n+                is_multimetric = True\n+            else:\n+                is_multimetric = False\n+\n+            best_estimator_ = getattr(searcher, \'best_estimator_\', None)\n+            if not best_estimator_:\n+                raise ValueError("GridSearchCV object has no "\n+                                 "`best_estimator_` when `refit`=False!")\n+\n+            if best_estimator_.__class__.__name__ == \'KerasGBatchClassifier\' \\\n+                    and hasattr(estimator.data_batch_generator, \'target_path\'):\n+                test_score = best_estimator_.evaluate(\n+                    X_test, scorer=scorer_, is_multimetric=is_multimetric)\n+            else:\n+                test_score = _score(best_estimator_, X_test,\n+                                    y_test, scorer_,\n+                                    is_multimetric=is_multimetric)\n+\n+            if not is_multimetric:\n+                test_score = {primary_scoring: test_score}\n+            for key, value in test_score.items():\n+                test_score[key] = [value]\n+            result_df = pd.DataFrame(test_score)\n+            result_df.to_csv(path_or_buf=outfile_result, sep=\'\\t\',\n+                             header=True, index=False)\n+\n+    memory.clear(warn=False)\n+\n+    if outfile_object:\n+        best_estimator_ = getattr(searcher, \'best_estimator_\', None)\n+        if not best_estimator_:\n+            warnings.warn("GridSearchCV object has no attribute "\n+                          "\'best_estimator_\', because either it\'s "\n+                          "nested gridsearch or `refit` is False!")\n+            return\n+\n+        main_est = best_estimator_\n+        if isinstance(best_estimator_, pipeline.Pipeline):\n+            main_est = best_estimator_.steps[-1][-1]\n+\n+        if hasattr(main_est, \'model_\') \\\n+                and hasattr(main_est, \'save_weights\'):\n+            if outfile_weights:\n+                main_est.save_weights(outfile_weights)\n+            del main_est.model_\n+            del main_est.fit_params\n+            del main_est.model_class_\n+            del main_est.validation_data\n+            if getattr(main_est, \'data_generator_\', None):\n+                del main_est.data_generator_\n+\n+        with open(outfile_object, \'wb\') as output_handler:\n+            pickle.dump(best_estimator_, output_handler,\n+                        pickle.HIGHEST_PROTOCOL)\n+\n+\n+if __name__ == \'__main__\':\n+    aparser = argparse.ArgumentParser()\n+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)\n+    aparser.add_argument("-e", "--estimator", dest="infile_estimator")\n+    aparser.add_argument("-X", "--infile1", dest="infile1")\n+    aparser.add_argument("-y", "--infile2", dest="infile2")\n+    aparser.add_argument("-O", "--outfile_result", dest="outfile_result")\n+    aparser.add_argument("-o", "--outfile_object", dest="outfile_object")\n+    aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights")\n+    aparser.add_argument("-g", "--groups", dest="groups")\n+    aparser.add_argument("-r", "--ref_seq", dest="ref_seq")\n+    aparser.add_argument("-b", "--intervals", dest="intervals")\n+    aparser.add_argument("-t", "--targets", dest="targets")\n+    aparser.add_argument("-f", "--fasta_path", dest="fasta_path")\n+    args = aparser.parse_args()\n+\n+    main(args.inputs, args.infile_estimator, args.infile1, args.infile2,\n+         args.outfile_result, outfile_object=args.outfile_object,\n+         outfile_weights=args.outfile_weights, groups=args.groups,\n+         ref_seq=args.ref_seq, intervals=args.intervals,\n+         targets=args.targets, fasta_path=args.fasta_path)\n'
b
diff -r 000000000000 -r eaddff553324 simple_model_fit.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/simple_model_fit.py Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,145 @@
+import argparse
+import json
+import pandas as pd
+import pickle
+
+from galaxy_ml.utils import load_model, read_columns
+from sklearn.pipeline import Pipeline
+
+
+def _get_X_y(params, infile1, infile2):
+    """ read from inputs and output X and y
+
+    Parameters
+    ----------
+    params : dict
+        Tool inputs parameter
+    infile1 : str
+        File path to dataset containing features
+    infile2 : str
+        File path to dataset containing target values
+
+    """
+    # store read dataframe object
+    loaded_df = {}
+
+    input_type = params['input_options']['selected_input']
+    # tabular input
+    if input_type == 'tabular':
+        header = 'infer' if params['input_options']['header1'] else None
+        column_option = (params['input_options']['column_selector_options_1']
+                         ['selected_column_selector_option'])
+        if column_option in ['by_index_number', 'all_but_by_index_number',
+                             'by_header_name', 'all_but_by_header_name']:
+            c = params['input_options']['column_selector_options_1']['col1']
+        else:
+            c = None
+
+        df_key = infile1 + repr(header)
+        df = pd.read_csv(infile1, sep='\t', header=header,
+                         parse_dates=True)
+        loaded_df[df_key] = df
+
+        X = read_columns(df, c=c, c_option=column_option).astype(float)
+    # sparse input
+    elif input_type == 'sparse':
+        X = mmread(open(infile1, 'r'))
+
+    # Get target y
+    header = 'infer' if params['input_options']['header2'] else None
+    column_option = (params['input_options']['column_selector_options_2']
+                     ['selected_column_selector_option2'])
+    if column_option in ['by_index_number', 'all_but_by_index_number',
+                         'by_header_name', 'all_but_by_header_name']:
+        c = params['input_options']['column_selector_options_2']['col2']
+    else:
+        c = None
+
+    df_key = infile2 + repr(header)
+    if df_key in loaded_df:
+        infile2 = loaded_df[df_key]
+    else:
+        infile2 = pd.read_csv(infile2, sep='\t',
+                              header=header, parse_dates=True)
+        loaded_df[df_key] = infile2
+
+    y = read_columns(
+            infile2,
+            c=c,
+            c_option=column_option,
+            sep='\t',
+            header=header,
+            parse_dates=True)
+    if len(y.shape) == 2 and y.shape[1] == 1:
+        y = y.ravel()
+
+    return X, y
+
+
+def main(inputs, infile_estimator, infile1, infile2, out_object,
+         out_weights=None):
+    """ main
+
+    Parameters
+    ----------
+    inputs : str
+        File path to galaxy tool parameter
+
+    infile_estimator : str
+        File paths of input estimator
+
+    infile1 : str
+        File path to dataset containing features
+
+    infile2 : str
+        File path to dataset containing target labels
+
+    out_object : str
+        File path for output of fitted model or skeleton
+
+    out_weights : str
+        File path for output of weights
+
+    """
+    with open(inputs, 'r') as param_handler:
+        params = json.load(param_handler)
+
+    # load model
+    with open(infile_estimator, 'rb') as est_handler:
+        estimator = load_model(est_handler)
+
+    X_train, y_train = _get_X_y(params, infile1, infile2)
+
+    estimator.fit(X_train, y_train)
+    
+    main_est = estimator
+    if isinstance(main_est, Pipeline):
+        main_est = main_est.steps[-1][-1]
+    if hasattr(main_est, 'model_') \
+            and hasattr(main_est, 'save_weights'):
+        if out_weights:
+            main_est.save_weights(out_weights)
+        del main_est.model_
+        del main_est.fit_params
+        del main_est.model_class_
+        del main_est.validation_data
+        if getattr(main_est, 'data_generator_', None):
+            del main_est.data_generator_
+
+    with open(out_object, 'wb') as output_handler:
+        pickle.dump(estimator, output_handler,
+                    pickle.HIGHEST_PROTOCOL)
+
+
+if __name__ == '__main__':
+    aparser = argparse.ArgumentParser()
+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
+    aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator")
+    aparser.add_argument("-y", "--infile1", dest="infile1")
+    aparser.add_argument("-g", "--infile2", dest="infile2")
+    aparser.add_argument("-o", "--out_object", dest="out_object")
+    aparser.add_argument("-t", "--out_weights", dest="out_weights")
+    args = aparser.parse_args()
+
+    main(args.inputs, args.infile_estimator, args.infile1,
+         args.infile2, args.out_object, args.out_weights)
b
diff -r 000000000000 -r eaddff553324 stacking_ensembles.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/stacking_ensembles.py Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,132 @@
+import argparse
+import ast
+import json
+import mlxtend.regressor
+import mlxtend.classifier
+import pandas as pd
+import pickle
+import sklearn
+import sys
+import warnings
+from sklearn import ensemble
+
+from galaxy_ml.utils import (load_model, get_cv, get_estimator,
+                             get_search_params)
+
+
+warnings.filterwarnings('ignore')
+
+N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1))
+
+
+def main(inputs_path, output_obj, base_paths=None, meta_path=None,
+         outfile_params=None):
+    """
+    Parameter
+    ---------
+    inputs_path : str
+        File path for Galaxy parameters
+
+    output_obj : str
+        File path for ensemble estimator ouput
+
+    base_paths : str
+        File path or paths concatenated by comma.
+
+    meta_path : str
+        File path
+
+    outfile_params : str
+        File path for params output
+    """
+    with open(inputs_path, 'r') as param_handler:
+        params = json.load(param_handler)
+
+    estimator_type = params['algo_selection']['estimator_type']
+    # get base estimators
+    base_estimators = []
+    for idx, base_file in enumerate(base_paths.split(',')):
+        if base_file and base_file != 'None':
+            with open(base_file, 'rb') as handler:
+                model = load_model(handler)
+        else:
+            estimator_json = (params['base_est_builder'][idx]
+                              ['estimator_selector'])
+            model = get_estimator(estimator_json)
+
+        if estimator_type.startswith('sklearn'):
+            named = model.__class__.__name__.lower()
+            named = 'base_%d_%s' % (idx, named)
+            base_estimators.append((named, model))
+        else:
+            base_estimators.append(model)
+
+    # get meta estimator, if applicable
+    if estimator_type.startswith('mlxtend'):
+        if meta_path:
+            with open(meta_path, 'rb') as f:
+                meta_estimator = load_model(f)
+        else:
+            estimator_json = (params['algo_selection']
+                              ['meta_estimator']['estimator_selector'])
+            meta_estimator = get_estimator(estimator_json)
+
+    options = params['algo_selection']['options']
+
+    cv_selector = options.pop('cv_selector', None)
+    if cv_selector:
+        splitter, groups = get_cv(cv_selector)
+        options['cv'] = splitter
+        # set n_jobs
+        options['n_jobs'] = N_JOBS
+
+    weights = options.pop('weights', None)
+    if weights:
+        weights = ast.literal_eval(weights)
+        if weights:
+            options['weights'] = weights
+
+    mod_and_name = estimator_type.split('_')
+    mod = sys.modules[mod_and_name[0]]
+    klass = getattr(mod, mod_and_name[1])
+
+    if estimator_type.startswith('sklearn'):
+        options['n_jobs'] = N_JOBS
+        ensemble_estimator = klass(base_estimators, **options)
+
+    elif mod == mlxtend.classifier:
+        ensemble_estimator = klass(
+            classifiers=base_estimators,
+            meta_classifier=meta_estimator,
+            **options)
+
+    else:
+        ensemble_estimator = klass(
+            regressors=base_estimators,
+            meta_regressor=meta_estimator,
+            **options)
+
+    print(ensemble_estimator)
+    for base_est in base_estimators:
+        print(base_est)
+
+    with open(output_obj, 'wb') as out_handler:
+        pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL)
+
+    if params['get_params'] and outfile_params:
+        results = get_search_params(ensemble_estimator)
+        df = pd.DataFrame(results, columns=['', 'Parameter', 'Value'])
+        df.to_csv(outfile_params, sep='\t', index=False)
+
+
+if __name__ == '__main__':
+    aparser = argparse.ArgumentParser()
+    aparser.add_argument("-b", "--bases", dest="bases")
+    aparser.add_argument("-m", "--meta", dest="meta")
+    aparser.add_argument("-i", "--inputs", dest="inputs")
+    aparser.add_argument("-o", "--outfile", dest="outfile")
+    aparser.add_argument("-p", "--outfile_params", dest="outfile_params")
+    args = aparser.parse_args()
+
+    main(args.inputs, args.outfile, base_paths=args.bases,
+         meta_path=args.meta, outfile_params=args.outfile_params)
b
diff -r 000000000000 -r eaddff553324 test-data/GridSearchCV.zip
b
Binary file test-data/GridSearchCV.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/LinearRegression01.zip
b
Binary file test-data/LinearRegression01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/LinearRegression02.zip
b
Binary file test-data/LinearRegression02.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/RF01704.fasta
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/RF01704.fasta Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+>CP000097.1/1411351-1411410
+CAACGUUCACCUCACAUUUGUGAGGCGCAGACAACCCAGGCCAAGGAACGGGGACCUGGA
+>ACNY01000002.1/278641-278580
+GAUCGUUCACUUCGCAUCGCGCGAAGCGCAGUUCGCCUCAGGCCAUGGAACGGGGACCUGAG
b
diff -r 000000000000 -r eaddff553324 test-data/RFE.zip
b
Binary file test-data/RFE.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/RandomForestClassifier.zip
b
Binary file test-data/RandomForestClassifier.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/RandomForestRegressor01.zip
b
Binary file test-data/RandomForestRegressor01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/StackingCVRegressor01.zip
b
Binary file test-data/StackingCVRegressor01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/StackingCVRegressor02.zip
b
Binary file test-data/StackingCVRegressor02.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/StackingRegressor02.zip
b
Binary file test-data/StackingRegressor02.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/StackingVoting03.zip
b
Binary file test-data/StackingVoting03.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/XGBRegressor01.zip
b
Binary file test-data/XGBRegressor01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/abc_model01
b
Binary file test-data/abc_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/abc_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/abc_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 predicted
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 1
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 1
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/abr_model01
b
Binary file test-data/abr_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/abr_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/abr_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 4 predicted
+86.97021227350001 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331 0.323842059244
+91.2021798817 -0.6215229712070001 1.11914889596 0.390012184498 1.28956938152 1.1503117056799999
+-47.4101632272 -0.638416457964 -0.7327774684530001 -0.8640261049779999 -1.06109770116 -0.7191695359690001
+61.712804630200004 -1.0999480057700002 -0.739679672932 0.585657963012 1.4890682753600002 1.1503117056799999
+-206.998295124 0.130238853011 0.70574123041 1.3320656526399999 -1.3322092373799999 -0.7191695359690001
b
diff -r 000000000000 -r eaddff553324 test-data/accuracy_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/accuracy_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+accuracy_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/auc.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/auc.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+auc : 
+2.5
b
diff -r 000000000000 -r eaddff553324 test-data/average_precision_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/average_precision_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+average_precision_score : 
+1.0
b
diff -r 000000000000 -r eaddff553324 test-data/best_estimator_.zip
b
Binary file test-data/best_estimator_.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/best_params_.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/best_params_.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,1 @@
+{'estimator__n_estimators': 100}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/best_score_.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/best_score_.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+best_score_
+0.7976348550293088
b
diff -r 000000000000 -r eaddff553324 test-data/blobs.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/blobs.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 0
+0.33681845896740 -3.40287961299073 0
+-9.48324265575857 -8.66266051536995 2
+-1.93336328496076 5.70953908146890 1
+-10.03182405989413 -5.57834393458362 2
+0.54186077661701 -4.37693628326930 0
+-8.12962929067378 -7.05554320549807 2
+-0.73082578569427 7.32375551699482 1
+-1.84142532007015 6.20630466830832 1
+0.41007185031668 -3.99744881000119 0
+-8.73509589323240 -5.49090535208751 2
+1.84941962277054 -3.91839345672969 0
+-9.15256068848857 -9.17805648051067 2
+-3.21429939077830 5.75926163957071 1
+0.28450378549664 -3.61576522643830 0
+-0.92907484922306 5.79099955373578 1
+0.36692524194483 6.51861929622910 1
+1.59909917965412 -3.07105617297875 0
+-9.71270568435724 -7.91707651499009 2
+-10.08040443063205 -6.55135324108655 2
+1.10594345774293 -4.41906374949547 0
+2.48708049649457 -2.89100712361067 0
+0.00587148930883 -3.18314255539710 0
+1.61854359735349 -4.88855922559208 0
+-9.15856722108140 -7.13894114847511 2
+-3.07633571459573 7.80049676786476 1
+0.11174653022487 -3.61615828710479 0
+-9.43932350782336 -7.29863034570663 2
+-1.69466229591445 4.40837111117530 1
+1.05261752638325 -3.49553009701512 0
+-10.50560592102942 -5.99245086001851 2
+1.54081964152897 -4.53702344151471 0
+0.32228789680820 6.89854008042929 1
+0.61621969660610 -5.27504803637537 0
+-10.22545392329864 -8.71635918421430 2
+-10.61004107591557 -8.15999270542289 2
+-0.74547966700287 -2.96189843151195 0
+0.78848758990191 -5.32234377938911 0
+-10.42005276754933 -7.78467770434098 2
+-2.90664752997062 5.79835066175825 1
+-10.32143921202120 -8.92712052109752 2
+-0.21338559861828 7.84779827247996 1
+-0.07194732572546 -5.26054466248995 0
+-7.60696893546687 -7.73382713697845 2
+-1.37722038386856 6.91773657443747 1
+-3.21560019075551 7.26468660350508 1
+-10.36154489539457 -6.91944465708303 2
+-9.60457341239248 -9.25351754602290 2
+-2.72690231565835 6.73825747902294 1
+-2.80603999216749 6.99066208996353 1
+-0.81952671479263 7.58241271253648 1
+-2.08847400980833 5.69607144720414 1
+-0.31991876149841 -4.98235849165957 0
+-11.32066579703307 -8.20937750734829 2
+-7.96236061274655 -9.01605369665730 2
+2.16784691057462 -6.16570792177736 0
+1.89502027521910 -5.86480290918300 0
+-8.66871499099032 -7.79890226276482 2
+2.05772110384843 -6.12322912450768 0
+-9.31359960682017 -8.00568199998929 2
+-0.76743056356151 -5.47682217583339 0
+-3.46772941922521 6.76072133440808 1
+1.09049844437461 -5.87582929334941 0
+-0.11521126331032 -4.07510454495671 0
+1.08927850504071 -5.50265562869237 0
+-0.61505047925733 7.65521576624828 1
+0.42996321311489 -5.55093054437951 0
+-0.75919485469050 5.58853030731725 1
+-9.12599657251685 -8.00673850068656 2
+-9.77537442082784 -6.61925671967673 2
+-3.01723334528173 7.00340677720469 1
+-0.97308946436741 -4.06651907195677 0
+-0.48830021304200 -5.66504681203900 0
+-11.92081159330307 -7.64815817127183 2
+-9.38262507165980 -7.58496298709520 2
+0.07652275340590 7.58891330491466 1
+0.97696230365299 -3.92480270763176 0
+-7.83082970823398 -7.91191526652019 2
+-3.00736856610051 5.70163666960614 1
+-1.87511017769397 5.62449960555141 1
+-9.68323206673510 -8.25353931958495 2
+-9.30119933759135 -8.47564800181842 2
+0.32365967414684 -5.10078403493750 0
+-1.74836105433202 5.46645574794978 1
+-0.56064340851208 6.87612506043561 1
+0.67860300499613 -4.17761085385070 0
+-8.20199888805984 -8.29076835439347 2
+-3.05026420956995 8.94223661488021 1
+-8.81193622652183 -7.79813533757767 2
+-9.16862770716234 -7.13275033182281 2
+-4.48296365906822 6.92883992453694 1
+-10.52225224786374 -6.80543393827772 2
+-1.58567165074196 6.89948024038567 1
+-1.75853685207545 6.44534621138642 1
+-9.91452153947266 -8.11181559274489 2
+-1.40077619511942 6.92380628122115 1
+-1.19228020907627 6.14310846867304 1
+0.87541339904821 -5.04555103360224 0
+1.48113771750685 -3.69640708480025 0
+0.52495937648759 6.34480823448348 1
+-0.01369955366371 -4.41397334863602 0
b
diff -r 000000000000 -r eaddff553324 test-data/brier_score_loss.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/brier_score_loss.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+brier_score_loss : 
+0.5641025641025641
b
diff -r 000000000000 -r eaddff553324 test-data/circles.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/circles.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 0
+-0.06279051952931 -0.99802672842827 0
+0.05023241562345 0.79842138274262 1
+-0.99211470131448 -0.12533323356430 0
+0.42577929156507 -0.90482705246602 0
+-0.30901699437495 -0.95105651629515 0
+-1.00000000000000 -0.00000000000000 0
+-0.18738131458572 -0.98228725072869 0
+-0.53582679497900 -0.84432792550202 0
+-0.77486652890290 -0.19895190973188 1
+-0.87630668004386 0.48175367410172 0
+-0.24721359549996 -0.76084521303612 1
+0.80000000000000 0.00000000000000 1
+0.42866143598320 -0.67546234040161 1
+-0.58317490193713 0.54763768474295 1
+0.70104534403509 -0.38540293928137 1
+-0.74382118871060 -0.29449964214774 1
+-0.74382118871060 0.29449964214774 1
+0.80901699437495 0.58778525229247 0
+0.30901699437495 -0.95105651629515 0
+0.18738131458572 0.98228725072869 0
+-0.87630668004386 -0.48175367410172 0
+-0.42866143598320 -0.67546234040161 1
+-0.50993919179895 -0.61641059422063 1
+0.63742398974869 -0.77051324277579 0
+-0.92977648588825 -0.36812455268468 0
+-0.92977648588825 0.36812455268468 0
+-0.96858316112863 0.24868988716485 0
+0.24721359549996 -0.76084521303612 1
+-0.14990505166858 -0.78582980058295 1
+-0.80901699437495 0.58778525229247 0
+-0.63742398974869 -0.77051324277579 0
+0.72896862742141 0.68454710592869 0
+0.92977648588825 0.36812455268468 0
+0.06279051952931 0.99802672842827 0
+0.79369176105158 0.10026658685144 1
+-0.34062343325206 -0.72386164197282 1
+-0.77486652890290 0.19895190973188 1
+-0.14990505166858 0.78582980058295 1
+0.70104534403509 0.38540293928137 1
+-0.50993919179895 0.61641059422063 1
+-0.80000000000000 -0.00000000000000 1
+-0.79369176105158 0.10026658685144 1
+0.50993919179895 0.61641059422063 1
+0.53582679497900 -0.84432792550202 0
+-0.79369176105158 -0.10026658685144 1
+0.79369176105158 -0.10026658685144 1
+-0.53582679497900 0.84432792550201 0
+0.50993919179895 -0.61641059422063 1
+-0.05023241562345 0.79842138274262 1
+1.00000000000000 0.00000000000000 0
+-0.63742398974869 0.77051324277579 0
+0.72896862742141 -0.68454710592869 0
+0.06279051952931 -0.99802672842827 0
+0.80901699437495 -0.58778525229247 0
+0.18738131458573 -0.98228725072869 0
+-0.64721359549996 0.47022820183398 1
+0.58317490193713 -0.54763768474295 1
+-0.80901699437495 -0.58778525229247 0
+-0.70104534403509 0.38540293928137 1
+0.87630668004386 -0.48175367410172 0
+0.58317490193713 0.54763768474295 1
+-0.64721359549996 -0.47022820183398 1
+0.34062343325206 -0.72386164197282 1
+0.05023241562345 -0.79842138274262 1
+-0.72896862742141 0.68454710592869 0
+-0.58317490193713 -0.54763768474295 1
+0.64721359549996 0.47022820183398 1
+0.14990505166858 -0.78582980058295 1
+0.14990505166858 0.78582980058295 1
+-0.24721359549996 0.76084521303612 1
+0.92977648588825 -0.36812455268468 0
+0.99211470131448 -0.12533323356430 0
+0.63742398974869 0.77051324277579 0
+0.74382118871060 -0.29449964214774 1
+0.34062343325206 0.72386164197282 1
+0.64721359549996 -0.47022820183398 1
+-0.06279051952931 0.99802672842827 0
+0.99211470131448 0.12533323356430 0
+-0.72896862742141 -0.68454710592869 0
+0.87630668004386 0.48175367410172 0
+-0.96858316112863 -0.24868988716486 0
+0.96858316112863 0.24868988716485 0
+0.42577929156507 0.90482705246602 0
+-0.42577929156507 0.90482705246602 0
+0.42866143598320 0.67546234040161 1
+0.24721359549996 0.76084521303612 1
+-0.30901699437495 0.95105651629515 0
+0.77486652890290 -0.19895190973188 1
+-0.42577929156507 -0.90482705246602 0
+-0.18738131458572 0.98228725072869 0
+-0.34062343325206 0.72386164197282 1
+0.74382118871060 0.29449964214774 1
+0.77486652890290 0.19895190973188 1
+0.30901699437495 0.95105651629515 0
+0.96858316112863 -0.24868988716485 0
+-0.70104534403509 -0.38540293928137 1
+-0.05023241562345 -0.79842138274262 1
+-0.42866143598320 0.67546234040161 1
+-0.99211470131448 0.12533323356430 0
+0.53582679497900 0.84432792550202 0
b
diff -r 000000000000 -r eaddff553324 test-data/class.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/class.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t10\t11\t12\t13\t14\t15\t16\t17\t18\t19\t0\n+1.103931098477063\t1.1137324694427062\t2.929660893432376\t0.8263678474871072\t-0.5024439301629023\t-0.9778311716440287\t-0.6702242261982462\t-0.3783418745400049\t-1.9100911341304148\t0.41080891898717925\t1.6359138753477174\t-0.3544401787737543\t-0.7776883945882607\t-0.711126068648103\t-1.1632958763488586\t2.881523323585383\t-0.3331610016599995\t1.0249635446624175\t-1.204722529676112\t0.9686027151980944\t1\n+-0.5270034201986623\t-2.4370266994140035\t-0.46398126201591683\t0.6724964425333426\t0.32128693891873533\t-1.4561055975293318\t0.9733737109300644\t1.2635448363305384\t-0.9655190314614323\t-0.30440284592936967\t0.2928325635717791\t-0.642481126749871\t-0.17778292517384178\t-0.23575096986827987\t0.770818433376395\t1.002493460919832\t0.44402946209787597\t0.38673364020325446\t-1.0909759530149077\t0.4374172416803542\t1\n+0.6343790937890923\t-0.7044557030990274\t-1.5479925634100813\t-1.1375423986557498\t0.7574995244231507\t-0.2586895904715146\t1.2113185073849615\t0.8255591814670258\t1.0488550790559334\t-0.013557918030451043\t-0.36824556412752163\t-1.8422341740345995\t0.9791413360462421\t-0.23658235285975457\t0.3758968273279556\t-0.7379662029189028\t-0.9558490082424093\t-0.45167227065102006\t-0.13587675227718632\t-0.43481791249648283\t0\n+-0.2749398078895973\t-0.602759369823714\t-0.34817063773317436\t1.2165805903649096\t0.08822993442548502\t-0.9828118947823061\t1.1255554529825982\t-0.5951138391567017\t1.359567367140958\t1.14745743851399\t-2.2691569946862655\t0.9270532988002531\t-1.28390481061431\t0.702184505359777\t1.1599689740750685\t-0.7022781266128805\t-1.5820069707072104\t-0.1640254026760564\t-0.6268539047283007\t-0.5343960171949464\t0\n+-0.8451664655381013\t0.9592831641658773\t0.29032122469609184\t1.4456183940991385\t-2.2668849557948265\t0.49356800079005453\t0.9973927328851383\t-1.7077448427289017\t-1.525140006218017\t-0.2628130337984583\t-0.6987088119151889\t0.12372879270054708\t-0.37829745272534815\t-0.0010588423370812654\t3.1974829539733727\t1.7610392441369824\t0.461991697252764\t-0.8707192095484595\t0.4949902726326138\t0.7113500316301005\t1\n+-0.6479921130452116\t-0.9442706004373587\t0.20181386383006028\t-1.0034745347115275\t-0.9369221110721804\t-1.003380717730042\t-0.7275212508545039\t-0.1820208348243829\t0.869148773329888\t-0.7855214383236936\t0.1360612935062583\t2.0654861372867295\t-1.2399203282859266\t-0.44615385943239716\t1.7347311831934773\t-0.6314619246803259\t-0.76518919295205\t1.2707549044789055\t-0.7323378102483927\t-0.3626096934734513\t0\n+-0.06451309551365764\t-0.7249330776348837\t0.5963143554325262\t-1.379225616134922\t1.1667980284973485\t-2.274070053731467\t0.7411405179848544\t-0.6631329812615014\t-1.567155162052582\t-0.09527290234272089\t-0.7316650418582739\t-1.0020134142607244\t-0.6953396335230776\t1.5807860908438993\t0.3379535699933314\t1.8800551896643136\t0.37962716233848903\t0.5363444440333102\t0.1390867505544731\t0.7390508093906831\t1\n+0.7576049876525334\t0.8726631262318649\t0.8478637181249223\t0.30198299200599726\t1.0101338828657191\t-1.3836221562341127\t1.0376123351490436\t1.0937481979752155\t1.3929535047023875\t0.8760511854123076\t-1.2981174812942935\t0.3025477016355275\t-0.14253519602584672\t1.2887025562956078\t2.1562199933480133\t-1.0111580468681463\t-1.2275056029861684\t-0.2688763993683175\t-2.2719054986176683\t-0.5810422898079113\t0\n+2.5394320331114613\t0.46034921066168377\t0.8315330299051433\t-0.9396024430587621\t-0.37614736761593637\t-0.17996331764913345\t1.455421460737774\t1.5223077678776793\t1.1770030840483332\t0.40359841542535574\t-0.03766667059723912\t0.2415068878754467\t-0.44558826380657596\t1.2774520318648948\t-1.8848343873195796\t-0.23434224565939143\t-1.8735210102773319\t2.299369468755593\t0.11182257854217889\t-0.41968753568332984\t0\n+-1.1654317335035704\t-0.23406889069910192\t-1.3485118844184532\t0.7912949804001552\t-0.19206908223922012\t-2.752037662677927\t-1.6014139415281856\t-0.5108631934878929\t1.4041570989659866\t0.5382460975045578\t0.012866884184724063\t0.7910261496852212\t-0.5285056361126661\t-2.874968879865529\t-0.8428605517089753\t-1.4276668142409976\t-0.6865704170544349\t0.8660591728218054\t1.176952513690'..b'153635800724\t0.6364125215344348\t0.5362734706812686\t1\n+1.0759409181533681\t0.6338708137850724\t1.059455516811933\t0.2736075032324234\t-1.1004879462237114\t0.8983820725024066\t-0.9152704846639929\t-0.8347039847535137\t-1.3994538124984017\t0.06937008395653746\t-0.4322117530530746\t-1.297471755359271\t-0.9256383920977915\t-1.5287869947378168\t0.46665199638203264\t1.3984163949968078\t0.7172731124783118\t-2.1595920504682318\t0.2178924553288528\t0.627726734926914\t1\n+1.1631257343736865\t0.7161109143496656\t1.165181781246556\t-0.0970197604214342\t1.770668260834617\t0.09786380091576943\t-0.25203469271235573\t-0.07117035012372852\t1.2621614052889216\t-2.204226920077547\t-0.833481645415412\t1.668179441254334\t0.6299876168291397\t-0.4391047192362273\t-0.12336287720355432\t-2.4752753514344055\t0.9905764766530935\t0.16824138572933983\t-1.108371640458861\t-0.7056991628790823\t0\n+-0.4653767839296524\t0.5706552646301977\t-1.2510825198094822\t-0.38542737502404606\t0.5418393251037328\t0.8696564647003973\t-0.2677426807372017\t1.3874400614164746\t-1.6989225614176242\t-0.8543980754353178\t-0.7126300388983264\t0.39242735549607893\t0.7427861661062981\t0.23731164772086588\t0.17840259925316965\t2.264950231927068\t0.10561848543619334\t1.7893962060023398\t-0.33937719999794\t0.8272635120183163\t1\n+1.0658262297925543\t0.2245144207327693\t1.9979515177687335\t-1.3687162010707115\t-1.1274591498928925\t0.6453464430821444\t0.10571095020938731\t-0.04489492214522473\t0.4070092579150457\t-1.6549967992364703\t-0.1861816445428681\t-1.0013467840435817\t0.13042091725382485\t-0.9328609421342365\t1.4771353822876396\t1.0854915441340736\t-2.221251309417225\t0.5725567515972323\t-1.1577200461261594\t-0.011036089287608658\t1\n+-1.0583794427218747\t2.576977679031155\t-0.5895820679190702\t0.13438281144361666\t0.36102541634537905\t1.5183620699261768\t1.5873212424728582\t-0.7273069057149364\t0.4522026560345715\t-0.02860552628379647\t-0.018212347104613166\t0.687677616154882\t0.5422573331869172\t0.10659762229930982\t-1.2522775141080984\t0.7277335248049872\t-1.8227895144219035\t-0.7301662802248373\t0.9715535632493052\t-0.0672408254641321\t1\n+-0.1099953959208559\t1.6635363107373078\t0.3272453529764515\t-1.4246555886796946\t1.2410820871966046\t-0.15951736500333072\t-0.661937714925914\t0.4234572818376501\t1.1246881843788494\t0.9529594279919252\t0.39143861927191975\t3.465227148479317\t-0.24134874955198468\t-1.0945571896156956\t-0.9833626436429376\t-1.480187693017323\t-0.09583127396217472\t-0.31134706056867467\t-0.6248721853412322\t-0.5454408106982881\t0\n+0.9291001132966914\t-0.1708304076874391\t0.5364439368681257\t0.2630766894332881\t-0.1295965590136687\t0.9929416493373554\t0.7904280904722739\t-0.01912275129904966\t1.5057113544481104\t-1.9314128569290476\t-0.40508326392063543\t1.0918159072154612\t0.1881369570559398\t-1.213691539345214\t0.02421534060406341\t-1.96631401509566\t-0.14897841915958698\t-2.1313146599852018\t-1.2710579854942345\t-0.7284633084773273\t0\n+0.6336131127287113\t2.0333233170635046\t-0.022356711144941453\t-0.22007309599774338\t0.9282123550423084\t-0.787901129200937\t0.5812629099886915\t0.377426024051308\t0.15067520175237897\t-2.340925516401822\t0.07371157701560777\t1.560723423781778\t-0.38910754054643126\t1.0173191686261756\t-0.4198460795464502\t-0.4257545472403689\t0.2939445657648525\t0.6855820937261274\t-2.068890495355913\t-0.09921878204870066\t0\n+2.049778771444076\t1.3048378295965286\t1.563792608618236\t-0.7047392202425459\t0.5499305970570395\t-0.04884518704139992\t0.5223109585785488\t-1.4893434370374596\t1.3606389947395752\t0.3899429971033616\t0.055686488142052015\t0.8438100462780511\t1.6850310129308619\t1.2652993760910154\t-0.2279594058376745\t-1.9365760629271713\t0.0807919955941725\t-0.6380407350109051\t-1.0466273798176675\t-0.6766362607223333\t0\n+0.630742979769623\t-0.12660063112597814\t-1.1219892377344292\t-0.24320231504242704\t-0.11846930012185257\t0.35618373486097415\t-0.35432027228237667\t0.6830976831702715\t-1.2988376519016114\t-0.12917328933680922\t0.4878147649765918\t1.6226344780340827\t0.46020710543895615\t-0.9537377215409267\t0.8308526010187456\t1.1069055404414496\t0.9232784698807094\t-1.2718116679596179\t-0.5666412777157238\t0.5606432963172591\t1\n'
b
diff -r 000000000000 -r eaddff553324 test-data/classification_report.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/classification_report.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+classification_report : 
+              precision    recall  f1-score   support
+
+           0       1.00      1.00      1.00        14
+           1       1.00      0.62      0.77        16
+           2       0.60      1.00      0.75         9
+
+   micro avg       0.85      0.85      0.85        39
+   macro avg       0.87      0.88      0.84        39
+weighted avg       0.91      0.85      0.85        39
+
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result01.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result01.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result02.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result02.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 3
+0 51 48 -73 3
+0 58 65 -49 3
+0 43 61 -49 3
+0 45 43 -79 3
+0 42 60 -98 3
+0 50 55 -59 3
+0 53 53 -56 3
+0 45 44 -61 3
+0 43 65 -84 3
+0 35 52 -75 3
+0 56 56 -70 3
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 0
+2 -63 9 -106 0
+2 -79 9 -93 0
+2 -99 26 -108 0
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 0
+2 -88 2 -106 0
+2 -88 15 -103 0
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result03.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result03.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 -1
+0 51 48 -73 -1
+0 58 65 -49 -1
+0 43 61 -49 -1
+0 45 43 -79 -1
+0 42 60 -98 -1
+0 50 55 -59 -1
+0 53 53 -56 -1
+0 45 44 -61 -1
+0 43 65 -84 -1
+0 35 52 -75 -1
+0 56 56 -70 -1
+1 -61 86 43 -1
+1 -67 93 15 -1
+1 -59 94 36 -1
+1 -50 92 62 -1
+1 -78 91 70 -1
+1 -35 87 47 -1
+1 -56 91 52 -1
+1 -61 81 46 -1
+1 -83 78 34 -1
+1 -50 87 45 -1
+1 -67 73 50 -1
+1 -50 97 45 -1
+1 -61 111 45 -1
+2 -109 23 -92 -1
+2 -94 20 -96 -1
+2 -85 26 -88 -1
+2 -90 33 -114 -1
+2 -63 9 -106 -1
+2 -79 9 -93 -1
+2 -99 26 -108 -1
+2 -81 19 -110 -1
+2 -108 21 -108 -1
+2 -92 27 -106 -1
+2 -88 2 -106 -1
+2 -88 15 -103 -1
+3 54 -74 4 -1
+3 42 -92 31 -1
+3 39 -99 -7 -1
+3 48 -115 -5 -1
+3 39 -96 2 -1
+3 31 -109 9 -1
+3 33 -96 -8 -1
+3 23 -102 4 -1
+3 38 -90 21 -1
+3 34 -107 1 -1
+3 35 -78 18 -1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result04.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result04.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 1
+0 51 48 -73 1
+0 58 65 -49 1
+0 43 61 -49 1
+0 45 43 -79 1
+0 42 60 -98 1
+0 50 55 -59 1
+0 53 53 -56 1
+0 45 44 -61 1
+0 43 65 -84 1
+0 35 52 -75 1
+0 56 56 -70 1
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 3
+2 -94 20 -96 3
+2 -85 26 -88 3
+2 -90 33 -114 3
+2 -63 9 -106 3
+2 -79 9 -93 3
+2 -99 26 -108 3
+2 -81 19 -110 3
+2 -108 21 -108 3
+2 -92 27 -106 3
+2 -88 2 -106 3
+2 -88 15 -103 3
+3 54 -74 4 0
+3 42 -92 31 0
+3 39 -99 -7 0
+3 48 -115 -5 0
+3 39 -96 2 0
+3 31 -109 9 0
+3 33 -96 -8 0
+3 23 -102 4 0
+3 38 -90 21 0
+3 34 -107 1 0
+3 35 -78 18 0
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result05.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result05.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 0
+2 -63 9 -106 0
+2 -79 9 -93 0
+2 -99 26 -108 0
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 0
+2 -88 2 -106 0
+2 -88 15 -103 0
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result06.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result06.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 1
+1 -67 93 15 1
+1 -59 94 36 1
+1 -50 92 62 1
+1 -78 91 70 1
+1 -35 87 47 1
+1 -56 91 52 1
+1 -61 81 46 1
+1 -83 78 34 1
+1 -50 87 45 1
+1 -67 73 50 1
+1 -50 97 45 1
+1 -61 111 45 1
+2 -109 23 -92 2
+2 -94 20 -96 2
+2 -85 26 -88 2
+2 -90 33 -114 2
+2 -63 9 -106 2
+2 -79 9 -93 2
+2 -99 26 -108 2
+2 -81 19 -110 2
+2 -108 21 -108 2
+2 -92 27 -106 2
+2 -88 2 -106 2
+2 -88 15 -103 2
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result07.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result07.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 1
+1 -67 93 15 1
+1 -59 94 36 1
+1 -50 92 62 1
+1 -78 91 70 1
+1 -35 87 47 1
+1 -56 91 52 1
+1 -61 81 46 1
+1 -83 78 34 1
+1 -50 87 45 1
+1 -67 73 50 1
+1 -50 97 45 1
+1 -61 111 45 1
+2 -109 23 -92 2
+2 -94 20 -96 2
+2 -85 26 -88 2
+2 -90 33 -114 2
+2 -63 9 -106 2
+2 -79 9 -93 2
+2 -99 26 -108 2
+2 -81 19 -110 2
+2 -108 21 -108 2
+2 -92 27 -106 2
+2 -88 2 -106 2
+2 -88 15 -103 2
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result08.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result08.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 0
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 0
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 0
+2 -63 9 -106 0
+2 -79 9 -93 0
+2 -99 26 -108 0
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 0
+2 -88 2 -106 0
+2 -88 15 -103 0
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result09.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result09.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 0
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 0
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 0
+2 -63 9 -106 0
+2 -79 9 -93 0
+2 -99 26 -108 0
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 0
+2 -88 2 -106 0
+2 -88 15 -103 0
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result10.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result10.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 3
+0 51 48 -73 3
+0 58 65 -49 3
+0 43 61 -49 3
+0 45 43 -79 3
+0 42 60 -98 3
+0 50 55 -59 3
+0 53 53 -56 3
+0 45 44 -61 3
+0 43 65 -84 3
+0 35 52 -75 3
+0 56 56 -70 3
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 0
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 0
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 2
+2 -94 20 -96 2
+2 -85 26 -88 2
+2 -90 33 -114 2
+2 -63 9 -106 2
+2 -79 9 -93 2
+2 -99 26 -108 2
+2 -81 19 -110 2
+2 -108 21 -108 2
+2 -92 27 -106 2
+2 -88 2 -106 2
+2 -88 15 -103 2
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result11.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result11.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 2
+0 51 48 -73 2
+0 58 65 -49 2
+0 43 61 -49 2
+0 45 43 -79 2
+0 42 60 -98 2
+0 50 55 -59 2
+0 53 53 -56 2
+0 45 44 -61 2
+0 43 65 -84 2
+0 35 52 -75 2
+0 56 56 -70 2
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 0
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 0
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result12.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result12.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 1
+0 51 48 -73 1
+0 58 65 -49 1
+0 43 61 -49 0
+0 45 43 -79 1
+0 42 60 -98 1
+0 50 55 -59 1
+0 53 53 -56 1
+0 45 44 -61 0
+0 43 65 -84 1
+0 35 52 -75 1
+0 56 56 -70 1
+1 -61 86 43 2
+1 -67 93 15 1
+1 -59 94 36 1
+1 -50 92 62 0
+1 -78 91 70 1
+1 -35 87 47 1
+1 -56 91 52 0
+1 -61 81 46 2
+1 -83 78 34 1
+1 -50 87 45 0
+1 -67 73 50 1
+1 -50 97 45 0
+1 -61 111 45 1
+2 -109 23 -92 0
+2 -94 20 -96 3
+2 -85 26 -88 3
+2 -90 33 -114 3
+2 -63 9 -106 0
+2 -79 9 -93 1
+2 -99 26 -108 3
+2 -81 19 -110 3
+2 -108 21 -108 3
+2 -92 27 -106 3
+2 -88 2 -106 0
+2 -88 15 -103 3
+3 54 -74 4 1
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 1
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result13.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result13.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 4
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 1
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 2
+0 53 53 -56 2
+0 45 44 -61 0
+0 43 65 -84 4
+0 35 52 -75 1
+0 56 56 -70 0
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 1
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 1
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 1
+2 -63 9 -106 0
+2 -79 9 -93 1
+2 -99 26 -108 3
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 3
+2 -88 2 -106 1
+2 -88 15 -103 0
+3 54 -74 4 0
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 0
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result14.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result14.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 2
+0 51 48 -73 2
+0 58 65 -49 5
+0 43 61 -49 5
+0 45 43 -79 2
+0 42 60 -98 2
+0 50 55 -59 5
+0 53 53 -56 5
+0 45 44 -61 2
+0 43 65 -84 2
+0 35 52 -75 2
+0 56 56 -70 2
+1 -61 86 43 1
+1 -67 93 15 1
+1 -59 94 36 1
+1 -50 92 62 1
+1 -78 91 70 7
+1 -35 87 47 1
+1 -56 91 52 1
+1 -61 81 46 7
+1 -83 78 34 7
+1 -50 87 45 1
+1 -67 73 50 7
+1 -50 97 45 1
+1 -61 111 45 1
+2 -109 23 -92 6
+2 -94 20 -96 6
+2 -85 26 -88 6
+2 -90 33 -114 6
+2 -63 9 -106 3
+2 -79 9 -93 3
+2 -99 26 -108 6
+2 -81 19 -110 6
+2 -108 21 -108 6
+2 -92 27 -106 6
+2 -88 2 -106 3
+2 -88 15 -103 6
+3 54 -74 4 4
+3 42 -92 31 4
+3 39 -99 -7 0
+3 48 -115 -5 0
+3 39 -96 2 0
+3 31 -109 9 0
+3 33 -96 -8 0
+3 23 -102 4 0
+3 38 -90 21 4
+3 34 -107 1 0
+3 35 -78 18 4
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result15.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result15.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 1
+0 51 48 -73 1
+0 58 65 -49 1
+0 43 61 -49 1
+0 45 43 -79 1
+0 42 60 -98 1
+0 50 55 -59 1
+0 53 53 -56 1
+0 45 44 -61 1
+0 43 65 -84 1
+0 35 52 -75 1
+0 56 56 -70 1
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 3
+2 -94 20 -96 3
+2 -85 26 -88 3
+2 -90 33 -114 3
+2 -63 9 -106 3
+2 -79 9 -93 3
+2 -99 26 -108 3
+2 -81 19 -110 3
+2 -108 21 -108 3
+2 -92 27 -106 3
+2 -88 2 -106 3
+2 -88 15 -103 3
+3 54 -74 4 0
+3 42 -92 31 0
+3 39 -99 -7 0
+3 48 -115 -5 0
+3 39 -96 2 0
+3 31 -109 9 0
+3 33 -96 -8 0
+3 23 -102 4 0
+3 38 -90 21 0
+3 34 -107 1 0
+3 35 -78 18 0
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result16.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result16.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 3
+2 -94 20 -96 3
+2 -85 26 -88 3
+2 -90 33 -114 3
+2 -63 9 -106 3
+2 -79 9 -93 3
+2 -99 26 -108 3
+2 -81 19 -110 3
+2 -108 21 -108 3
+2 -92 27 -106 3
+2 -88 2 -106 3
+2 -88 15 -103 3
+3 54 -74 4 1
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 1
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result17.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result17.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0
+1
+0
+0
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result18.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result18.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+-1
+-1
+-1
+-1
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result19.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result19.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0
+1
+0
+0
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result20.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result20.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0
+1
+0
+0
b
diff -r 000000000000 -r eaddff553324 test-data/cluster_result21.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cluster_result21.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0
+1
+0
+0
b
diff -r 000000000000 -r eaddff553324 test-data/confusion_matrix.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/confusion_matrix.txt Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,4 @@
+confusion_matrix : 
+[[14  0  0]
+ [ 0 10  6]
+ [ 0  0  9]]
b
diff -r 000000000000 -r eaddff553324 test-data/converter_result01.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/converter_result01.json Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,2 @@\n+{"directed": false, "graph": {"info": "RNAfold", "id": "CP000097.1/1411351-1411410", "structure": "....((((.((((((....)))))).)..)))...(((((((..(...)..)).))))).", "sequence": "CAACGUUCACCUCACAUUUGUGAGGCGCAGACAACCCAGGCCAAGGAACGGGGACCUGGA"}, "nodes": [{"position": 0, "id": 0, "label": "C"}, {"position": 1, "id": 1, "label": "A"}, {"position": 2, "id": 2, "label": "A"}, {"position": 3, "id": 3, "label": "C"}, {"position": 4, "id": 4, "label": "G"}, {"position": 5, "id": 5, "label": "U"}, {"position": 6, "id": 6, "label": "U"}, {"position": 7, "id": 7, "label": "C"}, {"position": 8, "id": 8, "label": "A"}, {"position": 9, "id": 9, "label": "C"}, {"position": 10, "id": 10, "label": "C"}, {"position": 11, "id": 11, "label": "U"}, {"position": 12, "id": 12, "label": "C"}, {"position": 13, "id": 13, "label": "A"}, {"position": 14, "id": 14, "label": "C"}, {"position": 15, "id": 15, "label": "A"}, {"position": 16, "id": 16, "label": "U"}, {"position": 17, "id": 17, "label": "U"}, {"position": 18, "id": 18, "label": "U"}, {"position": 19, "id": 19, "label": "G"}, {"position": 20, "id": 20, "label": "U"}, {"position": 21, "id": 21, "label": "G"}, {"position": 22, "id": 22, "label": "A"}, {"position": 23, "id": 23, "label": "G"}, {"position": 24, "id": 24, "label": "G"}, {"position": 25, "id": 25, "label": "C"}, {"position": 26, "id": 26, "label": "G"}, {"position": 27, "id": 27, "label": "C"}, {"position": 28, "id": 28, "label": "A"}, {"position": 29, "id": 29, "label": "G"}, {"position": 30, "id": 30, "label": "A"}, {"position": 31, "id": 31, "label": "C"}, {"position": 32, "id": 32, "label": "A"}, {"position": 33, "id": 33, "label": "A"}, {"position": 34, "id": 34, "label": "C"}, {"position": 35, "id": 35, "label": "C"}, {"position": 36, "id": 36, "label": "C"}, {"position": 37, "id": 37, "label": "A"}, {"position": 38, "id": 38, "label": "G"}, {"position": 39, "id": 39, "label": "G"}, {"position": 40, "id": 40, "label": "C"}, {"position": 41, "id": 41, "label": "C"}, {"position": 42, "id": 42, "label": "A"}, {"position": 43, "id": 43, "label": "A"}, {"position": 44, "id": 44, "label": "G"}, {"position": 45, "id": 45, "label": "G"}, {"position": 46, "id": 46, "label": "A"}, {"position": 47, "id": 47, "label": "A"}, {"position": 48, "id": 48, "label": "C"}, {"position": 49, "id": 49, "label": "G"}, {"position": 50, "id": 50, "label": "G"}, {"position": 51, "id": 51, "label": "G"}, {"position": 52, "id": 52, "label": "G"}, {"position": 53, "id": 53, "label": "A"}, {"position": 54, "id": 54, "label": "C"}, {"position": 55, "id": 55, "label": "C"}, {"position": 56, "id": 56, "label": "U"}, {"position": 57, "id": 57, "label": "G"}, {"position": 58, "id": 58, "label": "G"}, {"position": 59, "id": 59, "label": "A"}], "links": [{"source": 0, "type": "backbone", "target": 1, "len": 1, "label": "-"}, {"source": 1, "type": "backbone", "target": 2, "len": 1, "label": "-"}, {"source": 2, "type": "backbone", "target": 3, "len": 1, "label": "-"}, {"source": 3, "type": "backbone", "target": 4, "len": 1, "label": "-"}, {"source": 4, "type": "backbone", "target": 5, "len": 1, "label": "-"}, {"source": 4, "type": "basepair", "target": 31, "len": 1, "label": "="}, {"source": 5, "type": "basepair", "target": 30, "len": 1, "label": "="}, {"source": 5, "type": "backbone", "target": 6, "len": 1, "label": "-"}, {"source": 6, "type": "basepair", "target": 29, "len": 1, "label": "="}, {"source": 6, "type": "backbone", "target": 7, "len": 1, "label": "-"}, {"source": 7, "type": "backbone", "target": 8, "len": 1, "label": "-"}, {"source": 7, "type": "basepair", "target": 26, "len": 1, "label": "="}, {"source": 8, "type": "backbone", "target": 9, "len": 1, "label": "-"}, {"source": 9, "type": "basepair", "target": 24, "len": 1, "label": "="}, {"source": 9, "type": "backbone", "target": 10, "len": 1, "label": "-"}, {"source": 10, "type": "backbone", "target": 11, "len": 1, "label": "-"}, {"source": 10, "type": "basepair", "target": 23, "len": 1, "la'..b'e": "backbone", "target": 16, "len": 1, "label": "-"}, {"source": 16, "type": "backbone", "target": 17, "len": 1, "label": "-"}, {"source": 17, "type": "backbone", "target": 18, "len": 1, "label": "-"}, {"source": 18, "type": "backbone", "target": 19, "len": 1, "label": "-"}, {"source": 19, "type": "backbone", "target": 20, "len": 1, "label": "-"}, {"source": 20, "type": "backbone", "target": 21, "len": 1, "label": "-"}, {"source": 21, "type": "backbone", "target": 22, "len": 1, "label": "-"}, {"source": 22, "type": "backbone", "target": 23, "len": 1, "label": "-"}, {"source": 23, "type": "backbone", "target": 24, "len": 1, "label": "-"}, {"source": 24, "type": "backbone", "target": 25, "len": 1, "label": "-"}, {"source": 25, "type": "backbone", "target": 26, "len": 1, "label": "-"}, {"source": 26, "type": "backbone", "target": 27, "len": 1, "label": "-"}, {"source": 27, "type": "backbone", "target": 28, "len": 1, "label": "-"}, {"source": 28, "type": "backbone", "target": 29, "len": 1, "label": "-"}, {"source": 29, "type": "backbone", "target": 30, "len": 1, "label": "-"}, {"source": 30, "type": "backbone", "target": 31, "len": 1, "label": "-"}, {"source": 31, "type": "backbone", "target": 32, "len": 1, "label": "-"}, {"source": 32, "type": "backbone", "target": 33, "len": 1, "label": "-"}, {"source": 33, "type": "backbone", "target": 34, "len": 1, "label": "-"}, {"source": 34, "type": "backbone", "target": 35, "len": 1, "label": "-"}, {"source": 35, "type": "backbone", "target": 36, "len": 1, "label": "-"}, {"source": 36, "type": "backbone", "target": 37, "len": 1, "label": "-"}, {"source": 36, "type": "basepair", "target": 61, "len": 1, "label": "="}, {"source": 37, "type": "basepair", "target": 60, "len": 1, "label": "="}, {"source": 37, "type": "backbone", "target": 38, "len": 1, "label": "-"}, {"source": 38, "type": "basepair", "target": 59, "len": 1, "label": "="}, {"source": 38, "type": "backbone", "target": 39, "len": 1, "label": "-"}, {"source": 39, "type": "backbone", "target": 40, "len": 1, "label": "-"}, {"source": 39, "type": "basepair", "target": 58, "len": 1, "label": "="}, {"source": 40, "type": "backbone", "target": 41, "len": 1, "label": "-"}, {"source": 40, "type": "basepair", "target": 57, "len": 1, "label": "="}, {"source": 41, "type": "basepair", "target": 56, "len": 1, "label": "="}, {"source": 41, "type": "backbone", "target": 42, "len": 1, "label": "-"}, {"source": 42, "type": "backbone", "target": 43, "len": 1, "label": "-"}, {"source": 42, "type": "basepair", "target": 54, "len": 1, "label": "="}, {"source": 43, "type": "backbone", "target": 44, "len": 1, "label": "-"}, {"source": 43, "type": "basepair", "target": 53, "len": 1, "label": "="}, {"source": 44, "type": "backbone", "target": 45, "len": 1, "label": "-"}, {"source": 45, "type": "backbone", "target": 46, "len": 1, "label": "-"}, {"source": 46, "type": "backbone", "target": 47, "len": 1, "label": "-"}, {"source": 47, "type": "backbone", "target": 48, "len": 1, "label": "-"}, {"source": 48, "type": "backbone", "target": 49, "len": 1, "label": "-"}, {"source": 49, "type": "backbone", "target": 50, "len": 1, "label": "-"}, {"source": 50, "type": "backbone", "target": 51, "len": 1, "label": "-"}, {"source": 51, "type": "backbone", "target": 52, "len": 1, "label": "-"}, {"source": 52, "type": "backbone", "target": 53, "len": 1, "label": "-"}, {"source": 53, "type": "backbone", "target": 54, "len": 1, "label": "-"}, {"source": 54, "type": "backbone", "target": 55, "len": 1, "label": "-"}, {"source": 55, "type": "backbone", "target": 56, "len": 1, "label": "-"}, {"source": 56, "type": "backbone", "target": 57, "len": 1, "label": "-"}, {"source": 57, "type": "backbone", "target": 58, "len": 1, "label": "-"}, {"source": 58, "type": "backbone", "target": 59, "len": 1, "label": "-"}, {"source": 59, "type": "backbone", "target": 60, "len": 1, "label": "-"}, {"source": 60, "type": "backbone", "target": 61, "len": 1, "label": "-"}], "multigraph": false}\n'
b
diff -r 000000000000 -r eaddff553324 test-data/converter_result02.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/converter_result02.json Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,4 @@\n+{"directed": false, "graph": {"info": "RNAshapes shape_type=2 energy_range=4 max_num=3", "id": "CP000097.1/1411351-1411410_[_[]_][[]_]", "structure": "....(((..((((((....))))))....)))...(((((((.........)).))))).", "sequence": "CAACGUUCACCUCACAUUUGUGAGGCGCAGACAACCCAGGCCAAGGAACGGGGACCUGGA"}, "nodes": [{"position": 0, "id": 0, "label": "C"}, {"position": 1, "id": 1, "label": "A"}, {"position": 2, "id": 2, "label": "A"}, {"position": 3, "id": 3, "label": "C"}, {"position": 4, "id": 4, "label": "G"}, {"position": 5, "id": 5, "label": "U"}, {"position": 6, "id": 6, "label": "U"}, {"position": 7, "id": 7, "label": "C"}, {"position": 8, "id": 8, "label": "A"}, {"position": 9, "id": 9, "label": "C"}, {"position": 10, "id": 10, "label": "C"}, {"position": 11, "id": 11, "label": "U"}, {"position": 12, "id": 12, "label": "C"}, {"position": 13, "id": 13, "label": "A"}, {"position": 14, "id": 14, "label": "C"}, {"position": 15, "id": 15, "label": "A"}, {"position": 16, "id": 16, "label": "U"}, {"position": 17, "id": 17, "label": "U"}, {"position": 18, "id": 18, "label": "U"}, {"position": 19, "id": 19, "label": "G"}, {"position": 20, "id": 20, "label": "U"}, {"position": 21, "id": 21, "label": "G"}, {"position": 22, "id": 22, "label": "A"}, {"position": 23, "id": 23, "label": "G"}, {"position": 24, "id": 24, "label": "G"}, {"position": 25, "id": 25, "label": "C"}, {"position": 26, "id": 26, "label": "G"}, {"position": 27, "id": 27, "label": "C"}, {"position": 28, "id": 28, "label": "A"}, {"position": 29, "id": 29, "label": "G"}, {"position": 30, "id": 30, "label": "A"}, {"position": 31, "id": 31, "label": "C"}, {"position": 32, "id": 32, "label": "A"}, {"position": 33, "id": 33, "label": "A"}, {"position": 34, "id": 34, "label": "C"}, {"position": 35, "id": 35, "label": "C"}, {"position": 36, "id": 36, "label": "C"}, {"position": 37, "id": 37, "label": "A"}, {"position": 38, "id": 38, "label": "G"}, {"position": 39, "id": 39, "label": "G"}, {"position": 40, "id": 40, "label": "C"}, {"position": 41, "id": 41, "label": "C"}, {"position": 42, "id": 42, "label": "A"}, {"position": 43, "id": 43, "label": "A"}, {"position": 44, "id": 44, "label": "G"}, {"position": 45, "id": 45, "label": "G"}, {"position": 46, "id": 46, "label": "A"}, {"position": 47, "id": 47, "label": "A"}, {"position": 48, "id": 48, "label": "C"}, {"position": 49, "id": 49, "label": "G"}, {"position": 50, "id": 50, "label": "G"}, {"position": 51, "id": 51, "label": "G"}, {"position": 52, "id": 52, "label": "G"}, {"position": 53, "id": 53, "label": "A"}, {"position": 54, "id": 54, "label": "C"}, {"position": 55, "id": 55, "label": "C"}, {"position": 56, "id": 56, "label": "U"}, {"position": 57, "id": 57, "label": "G"}, {"position": 58, "id": 58, "label": "G"}, {"position": 59, "id": 59, "label": "A"}], "links": [{"source": 0, "type": "backbone", "target": 1, "len": 1, "label": "-"}, {"source": 1, "type": "backbone", "target": 2, "len": 1, "label": "-"}, {"source": 2, "type": "backbone", "target": 3, "len": 1, "label": "-"}, {"source": 3, "type": "backbone", "target": 4, "len": 1, "label": "-"}, {"source": 4, "type": "backbone", "target": 5, "len": 1, "label": "-"}, {"source": 4, "type": "basepair", "target": 31, "len": 1, "label": "="}, {"source": 5, "type": "basepair", "target": 30, "len": 1, "label": "="}, {"source": 5, "type": "backbone", "target": 6, "len": 1, "label": "-"}, {"source": 6, "type": "basepair", "target": 29, "len": 1, "label": "="}, {"source": 6, "type": "backbone", "target": 7, "len": 1, "label": "-"}, {"source": 7, "type": "backbone", "target": 8, "len": 1, "label": "-"}, {"source": 8, "type": "backbone", "target": 9, "len": 1, "label": "-"}, {"source": 9, "type": "basepair", "target": 24, "len": 1, "label": "="}, {"source": 9, "type": "backbone", "target": 10, "len": 1, "label": "-"}, {"source": 10, "type": "backbone", "target": 11, "len": 1, "label": "-"}, {"source": 10, "type": "basepair", "target": 23, "len": 1, "label": "="}, {"source"'..b'e": "backbone", "target": 16, "len": 1, "label": "-"}, {"source": 16, "type": "backbone", "target": 17, "len": 1, "label": "-"}, {"source": 17, "type": "backbone", "target": 18, "len": 1, "label": "-"}, {"source": 18, "type": "backbone", "target": 19, "len": 1, "label": "-"}, {"source": 19, "type": "backbone", "target": 20, "len": 1, "label": "-"}, {"source": 20, "type": "backbone", "target": 21, "len": 1, "label": "-"}, {"source": 21, "type": "backbone", "target": 22, "len": 1, "label": "-"}, {"source": 22, "type": "backbone", "target": 23, "len": 1, "label": "-"}, {"source": 23, "type": "backbone", "target": 24, "len": 1, "label": "-"}, {"source": 24, "type": "backbone", "target": 25, "len": 1, "label": "-"}, {"source": 25, "type": "backbone", "target": 26, "len": 1, "label": "-"}, {"source": 26, "type": "backbone", "target": 27, "len": 1, "label": "-"}, {"source": 27, "type": "backbone", "target": 28, "len": 1, "label": "-"}, {"source": 28, "type": "backbone", "target": 29, "len": 1, "label": "-"}, {"source": 29, "type": "backbone", "target": 30, "len": 1, "label": "-"}, {"source": 30, "type": "backbone", "target": 31, "len": 1, "label": "-"}, {"source": 31, "type": "backbone", "target": 32, "len": 1, "label": "-"}, {"source": 32, "type": "backbone", "target": 33, "len": 1, "label": "-"}, {"source": 33, "type": "backbone", "target": 34, "len": 1, "label": "-"}, {"source": 34, "type": "backbone", "target": 35, "len": 1, "label": "-"}, {"source": 35, "type": "backbone", "target": 36, "len": 1, "label": "-"}, {"source": 36, "type": "backbone", "target": 37, "len": 1, "label": "-"}, {"source": 36, "type": "basepair", "target": 61, "len": 1, "label": "="}, {"source": 37, "type": "basepair", "target": 60, "len": 1, "label": "="}, {"source": 37, "type": "backbone", "target": 38, "len": 1, "label": "-"}, {"source": 38, "type": "basepair", "target": 59, "len": 1, "label": "="}, {"source": 38, "type": "backbone", "target": 39, "len": 1, "label": "-"}, {"source": 39, "type": "backbone", "target": 40, "len": 1, "label": "-"}, {"source": 39, "type": "basepair", "target": 58, "len": 1, "label": "="}, {"source": 40, "type": "backbone", "target": 41, "len": 1, "label": "-"}, {"source": 40, "type": "basepair", "target": 57, "len": 1, "label": "="}, {"source": 41, "type": "basepair", "target": 56, "len": 1, "label": "="}, {"source": 41, "type": "backbone", "target": 42, "len": 1, "label": "-"}, {"source": 42, "type": "backbone", "target": 43, "len": 1, "label": "-"}, {"source": 42, "type": "basepair", "target": 54, "len": 1, "label": "="}, {"source": 43, "type": "backbone", "target": 44, "len": 1, "label": "-"}, {"source": 43, "type": "basepair", "target": 53, "len": 1, "label": "="}, {"source": 44, "type": "backbone", "target": 45, "len": 1, "label": "-"}, {"source": 45, "type": "backbone", "target": 46, "len": 1, "label": "-"}, {"source": 46, "type": "backbone", "target": 47, "len": 1, "label": "-"}, {"source": 47, "type": "backbone", "target": 48, "len": 1, "label": "-"}, {"source": 48, "type": "backbone", "target": 49, "len": 1, "label": "-"}, {"source": 49, "type": "backbone", "target": 50, "len": 1, "label": "-"}, {"source": 50, "type": "backbone", "target": 51, "len": 1, "label": "-"}, {"source": 51, "type": "backbone", "target": 52, "len": 1, "label": "-"}, {"source": 52, "type": "backbone", "target": 53, "len": 1, "label": "-"}, {"source": 53, "type": "backbone", "target": 54, "len": 1, "label": "-"}, {"source": 54, "type": "backbone", "target": 55, "len": 1, "label": "-"}, {"source": 55, "type": "backbone", "target": 56, "len": 1, "label": "-"}, {"source": 56, "type": "backbone", "target": 57, "len": 1, "label": "-"}, {"source": 57, "type": "backbone", "target": 58, "len": 1, "label": "-"}, {"source": 58, "type": "backbone", "target": 59, "len": 1, "label": "-"}, {"source": 59, "type": "backbone", "target": 60, "len": 1, "label": "-"}, {"source": 60, "type": "backbone", "target": 61, "len": 1, "label": "-"}], "multigraph": false}\n'
b
diff -r 000000000000 -r eaddff553324 test-data/csc_sparse1.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csc_sparse1.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate integer general
+%
+3 3 6
+1 1 1
+3 1 2
+3 2 3
+1 3 4
+2 3 5
+3 3 6
b
diff -r 000000000000 -r eaddff553324 test-data/csc_sparse2.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csc_sparse2.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 6
+1 1 1.5
+3 1 -2
+3 2 0.3
+1 3 41
+2 3 0.1235
+3 3 6
b
diff -r 000000000000 -r eaddff553324 test-data/csc_stack_result01.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csc_stack_result01.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 6 12
+1 1 1.000000000000000e+00
+3 1 2.000000000000000e+00
+3 2 3.000000000000000e+00
+1 3 4.000000000000000e+00
+2 3 5.000000000000000e+00
+3 3 6.000000000000000e+00
+1 4 1.500000000000000e+00
+3 4 -2.000000000000000e+00
+3 5 3.000000000000000e-01
+1 6 4.100000000000000e+01
+2 6 1.235000000000000e-01
+3 6 6.000000000000000e+00
b
diff -r 000000000000 -r eaddff553324 test-data/csr_sparse1.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csr_sparse1.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate integer general
+%
+3 3 6
+1 1 1
+1 3 2
+2 3 3
+3 1 4
+3 2 5
+3 3 6
b
diff -r 000000000000 -r eaddff553324 test-data/csr_sparse2.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csr_sparse2.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 6
+1 1 1
+1 3 -0.2
+2 3 11
+3 1 0.04
+3 2 -5
+3 3 2.6
b
diff -r 000000000000 -r eaddff553324 test-data/csr_stack_result01.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/csr_stack_result01.mtx Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+%%MatrixMarket matrix coordinate real general
+%
+6 3 12
+1 1 1.000000000000000e+00
+1 3 2.000000000000000e+00
+2 3 3.000000000000000e+00
+3 1 4.000000000000000e+00
+3 2 5.000000000000000e+00
+3 3 6.000000000000000e+00
+4 1 1.000000000000000e+00
+4 3 -2.000000000000000e-01
+5 3 1.100000000000000e+01
+6 1 4.000000000000000e-02
+6 2 -5.000000000000000e+00
+6 3 2.600000000000000e+00
b
diff -r 000000000000 -r eaddff553324 test-data/deepsear_1feature.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/deepsear_1feature.json Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,1 @@
+{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Conv1D", "config": {"name": "conv1d_1", "trainable": true, "batch_input_shape": [null, 1000, 4], "dtype": "float32", "filters": 320, "kernel_size": [8], "strides": [1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1], "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling1D", "config": {"name": "max_pooling1d_1", "trainable": true, "strides": [4], "pool_size": [4], "padding": "valid", "data_format": "channels_last"}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "rate": 0.2, "noise_shape": null, "seed": 999}}, {"class_name": "Conv1D", "config": {"name": "conv1d_2", "trainable": true, "filters": 480, "kernel_size": [8], "strides": [1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1], "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling1D", "config": {"name": "max_pooling1d_2", "trainable": true, "strides": [4], "pool_size": [4], "padding": "valid", "data_format": "channels_last"}}, {"class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "rate": 0.2, "noise_shape": null, "seed": 999}}, {"class_name": "Conv1D", "config": {"name": "conv1d_3", "trainable": true, "filters": 960, "kernel_size": [8], "strides": [1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1], "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "rate": 0.5, "noise_shape": null, "seed": 999}}, {"class_name": "Reshape", "config": {"name": "reshape_1", "trainable": true, "target_shape": [50880]}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "units": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.4", "backend": "tensorflow"}
b
diff -r 000000000000 -r eaddff553324 test-data/empty_file.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/empty_file.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,48 @@
+0 44 64 -76 4
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 1
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 2
+0 53 53 -56 2
+0 45 44 -61 0
+0 43 65 -84 4
+0 35 52 -75 1
+0 56 56 -70 0
+1 -61 86 43 0
+1 -67 93 15 0
+1 -59 94 36 0
+1 -50 92 62 0
+1 -78 91 70 1
+1 -35 87 47 0
+1 -56 91 52 0
+1 -61 81 46 0
+1 -83 78 34 0
+1 -50 87 45 0
+1 -67 73 50 1
+1 -50 97 45 0
+1 -61 111 45 0
+2 -109 23 -92 0
+2 -94 20 -96 0
+2 -85 26 -88 0
+2 -90 33 -114 1
+2 -63 9 -106 0
+2 -79 9 -93 1
+2 -99 26 -108 3
+2 -81 19 -110 0
+2 -108 21 -108 0
+2 -92 27 -106 3
+2 -88 2 -106 1
+2 -88 15 -103 0
+3 54 -74 4 0
+3 42 -92 31 1
+3 39 -99 -7 1
+3 48 -115 -5 1
+3 39 -96 2 1
+3 31 -109 9 1
+3 33 -96 -8 1
+3 23 -102 4 0
+3 38 -90 21 1
+3 34 -107 1 1
+3 35 -78 18 1
b
diff -r 000000000000 -r eaddff553324 test-data/f1_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/f1_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+f1_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/fbeta_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/fbeta_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+fbeta_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/feature_importances_.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_importances_.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+feature_importances_
+0.15959252
+0.20373514
+0.22071308
+0.06281833
+0.098471984
+0.06960951
+0.13073005
+0.027164686
+0.022071308
+0.0050933785
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+0 1
+143.762620712 -1.1796457192799998
+-88.5787166225 -2.5710918402200003
+-82.8452345578 -0.168636324107
+72.4951388149 0.991068834926
+11.805182128 -0.7096855607860001
+-63.9354970901 0.9841122108220001
+126.32584079600001 0.35353444883900004
+23.0341392692 1.03188231893
+67.6714937696 -0.8214378651719999
+47.39275848810001 -0.0942409319417
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result02
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result02 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+temp_2 temp_1 forecast_noaa friend
+68.0 69.0 65.0 88.0
+60.0 59.0 57.0 66.0
+85.0 88.0 75.0 70.0
+82.0 65.0 63.0 58.0
+54.0 50.0 44.0 58.0
+48.0 51.0 45.0 63.0
+49.0 52.0 45.0 41.0
+73.0 78.0 75.0 66.0
+39.0 35.0 43.0 38.0
+42.0 40.0 45.0 36.0
+42.0 47.0 41.0 58.0
+76.0 72.0 76.0 88.0
+69.0 76.0 73.0 72.0
+40.0 39.0 45.0 46.0
+71.0 78.0 70.0 84.0
+64.0 71.0 63.0 85.0
+54.0 48.0 44.0 61.0
+73.0 72.0 77.0 68.0
+56.0 57.0 50.0 70.0
+45.0 40.0 44.0 39.0
+50.0 54.0 47.0 53.0
+65.0 58.0 52.0 71.0
+60.0 68.0 58.0 54.0
+60.0 65.0 55.0 65.0
+48.0 47.0 46.0 51.0
+44.0 44.0 43.0 42.0
+64.0 64.0 64.0 69.0
+59.0 62.0 57.0 67.0
+68.0 66.0 64.0 74.0
+77.0 70.0 67.0 90.0
+59.0 57.0 54.0 70.0
+55.0 50.0 46.0 57.0
+58.0 55.0 49.0 71.0
+57.0 55.0 46.0 67.0
+42.0 42.0 41.0 47.0
+64.0 65.0 57.0 41.0
+64.0 63.0 63.0 73.0
+49.0 48.0 45.0 28.0
+40.0 42.0 44.0 62.0
+44.0 51.0 45.0 38.0
+67.0 64.0 65.0 64.0
+79.0 75.0 74.0 63.0
+50.0 52.0 42.0 39.0
+85.0 67.0 66.0 80.0
+67.0 68.0 65.0 56.0
+53.0 54.0 53.0 42.0
+62.0 62.0 52.0 70.0
+77.0 76.0 76.0 61.0
+74.0 73.0 71.0 93.0
+50.0 52.0 50.0 35.0
+75.0 70.0 71.0 68.0
+73.0 77.0 75.0 62.0
+69.0 60.0 52.0 72.0
+55.0 52.0 50.0 54.0
+81.0 79.0 71.0 85.0
+77.0 76.0 53.0 74.0
+66.0 66.0 64.0 85.0
+68.0 57.0 58.0 62.0
+76.0 66.0 57.0 60.0
+60.0 61.0 58.0 41.0
+56.0 55.0 52.0 65.0
+57.0 48.0 46.0 54.0
+53.0 49.0 46.0 63.0
+66.0 65.0 64.0 73.0
+74.0 60.0 58.0 56.0
+55.0 56.0 53.0 36.0
+62.0 59.0 56.0 44.0
+36.0 44.0 41.0 35.0
+77.0 82.0 62.0 83.0
+64.0 64.0 65.0 76.0
+44.0 43.0 41.0 46.0
+56.0 64.0 51.0 57.0
+61.0 63.0 49.0 49.0
+65.0 70.0 67.0 79.0
+63.0 71.0 48.0 42.0
+76.0 76.0 69.0 85.0
+64.0 68.0 58.0 55.0
+39.0 39.0 44.0 39.0
+79.0 71.0 70.0 52.0
+68.0 69.0 68.0 89.0
+70.0 74.0 71.0 82.0
+75.0 81.0 62.0 81.0
+49.0 51.0 49.0 34.0
+52.0 45.0 44.0 61.0
+80.0 87.0 73.0 73.0
+76.0 71.0 71.0 86.0
+65.0 55.0 56.0 77.0
+76.0 80.0 72.0 81.0
+71.0 67.0 65.0 76.0
+64.0 61.0 60.0 78.0
+49.0 46.0 43.0 65.0
+35.0 39.0 42.0 51.0
+68.0 67.0 67.0 61.0
+48.0 52.0 43.0 50.0
+60.0 67.0 68.0 87.0
+74.0 75.0 67.0 77.0
+68.0 68.0 73.0 79.0
+81.0 92.0 65.0 71.0
+68.0 67.0 69.0 56.0
+45.0 44.0 43.0 56.0
+60.0 61.0 56.0 73.0
+65.0 65.0 49.0 41.0
+68.0 68.0 72.0 70.0
+77.0 87.0 62.0 69.0
+65.0 117.0 51.0 62.0
+72.0 80.0 75.0 66.0
+55.0 57.0 47.0 46.0
+63.0 67.0 61.0 68.0
+53.0 58.0 51.0 56.0
+61.0 65.0 53.0 41.0
+56.0 52.0 45.0 47.0
+57.0 59.0 52.0 39.0
+57.0 57.0 53.0 35.0
+89.0 81.0 56.0 66.0
+71.0 75.0 76.0 75.0
+88.0 76.0 76.0 95.0
+65.0 57.0 61.0 53.0
+68.0 69.0 72.0 86.0
+76.0 77.0 66.0 64.0
+58.0 55.0 47.0 55.0
+50.0 49.0 45.0 53.0
+53.0 54.0 48.0 57.0
+59.0 55.0 49.0 42.0
+51.0 56.0 53.0 45.0
+76.0 68.0 72.0 77.0
+52.0 54.0 49.0 44.0
+65.0 67.0 69.0 87.0
+45.0 49.0 45.0 33.0
+49.0 49.0 47.0 45.0
+57.0 56.0 48.0 49.0
+76.0 73.0 66.0 78.0
+65.0 66.0 65.0 60.0
+77.0 69.0 66.0 62.0
+77.0 82.0 64.0 65.0
+87.0 90.0 75.0 65.0
+51.0 51.0 49.0 43.0
+68.0 77.0 57.0 41.0
+57.0 60.0 58.0 58.0
+79.0 74.0 71.0 87.0
+80.0 85.0 73.0 74.0
+60.0 68.0 61.0 64.0
+62.0 56.0 46.0 37.0
+73.0 71.0 55.0 45.0
+60.0 62.0 57.0 40.0
+79.0 83.0 76.0 76.0
+71.0 64.0 62.0 56.0
+54.0 56.0 45.0 54.0
+40.0 41.0 42.0 31.0
+66.0 65.0 66.0 67.0
+57.0 65.0 49.0 38.0
+41.0 40.0 46.0 41.0
+45.0 45.0 43.0 29.0
+52.0 52.0 48.0 58.0
+64.0 63.0 50.0 63.0
+52.0 52.0 47.0 44.0
+58.0 60.0 55.0 77.0
+84.0 81.0 73.0 89.0
+77.0 75.0 74.0 77.0
+63.0 59.0 48.0 64.0
+72.0 73.0 77.0 94.0
+73.0 75.0 73.0 66.0
+59.0 60.0 56.0 59.0
+73.0 75.0 68.0 56.0
+66.0 59.0 56.0 40.0
+49.0 53.0 47.0 56.0
+80.0 79.0 76.0 60.0
+59.0 57.0 49.0 46.0
+79.0 75.0 64.0 77.0
+69.0 71.0 67.0 81.0
+57.0 53.0 50.0 42.0
+47.0 46.0 48.0 56.0
+82.0 81.0 72.0 70.0
+54.0 49.0 47.0 29.0
+56.0 57.0 44.0 34.0
+60.0 60.0 54.0 53.0
+70.0 67.0 72.0 64.0
+65.0 61.0 62.0 60.0
+70.0 66.0 66.0 85.0
+65.0 64.0 50.0 55.0
+63.0 66.0 62.0 49.0
+57.0 64.0 52.0 49.0
+60.0 71.0 61.0 56.0
+67.0 75.0 62.0 60.0
+45.0 48.0 46.0 47.0
+60.0 53.0 48.0 70.0
+55.0 49.0 46.0 65.0
+86.0 85.0 67.0 81.0
+57.0 62.0 48.0 30.0
+46.0 50.0 42.0 58.0
+65.0 58.0 51.0 39.0
+79.0 72.0 74.0 95.0
+57.0 55.0 50.0 34.0
+72.0 74.0 70.0 91.0
+83.0 85.0 77.0 77.0
+77.0 73.0 77.0 93.0
+52.0 52.0 44.0 39.0
+64.0 67.0 64.0 62.0
+49.0 45.0 45.0 35.0
+52.0 46.0 46.0 41.0
+62.0 66.0 60.0 57.0
+81.0 71.0 75.0 86.0
+65.0 70.0 66.0 79.0
+55.0 58.0 46.0 53.0
+72.0 72.0 76.0 65.0
+74.0 74.0 74.0 71.0
+63.0 65.0 63.0 49.0
+68.0 77.0 55.0 39.0
+60.0 59.0 49.0 35.0
+44.0 45.0 41.0 61.0
+51.0 53.0 49.0 46.0
+57.0 53.0 54.0 72.0
+85.0 79.0 73.0 79.0
+51.0 49.0 44.0 44.0
+66.0 63.0 62.0 78.0
+63.0 69.0 54.0 45.0
+51.0 60.0 47.0 46.0
+63.0 64.0 60.0 73.0
+75.0 79.0 66.0 64.0
+49.0 55.0 43.0 58.0
+68.0 73.0 54.0 41.0
+62.0 60.0 57.0 62.0
+71.0 67.0 67.0 77.0
+41.0 42.0 45.0 58.0
+57.0 60.0 62.0 55.0
+55.0 57.0 47.0 30.0
+35.0 35.0 44.0 36.0
+71.0 75.0 66.0 84.0
+59.0 61.0 48.0 65.0
+53.0 51.0 46.0 59.0
+69.0 71.0 67.0 70.0
+71.0 74.0 74.0 71.0
+48.0 48.0 44.0 42.0
+68.0 74.0 70.0 60.0
+70.0 76.0 68.0 57.0
+54.0 58.0 47.0 37.0
+53.0 51.0 48.0 43.0
+67.0 72.0 68.0 78.0
+67.0 76.0 64.0 74.0
+52.0 52.0 47.0 60.0
+52.0 53.0 48.0 53.0
+67.0 65.0 65.0 83.0
+61.0 58.0 58.0 43.0
+74.0 77.0 74.0 56.0
+58.0 61.0 51.0 35.0
+66.0 67.0 64.0 54.0
+55.0 54.0 46.0 58.0
+71.0 79.0 65.0 58.0
+81.0 77.0 63.0 67.0
+75.0 71.0 64.0 55.0
+59.0 58.0 54.0 61.0
+64.0 68.0 55.0 56.0
+43.0 40.0 45.0 49.0
+75.0 80.0 75.0 71.0
+87.0 74.0 59.0 61.0
+48.0 57.0 42.0 57.0
+48.0 52.0 43.0 57.0
+74.0 71.0 71.0 95.0
+54.0 49.0 49.0 70.0
+77.0 89.0 59.0 61.0
+66.0 60.0 56.0 78.0
+59.0 59.0 58.0 40.0
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result03
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result03 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+temp_1 friend
+69.0 88.0
+59.0 66.0
+88.0 70.0
+65.0 58.0
+50.0 58.0
+51.0 63.0
+52.0 41.0
+78.0 66.0
+35.0 38.0
+40.0 36.0
+47.0 58.0
+72.0 88.0
+76.0 72.0
+39.0 46.0
+78.0 84.0
+71.0 85.0
+48.0 61.0
+72.0 68.0
+57.0 70.0
+40.0 39.0
+54.0 53.0
+58.0 71.0
+68.0 54.0
+65.0 65.0
+47.0 51.0
+44.0 42.0
+64.0 69.0
+62.0 67.0
+66.0 74.0
+70.0 90.0
+57.0 70.0
+50.0 57.0
+55.0 71.0
+55.0 67.0
+42.0 47.0
+65.0 41.0
+63.0 73.0
+48.0 28.0
+42.0 62.0
+51.0 38.0
+64.0 64.0
+75.0 63.0
+52.0 39.0
+67.0 80.0
+68.0 56.0
+54.0 42.0
+62.0 70.0
+76.0 61.0
+73.0 93.0
+52.0 35.0
+70.0 68.0
+77.0 62.0
+60.0 72.0
+52.0 54.0
+79.0 85.0
+76.0 74.0
+66.0 85.0
+57.0 62.0
+66.0 60.0
+61.0 41.0
+55.0 65.0
+48.0 54.0
+49.0 63.0
+65.0 73.0
+60.0 56.0
+56.0 36.0
+59.0 44.0
+44.0 35.0
+82.0 83.0
+64.0 76.0
+43.0 46.0
+64.0 57.0
+63.0 49.0
+70.0 79.0
+71.0 42.0
+76.0 85.0
+68.0 55.0
+39.0 39.0
+71.0 52.0
+69.0 89.0
+74.0 82.0
+81.0 81.0
+51.0 34.0
+45.0 61.0
+87.0 73.0
+71.0 86.0
+55.0 77.0
+80.0 81.0
+67.0 76.0
+61.0 78.0
+46.0 65.0
+39.0 51.0
+67.0 61.0
+52.0 50.0
+67.0 87.0
+75.0 77.0
+68.0 79.0
+92.0 71.0
+67.0 56.0
+44.0 56.0
+61.0 73.0
+65.0 41.0
+68.0 70.0
+87.0 69.0
+117.0 62.0
+80.0 66.0
+57.0 46.0
+67.0 68.0
+58.0 56.0
+65.0 41.0
+52.0 47.0
+59.0 39.0
+57.0 35.0
+81.0 66.0
+75.0 75.0
+76.0 95.0
+57.0 53.0
+69.0 86.0
+77.0 64.0
+55.0 55.0
+49.0 53.0
+54.0 57.0
+55.0 42.0
+56.0 45.0
+68.0 77.0
+54.0 44.0
+67.0 87.0
+49.0 33.0
+49.0 45.0
+56.0 49.0
+73.0 78.0
+66.0 60.0
+69.0 62.0
+82.0 65.0
+90.0 65.0
+51.0 43.0
+77.0 41.0
+60.0 58.0
+74.0 87.0
+85.0 74.0
+68.0 64.0
+56.0 37.0
+71.0 45.0
+62.0 40.0
+83.0 76.0
+64.0 56.0
+56.0 54.0
+41.0 31.0
+65.0 67.0
+65.0 38.0
+40.0 41.0
+45.0 29.0
+52.0 58.0
+63.0 63.0
+52.0 44.0
+60.0 77.0
+81.0 89.0
+75.0 77.0
+59.0 64.0
+73.0 94.0
+75.0 66.0
+60.0 59.0
+75.0 56.0
+59.0 40.0
+53.0 56.0
+79.0 60.0
+57.0 46.0
+75.0 77.0
+71.0 81.0
+53.0 42.0
+46.0 56.0
+81.0 70.0
+49.0 29.0
+57.0 34.0
+60.0 53.0
+67.0 64.0
+61.0 60.0
+66.0 85.0
+64.0 55.0
+66.0 49.0
+64.0 49.0
+71.0 56.0
+75.0 60.0
+48.0 47.0
+53.0 70.0
+49.0 65.0
+85.0 81.0
+62.0 30.0
+50.0 58.0
+58.0 39.0
+72.0 95.0
+55.0 34.0
+74.0 91.0
+85.0 77.0
+73.0 93.0
+52.0 39.0
+67.0 62.0
+45.0 35.0
+46.0 41.0
+66.0 57.0
+71.0 86.0
+70.0 79.0
+58.0 53.0
+72.0 65.0
+74.0 71.0
+65.0 49.0
+77.0 39.0
+59.0 35.0
+45.0 61.0
+53.0 46.0
+53.0 72.0
+79.0 79.0
+49.0 44.0
+63.0 78.0
+69.0 45.0
+60.0 46.0
+64.0 73.0
+79.0 64.0
+55.0 58.0
+73.0 41.0
+60.0 62.0
+67.0 77.0
+42.0 58.0
+60.0 55.0
+57.0 30.0
+35.0 36.0
+75.0 84.0
+61.0 65.0
+51.0 59.0
+71.0 70.0
+74.0 71.0
+48.0 42.0
+74.0 60.0
+76.0 57.0
+58.0 37.0
+51.0 43.0
+72.0 78.0
+76.0 74.0
+52.0 60.0
+53.0 53.0
+65.0 83.0
+58.0 43.0
+77.0 56.0
+61.0 35.0
+67.0 54.0
+54.0 58.0
+79.0 58.0
+77.0 67.0
+71.0 55.0
+58.0 61.0
+68.0 56.0
+40.0 49.0
+80.0 71.0
+74.0 61.0
+57.0 57.0
+52.0 57.0
+71.0 95.0
+49.0 70.0
+89.0 61.0
+60.0 78.0
+59.0 40.0
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result04
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result04 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Mon\n+9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\t1.0\n+4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\t0.0\n+7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\t0.0\n+5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\t0.0\n+1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\t1.0\n+1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\t1.0\n+11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\t0.0\n+7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\t0.0\n+12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\t0.0\n+12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\t0.0\n+12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\t0.0\n+7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\t0.0\n+7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\t0.0\n+12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\t0.0\n+6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\t1.0\n+5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\t0.0\n+1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\t0.0\n+8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\t0.0\n+3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\t0.0\n+12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\t0.0\n+1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\t0.0\n+11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\t0.0\n+4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\t0.0\n+10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\t0.0\n+2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\t1.0\n+12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\t1.0\n+5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\t1.0\n+10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\t0.0\n+9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\t0.0\n+9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\t1.0\n+11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\t0.0\n+11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\t0.0\n+3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\t0.0\n+11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\t1.0\n+12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\t0.0\n+4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\t0.0\n+5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\t0.0\n+1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\t0.0\n+12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\t0.0\n+1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\t0.0\n+9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\t0.0\n+8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\t0.0\n+1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\t1.0\n+6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\t0.0\n+9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\t0.0\n+3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\t0.0\n+10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\t1.0\n+7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\t0.0\n+7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\t0.0\n+11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\t0.0\n+9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\t0.0\n+8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\t0.0\n+4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\t0.0\n+3.0\t13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\t0.0\n+8.0\t28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\t0.0\n+4.0\t9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\t0.0\n+5.0\t26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\t0.0\n+10.0\t10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\t1.0\n+4.0\t10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\t0.0\n+10.0\t19.0\t60.0\t61.0\t58.4\t58.0\t60.0\t57.0\t41.0\t0.0\n+3.0\t12.0\t56.0\t55.0\t53.1\t52.0\t58.0\t53.0\t65.0\t0.0\n+1.0\t24.0\t57.0\t48.0\t48.1\t46.0\t50.0\t48.0\t54.0\t0.0\n+2.0\t7.0\t53.0\t49.0\t49.2\t46.0\t51.0\t48.0\t63.0\t0.0\n+5.0\t27.0\t66.0\t65.0\t66.7\t64.0\t67.0\t68.0\t73.0\t0.0\n+5.0\t5.0\t74.0\t60.0\t62.5\t58.0\t66.0\t62.0\t56.0\t0.0\n+3.0\t11.0\t55.0\t56.0\t53.0\t53.0\t53.0\t51.0\t36.0\t0.0\n+10.0\t22.0\t62.0\t59.0\t57.4\t56.0\t59.0\t58.0\t44.0\t0.0\n+12.0\t11.0\t36.0\t44.0\t45.7\t41.0\t46.0\t47.0\t35.0\t0.0\n+5.0\t8.0\t77.0\t82.0\t63.2\t62.0\t65.0\t63.0\t83.0\t0.0\n+5.0\t29.0\t64.0\t64.0\t67.0\t65.0\t71.0\t65.0\t76.0\t0.0\n+12.0\t13.0\t44.0\t43.0\t45.5\t41.0\t47.0\t46.0\t46.0\t0.0\n+3.0\t30.0\t56.0\t64.0\t55.7\t51.0\t57.0\t56.0\t57.0\t0.0\n+11.0\t8.0\t61.0\t63.0\t52.7\t49.0\t57.0\t52.0\t49.0\t0.0\n+6.0\t20.0\t65.0\t70.0\t70.6\t67.0\t71.0\t70.0\t79.0\t1.0\n+11.0\t9.0\t63.0\t71.0\t52.4\t48.0\t56.0\t52.0\t42.0\t0.0\n+7.0\t3.0\t76.0\t76.0\t73.5\t69.0\t76.0\t75.0\t85.0\t0.0\n+10.0\t9.0\t64.0\t68.0\t62.1\t58.0\t65.0\t63.0\t55.0\t0.0\n+12.0\t16.0\t39.0\t39.0\t45.3\t44.0\t49.0\t44.0\t39.0\t0.0\n+9.0\t16.0\t79.0\t71.0\t70.7\t70.0\t74.0\t71.0\t52.0\t0.0\n+6.0\t25.0\t68.0'..b'6.0\t65.7\t62.0\t67.0\t65.0\t49.0\t0.0\n+3.0\t6.0\t57.0\t64.0\t52.2\t52.0\t53.0\t51.0\t49.0\t0.0\n+5.0\t18.0\t60.0\t71.0\t65.2\t61.0\t68.0\t65.0\t56.0\t0.0\n+5.0\t11.0\t67.0\t75.0\t63.8\t62.0\t68.0\t63.0\t60.0\t0.0\n+1.0\t9.0\t45.0\t48.0\t46.4\t46.0\t50.0\t45.0\t47.0\t0.0\n+3.0\t8.0\t60.0\t53.0\t52.5\t48.0\t56.0\t51.0\t70.0\t0.0\n+1.0\t15.0\t55.0\t49.0\t47.1\t46.0\t51.0\t46.0\t65.0\t0.0\n+6.0\t8.0\t86.0\t85.0\t68.5\t67.0\t70.0\t69.0\t81.0\t0.0\n+2.0\t10.0\t57.0\t62.0\t49.4\t48.0\t50.0\t49.0\t30.0\t0.0\n+12.0\t3.0\t46.0\t50.0\t47.0\t42.0\t52.0\t47.0\t58.0\t0.0\n+10.0\t27.0\t65.0\t58.0\t55.9\t51.0\t60.0\t55.0\t39.0\t0.0\n+8.0\t7.0\t79.0\t72.0\t77.2\t74.0\t78.0\t77.0\t95.0\t0.0\n+11.0\t16.0\t57.0\t55.0\t50.7\t50.0\t51.0\t49.0\t34.0\t0.0\n+9.0\t10.0\t72.0\t74.0\t72.3\t70.0\t77.0\t74.0\t91.0\t0.0\n+7.0\t29.0\t83.0\t85.0\t77.3\t77.0\t80.0\t79.0\t77.0\t0.0\n+8.0\t3.0\t77.0\t73.0\t77.3\t77.0\t81.0\t77.0\t93.0\t0.0\n+12.0\t1.0\t52.0\t52.0\t47.4\t44.0\t48.0\t49.0\t39.0\t0.0\n+9.0\t25.0\t64.0\t67.0\t67.6\t64.0\t72.0\t67.0\t62.0\t0.0\n+12.0\t23.0\t49.0\t45.0\t45.1\t45.0\t49.0\t44.0\t35.0\t0.0\n+12.0\t2.0\t52.0\t46.0\t47.2\t46.0\t51.0\t49.0\t41.0\t0.0\n+10.0\t13.0\t62.0\t66.0\t60.6\t60.0\t62.0\t60.0\t57.0\t0.0\n+7.0\t23.0\t81.0\t71.0\t77.0\t75.0\t81.0\t76.0\t86.0\t0.0\n+6.0\t13.0\t65.0\t70.0\t69.3\t66.0\t72.0\t69.0\t79.0\t1.0\n+2.0\t15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\t1.0\n+8.0\t8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\t1.0\n+7.0\t12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\t0.0\n+10.0\t3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\t1.0\n+4.0\t18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\t1.0\n+2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\t0.0\n+1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\t0.0\n+2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\t0.0\n+3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\t0.0\n+7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\t0.0\n+2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\t0.0\n+10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\t0.0\n+4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\t1.0\n+2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\t0.0\n+10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\t0.0\n+9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\t0.0\n+1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\t0.0\n+4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\t0.0\n+10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\t1.0\n+6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\t0.0\n+12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\t1.0\n+5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\t0.0\n+11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\t0.0\n+12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\t0.0\n+9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\t0.0\n+2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\t0.0\n+2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\t1.0\n+6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\t0.0\n+7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\t1.0\n+12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\t0.0\n+7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\t0.0\n+6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\t0.0\n+3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\t0.0\n+2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\t0.0\n+9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\t0.0\n+9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\t1.0\n+1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\t0.0\n+11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\t0.0\n+6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\t0.0\n+10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\t0.0\n+7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\t0.0\n+11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\t1.0\n+10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\t0.0\n+11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\t0.0\n+6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\t0.0\n+5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\t0.0\n+6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\t0.0\n+4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\t0.0\n+3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\t0.0\n+12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\t0.0\n+8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\t0.0\n+5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\t0.0\n+12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\t0.0\n+1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\t0.0\n+7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\t0.0\n+3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\t0.0\n+4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\t0.0\n+10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\t0.0\n+4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\t0.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result05
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result05 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\n+9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\n+4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\n+7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\n+5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\n+1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\n+1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\n+11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\n+7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\n+12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\n+12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\n+12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\n+7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\n+7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\n+12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\n+6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\n+5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\n+1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\n+8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\n+3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\n+12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\n+1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\n+11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\n+4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\n+10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\n+2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\n+12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\n+5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\n+10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\n+9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\n+9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\n+11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\n+11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\n+3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\n+11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\n+12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\n+4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\n+5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\n+1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\n+12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\n+1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\n+9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\n+8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\n+1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\n+6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\n+9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\n+3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\n+10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\n+7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\n+7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\n+11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\n+9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\n+8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\n+4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\n+3.0\t13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\n+8.0\t28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\n+4.0\t9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\n+5.0\t26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\n+10.0\t10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\n+4.0\t10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\n+10.0\t19.0\t60.0\t61.0\t58.4\t58.0\t60.0\t57.0\t41.0\n+3.0\t12.0\t56.0\t55.0\t53.1\t52.0\t58.0\t53.0\t65.0\n+1.0\t24.0\t57.0\t48.0\t48.1\t46.0\t50.0\t48.0\t54.0\n+2.0\t7.0\t53.0\t49.0\t49.2\t46.0\t51.0\t48.0\t63.0\n+5.0\t27.0\t66.0\t65.0\t66.7\t64.0\t67.0\t68.0\t73.0\n+5.0\t5.0\t74.0\t60.0\t62.5\t58.0\t66.0\t62.0\t56.0\n+3.0\t11.0\t55.0\t56.0\t53.0\t53.0\t53.0\t51.0\t36.0\n+10.0\t22.0\t62.0\t59.0\t57.4\t56.0\t59.0\t58.0\t44.0\n+12.0\t11.0\t36.0\t44.0\t45.7\t41.0\t46.0\t47.0\t35.0\n+5.0\t8.0\t77.0\t82.0\t63.2\t62.0\t65.0\t63.0\t83.0\n+5.0\t29.0\t64.0\t64.0\t67.0\t65.0\t71.0\t65.0\t76.0\n+12.0\t13.0\t44.0\t43.0\t45.5\t41.0\t47.0\t46.0\t46.0\n+3.0\t30.0\t56.0\t64.0\t55.7\t51.0\t57.0\t56.0\t57.0\n+11.0\t8.0\t61.0\t63.0\t52.7\t49.0\t57.0\t52.0\t49.0\n+6.0\t20.0\t65.0\t70.0\t70.6\t67.0\t71.0\t70.0\t79.0\n+11.0\t9.0\t63.0\t71.0\t52.4\t48.0\t56.0\t52.0\t42.0\n+7.0\t3.0\t76.0\t76.0\t73.5\t69.0\t76.0\t75.0\t85.0\n+10.0\t9.0\t64.0\t68.0\t62.1\t58.0\t65.0\t63.0\t55.0\n+12.0\t16.0\t39.0\t39.0\t45.3\t44.0\t49.0\t44.0\t39.0\n+9.0\t16.0\t79.0\t71.0\t70.7\t70.0\t74.0\t71.0\t52.0\n+6.0\t25.0\t68.0\t69.0\t71.7\t68.0\t73.0\t73.0\t89.0\n+9.0\t13.0\t70.0\t74.0\t71.5\t71.0\t75.0\t70.0\t82.0\n+5.0\t12.0\t75.0\t81.0\t64.1\t62.0\t67.0\t63.0\t81.0\n+2.0\t8.0\t49.0\t51.0\t49.3\t49.0\t52.0\t50.0\t34.0\n+1.0\t12.0\t52.0\t45.0\t46.8\t44.0\t50.0\t45.0\t61.0\n+8.0\t13.0\t80.0\t87.0\t76.8\t73.0\t79.0\t78.0\t73.0\n+7.0\t4.0\t76.0\t71.0\t73.8\t71.0\t76.0\t73.0\t86.0\n+4.0\t25.0\t65.0\t55.0\t60.3\t5'..b'\t24.0\t54.0\t49.0\t48.9\t47.0\t53.0\t48.0\t29.0\n+1.0\t28.0\t56.0\t57.0\t48.4\t44.0\t52.0\t48.0\t34.0\n+10.0\t18.0\t60.0\t60.0\t58.8\t54.0\t60.0\t57.0\t53.0\n+9.0\t4.0\t70.0\t67.0\t73.7\t72.0\t77.0\t75.0\t64.0\n+10.0\t4.0\t65.0\t61.0\t64.1\t62.0\t69.0\t65.0\t60.0\n+6.0\t14.0\t70.0\t66.0\t69.5\t66.0\t71.0\t69.0\t85.0\n+11.0\t11.0\t65.0\t64.0\t51.9\t50.0\t53.0\t52.0\t55.0\n+5.0\t21.0\t63.0\t66.0\t65.7\t62.0\t67.0\t65.0\t49.0\n+3.0\t6.0\t57.0\t64.0\t52.2\t52.0\t53.0\t51.0\t49.0\n+5.0\t18.0\t60.0\t71.0\t65.2\t61.0\t68.0\t65.0\t56.0\n+5.0\t11.0\t67.0\t75.0\t63.8\t62.0\t68.0\t63.0\t60.0\n+1.0\t9.0\t45.0\t48.0\t46.4\t46.0\t50.0\t45.0\t47.0\n+3.0\t8.0\t60.0\t53.0\t52.5\t48.0\t56.0\t51.0\t70.0\n+1.0\t15.0\t55.0\t49.0\t47.1\t46.0\t51.0\t46.0\t65.0\n+6.0\t8.0\t86.0\t85.0\t68.5\t67.0\t70.0\t69.0\t81.0\n+2.0\t10.0\t57.0\t62.0\t49.4\t48.0\t50.0\t49.0\t30.0\n+12.0\t3.0\t46.0\t50.0\t47.0\t42.0\t52.0\t47.0\t58.0\n+10.0\t27.0\t65.0\t58.0\t55.9\t51.0\t60.0\t55.0\t39.0\n+8.0\t7.0\t79.0\t72.0\t77.2\t74.0\t78.0\t77.0\t95.0\n+11.0\t16.0\t57.0\t55.0\t50.7\t50.0\t51.0\t49.0\t34.0\n+9.0\t10.0\t72.0\t74.0\t72.3\t70.0\t77.0\t74.0\t91.0\n+7.0\t29.0\t83.0\t85.0\t77.3\t77.0\t80.0\t79.0\t77.0\n+8.0\t3.0\t77.0\t73.0\t77.3\t77.0\t81.0\t77.0\t93.0\n+12.0\t1.0\t52.0\t52.0\t47.4\t44.0\t48.0\t49.0\t39.0\n+9.0\t25.0\t64.0\t67.0\t67.6\t64.0\t72.0\t67.0\t62.0\n+12.0\t23.0\t49.0\t45.0\t45.1\t45.0\t49.0\t44.0\t35.0\n+12.0\t2.0\t52.0\t46.0\t47.2\t46.0\t51.0\t49.0\t41.0\n+10.0\t13.0\t62.0\t66.0\t60.6\t60.0\t62.0\t60.0\t57.0\n+7.0\t23.0\t81.0\t71.0\t77.0\t75.0\t81.0\t76.0\t86.0\n+6.0\t13.0\t65.0\t70.0\t69.3\t66.0\t72.0\t69.0\t79.0\n+2.0\t15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\n+8.0\t8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\n+7.0\t12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\n+10.0\t3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\n+4.0\t18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\n+2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\n+1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\n+2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\n+3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\n+7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\n+2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\n+10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\n+4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\n+2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\n+10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\n+9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\n+1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\n+4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\n+10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\n+6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\n+12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\n+5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\n+11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\n+12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\n+9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\n+2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\n+2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\n+6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\n+7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\n+12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\n+7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\n+6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\n+3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\n+2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\n+9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\n+9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\n+1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\n+11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\n+6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\n+10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\n+7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\n+11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\n+10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\n+11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\n+6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\n+5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\n+6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\n+4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\n+3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\n+12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\n+8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\n+5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\n+12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\n+1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\n+7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\n+3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\n+4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\n+10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\n+4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result06
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result06 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\n+9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\n+4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\n+7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\n+5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\n+1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\n+1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\n+11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\n+7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\n+12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\n+12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\n+12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\n+7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\n+7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\n+12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\n+6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\n+5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\n+1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\n+8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\n+3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\n+12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\n+1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\n+11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\n+4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\n+10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\n+2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\n+12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\n+5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\n+10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\n+9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\n+9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\n+11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\n+11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\n+3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\n+11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\n+12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\n+4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\n+5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\n+1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\n+12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\n+1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\n+9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\n+8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\n+1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\n+6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\n+9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\n+3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\n+10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\n+7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\n+7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\n+11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\n+9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\n+8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\n+4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\n+3.0\t13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\n+8.0\t28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\n+4.0\t9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\n+5.0\t26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\n+10.0\t10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\n+4.0\t10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\n+10.0\t19.0\t60.0\t61.0\t58.4\t58.0\t60.0\t57.0\t41.0\n+3.0\t12.0\t56.0\t55.0\t53.1\t52.0\t58.0\t53.0\t65.0\n+1.0\t24.0\t57.0\t48.0\t48.1\t46.0\t50.0\t48.0\t54.0\n+2.0\t7.0\t53.0\t49.0\t49.2\t46.0\t51.0\t48.0\t63.0\n+5.0\t27.0\t66.0\t65.0\t66.7\t64.0\t67.0\t68.0\t73.0\n+5.0\t5.0\t74.0\t60.0\t62.5\t58.0\t66.0\t62.0\t56.0\n+3.0\t11.0\t55.0\t56.0\t53.0\t53.0\t53.0\t51.0\t36.0\n+10.0\t22.0\t62.0\t59.0\t57.4\t56.0\t59.0\t58.0\t44.0\n+12.0\t11.0\t36.0\t44.0\t45.7\t41.0\t46.0\t47.0\t35.0\n+5.0\t8.0\t77.0\t82.0\t63.2\t62.0\t65.0\t63.0\t83.0\n+5.0\t29.0\t64.0\t64.0\t67.0\t65.0\t71.0\t65.0\t76.0\n+12.0\t13.0\t44.0\t43.0\t45.5\t41.0\t47.0\t46.0\t46.0\n+3.0\t30.0\t56.0\t64.0\t55.7\t51.0\t57.0\t56.0\t57.0\n+11.0\t8.0\t61.0\t63.0\t52.7\t49.0\t57.0\t52.0\t49.0\n+6.0\t20.0\t65.0\t70.0\t70.6\t67.0\t71.0\t70.0\t79.0\n+11.0\t9.0\t63.0\t71.0\t52.4\t48.0\t56.0\t52.0\t42.0\n+7.0\t3.0\t76.0\t76.0\t73.5\t69.0\t76.0\t75.0\t85.0\n+10.0\t9.0\t64.0\t68.0\t62.1\t58.0\t65.0\t63.0\t55.0\n+12.0\t16.0\t39.0\t39.0\t45.3\t44.0\t49.0\t44.0\t39.0\n+9.0\t16.0\t79.0\t71.0\t70.7\t70.0\t74.0\t71.0\t52.0\n+6.0\t25.0\t68.0\t69.0\t71.7\t68.0\t73.0\t73.0\t89.0\n+9.0\t13.0\t70.0\t74.0\t71.5\t71.0\t75.0\t70.0\t82.0\n+5.0\t12.0\t75.0\t81.0\t64.1\t62.0\t67.0\t63.0\t81.0\n+2.0\t8.0\t49.0\t51.0\t49.3\t49.0\t52.0\t50.0\t34.0\n+1.0\t12.0\t52.0\t45.0\t46.8\t44.0\t50.0\t45.0\t61.0\n+8.0\t13.0\t80.0\t87.0\t76.8\t73.0\t79.0\t78.0\t73.0\n+7.0\t4.0\t76.0\t71.0\t73.8\t71.0\t76.0\t73.0\t86.0\n+4.0\t25.0\t65.0\t55.0\t60.3\t5'..b'\t24.0\t54.0\t49.0\t48.9\t47.0\t53.0\t48.0\t29.0\n+1.0\t28.0\t56.0\t57.0\t48.4\t44.0\t52.0\t48.0\t34.0\n+10.0\t18.0\t60.0\t60.0\t58.8\t54.0\t60.0\t57.0\t53.0\n+9.0\t4.0\t70.0\t67.0\t73.7\t72.0\t77.0\t75.0\t64.0\n+10.0\t4.0\t65.0\t61.0\t64.1\t62.0\t69.0\t65.0\t60.0\n+6.0\t14.0\t70.0\t66.0\t69.5\t66.0\t71.0\t69.0\t85.0\n+11.0\t11.0\t65.0\t64.0\t51.9\t50.0\t53.0\t52.0\t55.0\n+5.0\t21.0\t63.0\t66.0\t65.7\t62.0\t67.0\t65.0\t49.0\n+3.0\t6.0\t57.0\t64.0\t52.2\t52.0\t53.0\t51.0\t49.0\n+5.0\t18.0\t60.0\t71.0\t65.2\t61.0\t68.0\t65.0\t56.0\n+5.0\t11.0\t67.0\t75.0\t63.8\t62.0\t68.0\t63.0\t60.0\n+1.0\t9.0\t45.0\t48.0\t46.4\t46.0\t50.0\t45.0\t47.0\n+3.0\t8.0\t60.0\t53.0\t52.5\t48.0\t56.0\t51.0\t70.0\n+1.0\t15.0\t55.0\t49.0\t47.1\t46.0\t51.0\t46.0\t65.0\n+6.0\t8.0\t86.0\t85.0\t68.5\t67.0\t70.0\t69.0\t81.0\n+2.0\t10.0\t57.0\t62.0\t49.4\t48.0\t50.0\t49.0\t30.0\n+12.0\t3.0\t46.0\t50.0\t47.0\t42.0\t52.0\t47.0\t58.0\n+10.0\t27.0\t65.0\t58.0\t55.9\t51.0\t60.0\t55.0\t39.0\n+8.0\t7.0\t79.0\t72.0\t77.2\t74.0\t78.0\t77.0\t95.0\n+11.0\t16.0\t57.0\t55.0\t50.7\t50.0\t51.0\t49.0\t34.0\n+9.0\t10.0\t72.0\t74.0\t72.3\t70.0\t77.0\t74.0\t91.0\n+7.0\t29.0\t83.0\t85.0\t77.3\t77.0\t80.0\t79.0\t77.0\n+8.0\t3.0\t77.0\t73.0\t77.3\t77.0\t81.0\t77.0\t93.0\n+12.0\t1.0\t52.0\t52.0\t47.4\t44.0\t48.0\t49.0\t39.0\n+9.0\t25.0\t64.0\t67.0\t67.6\t64.0\t72.0\t67.0\t62.0\n+12.0\t23.0\t49.0\t45.0\t45.1\t45.0\t49.0\t44.0\t35.0\n+12.0\t2.0\t52.0\t46.0\t47.2\t46.0\t51.0\t49.0\t41.0\n+10.0\t13.0\t62.0\t66.0\t60.6\t60.0\t62.0\t60.0\t57.0\n+7.0\t23.0\t81.0\t71.0\t77.0\t75.0\t81.0\t76.0\t86.0\n+6.0\t13.0\t65.0\t70.0\t69.3\t66.0\t72.0\t69.0\t79.0\n+2.0\t15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\n+8.0\t8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\n+7.0\t12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\n+10.0\t3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\n+4.0\t18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\n+2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\n+1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\n+2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\n+3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\n+7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\n+2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\n+10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\n+4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\n+2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\n+10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\n+9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\n+1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\n+4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\n+10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\n+6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\n+12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\n+5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\n+11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\n+12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\n+9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\n+2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\n+2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\n+6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\n+7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\n+12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\n+7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\n+6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\n+3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\n+2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\n+9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\n+9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\n+1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\n+11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\n+6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\n+10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\n+7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\n+11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\n+10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\n+11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\n+6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\n+5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\n+6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\n+4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\n+3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\n+12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\n+8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\n+5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\n+12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\n+1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\n+7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\n+3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\n+4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\n+10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\n+4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result07
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result07 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\n+9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\n+4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\n+7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\n+5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\n+1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\n+1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\n+11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\n+7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\n+12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\n+12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\n+12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\n+7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\n+7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\n+12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\n+6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\n+5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\n+1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\n+8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\n+3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\n+12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\n+1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\n+11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\n+4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\n+10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\n+2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\n+12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\n+5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\n+10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\n+9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\n+9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\n+11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\n+11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\n+3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\n+11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\n+12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\n+4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\n+5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\n+1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\n+12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\n+1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\n+9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\n+8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\n+1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\n+6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\n+9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\n+3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\n+10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\n+7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\n+7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\n+11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\n+9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\n+8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\n+4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\n+3.0\t13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\n+8.0\t28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\n+4.0\t9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\n+5.0\t26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\n+10.0\t10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\n+4.0\t10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\n+10.0\t19.0\t60.0\t61.0\t58.4\t58.0\t60.0\t57.0\t41.0\n+3.0\t12.0\t56.0\t55.0\t53.1\t52.0\t58.0\t53.0\t65.0\n+1.0\t24.0\t57.0\t48.0\t48.1\t46.0\t50.0\t48.0\t54.0\n+2.0\t7.0\t53.0\t49.0\t49.2\t46.0\t51.0\t48.0\t63.0\n+5.0\t27.0\t66.0\t65.0\t66.7\t64.0\t67.0\t68.0\t73.0\n+5.0\t5.0\t74.0\t60.0\t62.5\t58.0\t66.0\t62.0\t56.0\n+3.0\t11.0\t55.0\t56.0\t53.0\t53.0\t53.0\t51.0\t36.0\n+10.0\t22.0\t62.0\t59.0\t57.4\t56.0\t59.0\t58.0\t44.0\n+12.0\t11.0\t36.0\t44.0\t45.7\t41.0\t46.0\t47.0\t35.0\n+5.0\t8.0\t77.0\t82.0\t63.2\t62.0\t65.0\t63.0\t83.0\n+5.0\t29.0\t64.0\t64.0\t67.0\t65.0\t71.0\t65.0\t76.0\n+12.0\t13.0\t44.0\t43.0\t45.5\t41.0\t47.0\t46.0\t46.0\n+3.0\t30.0\t56.0\t64.0\t55.7\t51.0\t57.0\t56.0\t57.0\n+11.0\t8.0\t61.0\t63.0\t52.7\t49.0\t57.0\t52.0\t49.0\n+6.0\t20.0\t65.0\t70.0\t70.6\t67.0\t71.0\t70.0\t79.0\n+11.0\t9.0\t63.0\t71.0\t52.4\t48.0\t56.0\t52.0\t42.0\n+7.0\t3.0\t76.0\t76.0\t73.5\t69.0\t76.0\t75.0\t85.0\n+10.0\t9.0\t64.0\t68.0\t62.1\t58.0\t65.0\t63.0\t55.0\n+12.0\t16.0\t39.0\t39.0\t45.3\t44.0\t49.0\t44.0\t39.0\n+9.0\t16.0\t79.0\t71.0\t70.7\t70.0\t74.0\t71.0\t52.0\n+6.0\t25.0\t68.0\t69.0\t71.7\t68.0\t73.0\t73.0\t89.0\n+9.0\t13.0\t70.0\t74.0\t71.5\t71.0\t75.0\t70.0\t82.0\n+5.0\t12.0\t75.0\t81.0\t64.1\t62.0\t67.0\t63.0\t81.0\n+2.0\t8.0\t49.0\t51.0\t49.3\t49.0\t52.0\t50.0\t34.0\n+1.0\t12.0\t52.0\t45.0\t46.8\t44.0\t50.0\t45.0\t61.0\n+8.0\t13.0\t80.0\t87.0\t76.8\t73.0\t79.0\t78.0\t73.0\n+7.0\t4.0\t76.0\t71.0\t73.8\t71.0\t76.0\t73.0\t86.0\n+4.0\t25.0\t65.0\t55.0\t60.3\t5'..b'\t24.0\t54.0\t49.0\t48.9\t47.0\t53.0\t48.0\t29.0\n+1.0\t28.0\t56.0\t57.0\t48.4\t44.0\t52.0\t48.0\t34.0\n+10.0\t18.0\t60.0\t60.0\t58.8\t54.0\t60.0\t57.0\t53.0\n+9.0\t4.0\t70.0\t67.0\t73.7\t72.0\t77.0\t75.0\t64.0\n+10.0\t4.0\t65.0\t61.0\t64.1\t62.0\t69.0\t65.0\t60.0\n+6.0\t14.0\t70.0\t66.0\t69.5\t66.0\t71.0\t69.0\t85.0\n+11.0\t11.0\t65.0\t64.0\t51.9\t50.0\t53.0\t52.0\t55.0\n+5.0\t21.0\t63.0\t66.0\t65.7\t62.0\t67.0\t65.0\t49.0\n+3.0\t6.0\t57.0\t64.0\t52.2\t52.0\t53.0\t51.0\t49.0\n+5.0\t18.0\t60.0\t71.0\t65.2\t61.0\t68.0\t65.0\t56.0\n+5.0\t11.0\t67.0\t75.0\t63.8\t62.0\t68.0\t63.0\t60.0\n+1.0\t9.0\t45.0\t48.0\t46.4\t46.0\t50.0\t45.0\t47.0\n+3.0\t8.0\t60.0\t53.0\t52.5\t48.0\t56.0\t51.0\t70.0\n+1.0\t15.0\t55.0\t49.0\t47.1\t46.0\t51.0\t46.0\t65.0\n+6.0\t8.0\t86.0\t85.0\t68.5\t67.0\t70.0\t69.0\t81.0\n+2.0\t10.0\t57.0\t62.0\t49.4\t48.0\t50.0\t49.0\t30.0\n+12.0\t3.0\t46.0\t50.0\t47.0\t42.0\t52.0\t47.0\t58.0\n+10.0\t27.0\t65.0\t58.0\t55.9\t51.0\t60.0\t55.0\t39.0\n+8.0\t7.0\t79.0\t72.0\t77.2\t74.0\t78.0\t77.0\t95.0\n+11.0\t16.0\t57.0\t55.0\t50.7\t50.0\t51.0\t49.0\t34.0\n+9.0\t10.0\t72.0\t74.0\t72.3\t70.0\t77.0\t74.0\t91.0\n+7.0\t29.0\t83.0\t85.0\t77.3\t77.0\t80.0\t79.0\t77.0\n+8.0\t3.0\t77.0\t73.0\t77.3\t77.0\t81.0\t77.0\t93.0\n+12.0\t1.0\t52.0\t52.0\t47.4\t44.0\t48.0\t49.0\t39.0\n+9.0\t25.0\t64.0\t67.0\t67.6\t64.0\t72.0\t67.0\t62.0\n+12.0\t23.0\t49.0\t45.0\t45.1\t45.0\t49.0\t44.0\t35.0\n+12.0\t2.0\t52.0\t46.0\t47.2\t46.0\t51.0\t49.0\t41.0\n+10.0\t13.0\t62.0\t66.0\t60.6\t60.0\t62.0\t60.0\t57.0\n+7.0\t23.0\t81.0\t71.0\t77.0\t75.0\t81.0\t76.0\t86.0\n+6.0\t13.0\t65.0\t70.0\t69.3\t66.0\t72.0\t69.0\t79.0\n+2.0\t15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\n+8.0\t8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\n+7.0\t12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\n+10.0\t3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\n+4.0\t18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\n+2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\n+1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\n+2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\n+3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\n+7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\n+2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\n+10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\n+4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\n+2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\n+10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\n+9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\n+1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\n+4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\n+10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\n+6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\n+12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\n+5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\n+11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\n+12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\n+9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\n+2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\n+2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\n+6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\n+7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\n+12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\n+7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\n+6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\n+3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\n+2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\n+9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\n+9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\n+1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\n+11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\n+6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\n+10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\n+7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\n+11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\n+10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\n+11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\n+6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\n+5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\n+6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\n+4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\n+3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\n+12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\n+8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\n+5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\n+12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\n+1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\n+7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\n+3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\n+4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\n+10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\n+4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result08
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result08 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+0 1
+143.762620712 -0.330941870584
+-88.5787166225 1.08055532812
+-82.8452345578 0.272541389247
+72.4951388149 -0.26868660527800003
+11.805182128 1.0360467096600001
+-63.9354970901 -0.101485840571
+126.32584079600001 -0.35999834017899995
+23.0341392692 0.5185404651359999
+67.6714937696 -0.115688051547
+47.39275848810001 -0.7850965413680001
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result09
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result09 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+0
+143.762620712
+-88.5787166225
+-82.8452345578
+72.4951388149
+11.805182128
+-63.9354970901
+126.32584079600001
+23.0341392692
+67.6714937696
+47.39275848810001
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result10
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result10 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Thurs\tweek_Tues\tweek_Wed\n+9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.'..b'7.0\t58.8\t55.0\t59.0\t57.0\t39.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\n+12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\n+7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\t0.0\t0.0\t0.0\t1.0\t0.0\t0.0\t0.0\n+3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\t1.0\t0.0\n+10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n+4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\t1.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result11
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result11 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,51 @@
+Race AIDS Total
+4.0 2555.0 14443382.0
+4.0 55300.0 14704293.0
+4.0 82334.0 16641977.0
+4.0 38006.0 13888285.0
+4.0 16068.0 21845911.0
+2.0 2489.0 2367256.0
+2.0 34204.0 2410019.0
+2.0 51776.0 2727604.0
+2.0 23896.0 2276276.0
+2.0 10169.0 3580523.0
+3.0 1363.0 1542563.0
+3.0 20712.0 1570428.0
+3.0 27200.0 1777374.0
+3.0 11251.0 1483278.0
+3.0 4674.0 2333158.0
+1.0 38.0 699627.0
+1.0 731.0 712265.0
+1.0 1162.0 806125.0
+1.0 560.0 672738.0
+1.0 258.0 1058200.0
+0.0 26.0 169115.0
+0.0 390.0 172170.0
+0.0 417.0 194858.0
+0.0 140.0 162616.0
+0.0 48.0 255790.0
+4.0 490.0 14999423.0
+4.0 4788.0 15270378.0
+4.0 5377.0 17282659.0
+4.0 2152.0 14422956.0
+4.0 1790.0 22686934.0
+2.0 1490.0 2458391.0
+2.0 12280.0 2502800.0
+2.0 15713.0 2832611.0
+2.0 5788.0 2363908.0
+2.0 2534.0 3718366.0
+3.0 493.0 1601948.0
+3.0 4660.0 1630887.0
+3.0 5153.0 1845800.0
+3.0 1944.0 1540381.0
+3.0 910.0 2422980.0
+1.0 6.0 726561.0
+1.0 83.0 739686.0
+1.0 106.0 837159.0
+1.0 69.0 698637.0
+1.0 55.0 1098938.0
+0.0 3.0 175626.0
+0.0 78.0 178798.0
+0.0 77.0 202360.0
+0.0 31.0 168876.0
+0.0 14.0 265637.0
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result12
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result12 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+0 1
+143.762620712 -0.330941870584
+-88.5787166225 1.08055532812
+-82.8452345578 0.272541389247
+72.4951388149 -0.26868660527800003
+11.805182128 1.0360467096600001
+-63.9354970901 -0.101485840571
+126.32584079600001 -0.35999834017899995
+23.0341392692 0.5185404651359999
+67.6714937696 -0.115688051547
+47.39275848810001 -0.7850965413680001
b
diff -r 000000000000 -r eaddff553324 test-data/feature_selection_result13
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result13 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+temp_1 average forecast_noaa friend
+69.0 69.7 65.0 88.0
+59.0 58.1 57.0 66.0
+88.0 77.3 75.0 70.0
+65.0 64.7 63.0 58.0
+50.0 47.5 44.0 58.0
+51.0 48.2 45.0 63.0
+52.0 48.6 45.0 41.0
+78.0 76.7 75.0 66.0
+35.0 45.2 43.0 38.0
+40.0 46.1 45.0 36.0
+47.0 45.3 41.0 58.0
+72.0 76.3 76.0 88.0
+76.0 74.4 73.0 72.0
+39.0 45.3 45.0 46.0
+78.0 72.2 70.0 84.0
+71.0 67.3 63.0 85.0
+48.0 47.7 44.0 61.0
+72.0 77.0 77.0 68.0
+57.0 54.7 50.0 70.0
+40.0 45.1 44.0 39.0
+54.0 47.6 47.0 53.0
+58.0 53.2 52.0 71.0
+68.0 58.6 58.0 54.0
+65.0 55.3 55.0 65.0
+47.0 48.8 46.0 51.0
+44.0 45.6 43.0 42.0
+64.0 67.1 64.0 69.0
+62.0 57.1 57.0 67.0
+66.0 65.7 64.0 74.0
+70.0 71.8 67.0 90.0
+57.0 54.2 54.0 70.0
+50.0 50.5 46.0 57.0
+55.0 51.8 49.0 71.0
+55.0 49.5 46.0 67.0
+42.0 45.2 41.0 47.0
+65.0 60.1 57.0 41.0
+63.0 65.6 63.0 73.0
+48.0 47.3 45.0 28.0
+42.0 46.3 44.0 62.0
+51.0 46.2 45.0 38.0
+64.0 68.0 65.0 64.0
+75.0 74.6 74.0 63.0
+52.0 46.7 42.0 39.0
+67.0 68.6 66.0 80.0
+68.0 68.7 65.0 56.0
+54.0 55.0 53.0 42.0
+62.0 56.8 52.0 70.0
+76.0 76.1 76.0 61.0
+73.0 73.1 71.0 93.0
+52.0 50.3 50.0 35.0
+70.0 73.9 71.0 68.0
+77.0 77.4 75.0 62.0
+60.0 56.6 52.0 72.0
+52.0 53.3 50.0 54.0
+79.0 75.0 71.0 85.0
+76.0 57.2 53.0 74.0
+66.0 66.5 64.0 85.0
+57.0 61.8 58.0 62.0
+66.0 57.4 57.0 60.0
+61.0 58.4 58.0 41.0
+55.0 53.1 52.0 65.0
+48.0 48.1 46.0 54.0
+49.0 49.2 46.0 63.0
+65.0 66.7 64.0 73.0
+60.0 62.5 58.0 56.0
+56.0 53.0 53.0 36.0
+59.0 57.4 56.0 44.0
+44.0 45.7 41.0 35.0
+82.0 63.2 62.0 83.0
+64.0 67.0 65.0 76.0
+43.0 45.5 41.0 46.0
+64.0 55.7 51.0 57.0
+63.0 52.7 49.0 49.0
+70.0 70.6 67.0 79.0
+71.0 52.4 48.0 42.0
+76.0 73.5 69.0 85.0
+68.0 62.1 58.0 55.0
+39.0 45.3 44.0 39.0
+71.0 70.7 70.0 52.0
+69.0 71.7 68.0 89.0
+74.0 71.5 71.0 82.0
+81.0 64.1 62.0 81.0
+51.0 49.3 49.0 34.0
+45.0 46.8 44.0 61.0
+87.0 76.8 73.0 73.0
+71.0 73.8 71.0 86.0
+55.0 60.3 56.0 77.0
+80.0 76.9 72.0 81.0
+67.0 69.0 65.0 76.0
+61.0 61.4 60.0 78.0
+46.0 46.6 43.0 65.0
+39.0 45.1 42.0 51.0
+67.0 68.3 67.0 61.0
+52.0 47.8 43.0 50.0
+67.0 69.8 68.0 87.0
+75.0 71.2 67.0 77.0
+68.0 73.3 73.0 79.0
+92.0 68.2 65.0 71.0
+67.0 72.8 69.0 56.0
+44.0 45.8 43.0 56.0
+61.0 61.0 56.0 73.0
+65.0 53.4 49.0 41.0
+68.0 73.0 72.0 70.0
+87.0 62.1 62.0 69.0
+117.0 54.8 51.0 62.0
+80.0 76.4 75.0 66.0
+57.0 51.0 47.0 46.0
+67.0 63.6 61.0 68.0
+58.0 54.0 51.0 56.0
+65.0 56.2 53.0 41.0
+52.0 48.6 45.0 47.0
+59.0 55.3 52.0 39.0
+57.0 53.9 53.0 35.0
+81.0 59.2 56.0 66.0
+75.0 77.1 76.0 75.0
+76.0 77.4 76.0 95.0
+57.0 64.8 61.0 53.0
+69.0 74.2 72.0 86.0
+77.0 66.8 66.0 64.0
+55.0 49.9 47.0 55.0
+49.0 46.8 45.0 53.0
+54.0 52.7 48.0 57.0
+55.0 51.2 49.0 42.0
+56.0 55.6 53.0 45.0
+68.0 74.6 72.0 77.0
+54.0 53.4 49.0 44.0
+67.0 69.0 69.0 87.0
+49.0 46.9 45.0 33.0
+49.0 49.1 47.0 45.0
+56.0 48.5 48.0 49.0
+73.0 71.0 66.0 78.0
+66.0 66.4 65.0 60.0
+69.0 66.5 66.0 62.0
+82.0 64.5 64.0 65.0
+90.0 76.7 75.0 65.0
+51.0 50.7 49.0 43.0
+77.0 57.1 57.0 41.0
+60.0 61.4 58.0 58.0
+74.0 72.8 71.0 87.0
+85.0 77.2 73.0 74.0
+68.0 62.8 61.0 64.0
+56.0 49.5 46.0 37.0
+71.0 56.2 55.0 45.0
+62.0 59.5 57.0 40.0
+83.0 77.3 76.0 76.0
+64.0 65.4 62.0 56.0
+56.0 48.4 45.0 54.0
+41.0 45.1 42.0 31.0
+65.0 66.2 66.0 67.0
+65.0 53.7 49.0 38.0
+40.0 46.0 46.0 41.0
+45.0 45.6 43.0 29.0
+52.0 48.4 48.0 58.0
+63.0 51.7 50.0 63.0
+52.0 47.6 47.0 44.0
+60.0 57.9 55.0 77.0
+81.0 75.7 73.0 89.0
+75.0 75.8 74.0 77.0
+59.0 51.4 48.0 64.0
+73.0 77.1 77.0 94.0
+75.0 77.3 73.0 66.0
+60.0 58.5 56.0 59.0
+75.0 71.3 68.0 56.0
+59.0 57.6 56.0 40.0
+53.0 49.1 47.0 56.0
+79.0 77.2 76.0 60.0
+57.0 52.1 49.0 46.0
+75.0 67.6 64.0 77.0
+71.0 69.4 67.0 81.0
+53.0 50.2 50.0 42.0
+46.0 48.8 48.0 56.0
+81.0 76.9 72.0 70.0
+49.0 48.9 47.0 29.0
+57.0 48.4 44.0 34.0
+60.0 58.8 54.0 53.0
+67.0 73.7 72.0 64.0
+61.0 64.1 62.0 60.0
+66.0 69.5 66.0 85.0
+64.0 51.9 50.0 55.0
+66.0 65.7 62.0 49.0
+64.0 52.2 52.0 49.0
+71.0 65.2 61.0 56.0
+75.0 63.8 62.0 60.0
+48.0 46.4 46.0 47.0
+53.0 52.5 48.0 70.0
+49.0 47.1 46.0 65.0
+85.0 68.5 67.0 81.0
+62.0 49.4 48.0 30.0
+50.0 47.0 42.0 58.0
+58.0 55.9 51.0 39.0
+72.0 77.2 74.0 95.0
+55.0 50.7 50.0 34.0
+74.0 72.3 70.0 91.0
+85.0 77.3 77.0 77.0
+73.0 77.3 77.0 93.0
+52.0 47.4 44.0 39.0
+67.0 67.6 64.0 62.0
+45.0 45.1 45.0 35.0
+46.0 47.2 46.0 41.0
+66.0 60.6 60.0 57.0
+71.0 77.0 75.0 86.0
+70.0 69.3 66.0 79.0
+58.0 49.9 46.0 53.0
+72.0 77.1 76.0 65.0
+74.0 75.4 74.0 71.0
+65.0 64.5 63.0 49.0
+77.0 58.8 55.0 39.0
+59.0 50.9 49.0 35.0
+45.0 45.7 41.0 61.0
+53.0 50.5 49.0 46.0
+53.0 54.9 54.0 72.0
+79.0 77.3 73.0 79.0
+49.0 49.0 44.0 44.0
+63.0 62.9 62.0 78.0
+69.0 56.5 54.0 45.0
+60.0 50.8 47.0 46.0
+64.0 62.5 60.0 73.0
+79.0 71.0 66.0 64.0
+55.0 47.0 43.0 58.0
+73.0 56.0 54.0 41.0
+60.0 59.1 57.0 62.0
+67.0 70.2 67.0 77.0
+42.0 45.2 45.0 58.0
+60.0 65.0 62.0 55.0
+57.0 49.8 47.0 30.0
+35.0 45.2 44.0 36.0
+75.0 70.3 66.0 84.0
+61.0 51.1 48.0 65.0
+51.0 50.6 46.0 59.0
+71.0 71.9 67.0 70.0
+74.0 75.3 74.0 71.0
+48.0 45.4 44.0 42.0
+74.0 74.9 70.0 60.0
+76.0 70.8 68.0 57.0
+58.0 51.6 47.0 37.0
+51.0 50.4 48.0 43.0
+72.0 72.6 68.0 78.0
+76.0 67.2 64.0 74.0
+52.0 47.9 47.0 60.0
+53.0 48.2 48.0 53.0
+65.0 69.1 65.0 83.0
+58.0 58.1 58.0 43.0
+77.0 75.6 74.0 56.0
+61.0 52.9 51.0 35.0
+67.0 65.3 64.0 54.0
+54.0 49.3 46.0 58.0
+79.0 67.4 65.0 58.0
+77.0 64.3 63.0 67.0
+71.0 67.7 64.0 55.0
+58.0 57.7 54.0 61.0
+68.0 55.9 55.0 56.0
+40.0 45.4 45.0 49.0
+80.0 77.3 75.0 71.0
+74.0 62.3 59.0 61.0
+57.0 45.5 42.0 57.0
+52.0 47.8 43.0 57.0
+71.0 75.1 71.0 95.0
+49.0 53.6 49.0 70.0
+89.0 59.0 59.0 61.0
+60.0 60.2 56.0 78.0
+59.0 58.3 58.0 40.0
b
diff -r 000000000000 -r eaddff553324 test-data/final_estimator.zip
b
Binary file test-data/final_estimator.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/fitted_keras_g_regressor01.zip
b
Binary file test-data/fitted_keras_g_regressor01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/fitted_model_eval01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/fitted_model_eval01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+score
+0.8277511130733235
b
diff -r 000000000000 -r eaddff553324 test-data/friedman1.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/friedman1.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t0\n+0.54340494179097\t0.27836938509380\t0.42451759074913\t0.84477613231990\t0.00471885619097\t0.12156912078311\t0.67074908472678\t0.82585275510505\t0.13670658968495\t0.57509332942725\t13.16065039739808\n+0.89132195431226\t0.20920212211719\t0.18532821955008\t0.10837689046426\t0.21969749262499\t0.97862378470737\t0.81168314908932\t0.17194101273259\t0.81622474872584\t0.27407374704170\t9.69129813765850\n+0.43170418366312\t0.94002981962237\t0.81764937877673\t0.33611195012090\t0.17541045374234\t0.37283204628992\t0.00568850735257\t0.25242635344484\t0.79566250847329\t0.01525497124634\t15.82161996182878\n+0.59884337692849\t0.60380453904285\t0.10514768541206\t0.38194344494311\t0.03647605659257\t0.89041156344208\t0.98092085701231\t0.05994198881804\t0.89054594472850\t0.57690149940003\t16.18933274618261\n+0.74247968909798\t0.63018393647538\t0.58184219239878\t0.02043913202692\t0.21002657767286\t0.54468487817865\t0.76911517110565\t0.25069522913840\t0.28589569040686\t0.85239508784131\t11.33767760089345\n+0.97500649360659\t0.88485329349111\t0.35950784393690\t0.59885894587575\t0.35479561165730\t0.34019021537065\t0.17808098950580\t0.23769420862405\t0.04486228246078\t0.50543142963579\t12.33714282417860\n+0.37625245429736\t0.59280540097589\t0.62994187558750\t0.14260031444628\t0.93384129946642\t0.94637988080910\t0.60229665773087\t0.38776628032663\t0.36318800410935\t0.20434527686864\t12.88055071230146\n+0.27676506139634\t0.24653588120355\t0.17360800174021\t0.96660969448732\t0.95701260035280\t0.59797368432892\t0.73130075305992\t0.34038522283744\t0.09205560337724\t0.46349801893715\t18.70900393660417\n+0.50869889323819\t0.08846017300289\t0.52803522331805\t0.99215803651053\t0.39503593175823\t0.33559644171857\t0.80545053732928\t0.75434899458235\t0.31306644158851\t0.63403668296228\t13.32147913155627\n+0.54040457530072\t0.29679375088001\t0.11078790118245\t0.31264029787574\t0.45697913004927\t0.65894007022620\t0.25425751781772\t0.64110125870070\t0.20012360721840\t0.65762480552898\t13.26925386310889\n+0.77828921544985\t0.77959839861075\t0.61032815320939\t0.30900034852440\t0.69773490751296\t0.85961829572907\t0.62532375775681\t0.98240782960955\t0.97650012701586\t0.16669413119886\t16.26499517078734\n+0.02317813647840\t0.16074454850708\t0.92349682525909\t0.95354984987953\t0.21097841871845\t0.36052525081461\t0.54937526162767\t0.27183084917697\t0.46060162107485\t0.69616156482339\t14.29442731349912\n+0.50035589667487\t0.71607099056434\t0.52595593622978\t0.00139902311904\t0.39470028668984\t0.49216696990115\t0.40288033137914\t0.35429830010632\t0.50061431944295\t0.44517662883114\t11.02623719229622\n+0.09043278819644\t0.27356292002744\t0.94347709774273\t0.02654464133394\t0.03999868964065\t0.28314035971982\t0.58234417021677\t0.99089280292483\t0.99264223740297\t0.99311737248104\t5.17529680436277\n+0.11004833096656\t0.66448144596394\t0.52398683448831\t0.17314990980873\t0.94296024491503\t0.24186008597625\t0.99893226884321\t0.58269381514990\t0.18327900063058\t0.38684542191779\t8.73494610704017\n+0.18967352891215\t0.41077067302531\t0.59468006890171\t0.71658609312834\t0.48689148236912\t0.30958981776670\t0.57744137282785\t0.44170781956874\t0.35967810260054\t0.32133193200881\t12.20292470261234\n+0.20820724019602\t0.45125862406183\t0.49184291026405\t0.89907631479371\t0.72936046102944\t0.77008977291970\t0.37543924756199\t0.34373953523538\t0.65503520599932\t0.71103799321050\t15.54791473458014\n+0.11353757521868\t0.13302868937358\t0.45603905760612\t0.15973623015851\t0.96164190377465\t0.83761574486181\t0.52016068703792\t0.21827225772815\t0.13491872253240\t0.97907034548387\t6.91854352707436\n+0.70704349568914\t0.85997555694566\t0.38717262782864\t0.25083401983172\t0.29943801894470\t0.85689552840502\t0.47298399056822\t0.66327704701613\t0.80572860743679\t0.25298050464972\t13.68961636548041\n+0.07957343897032\t0.73276060501572\t0.96139747750361\t0.95380473416766\t0.49049905188390\t0.63219206443276\t0.73299501983799\t0.90240950324797\t0.16224691874820\t0.40588132236756\t18.06987664088426\n+0.41709073558366\t0.69559102829207\t0.42484723792483\t0.85811422605143\t0.84693247960942\t0.07019911390869\t0.30175241348415\t0.97962368103017\t0.03562699655303\t0.49239264699858\t20.83271160'..b'97\t0.94227191496291\t7.35500227276053\n+0.65747075744411\t0.19562874880188\t0.52567876074104\t0.31080910409256\t0.55534839433138\t0.53552980736766\t0.46511292889839\t0.76786459433331\t0.88694697168655\t0.82980936841814\t9.82967962816587\n+0.95884307895640\t0.91106399609686\t0.11967478384416\t0.11446859495951\t0.99696500632827\t0.04000832595811\t0.85956374451868\t0.46550503372369\t0.28899832738919\t0.73326395780051\t12.89083214454110\n+0.47219244963378\t0.36603378202459\t0.07374308587639\t0.82120530233350\t0.48801691478932\t0.75706206486561\t0.37107807260931\t0.26950482476264\t0.73459463542670\t0.84656452629874\t19.45300037464767\n+0.77315971269645\t0.09726311997083\t0.31288480540422\t0.05429737124805\t0.99641786449707\t0.17769873435229\t0.37123100482185\t0.35893259209644\t0.23918094189868\t0.19412444639857\t8.56586545020601\n+0.72215686978947\t0.99634986239999\t0.65788106155873\t0.18964066816522\t0.79605001337872\t0.63314883404405\t0.05997465943644\t0.45123696414114\t0.39815557985267\t0.45748771121895\t14.08990318454368\n+0.17329540858703\t0.55516022466921\t0.67557570281697\t0.82642784063039\t0.75397534640948\t0.03806626488278\t0.79511365190160\t0.65393180708085\t0.60499330235987\t0.00079912648847\t15.62730799178629\n+0.01311478146364\t0.14710484933761\t0.26562391867981\t0.06049450827852\t0.25786563084967\t0.22906133301836\t0.82408377109698\t0.20185448655187\t0.88109232562870\t0.21436450568576\t3.05352492776642\n+0.09124750057287\t0.74580579352311\t0.50434003505263\t0.58620204328337\t0.36415611319488\t0.55325395954112\t0.81284469910627\t0.14007325741439\t0.26762510211970\t0.73954855025783\t9.80487335854274\n+0.27379607811177\t0.59686146440691\t0.33862246805035\t0.07160379461501\t0.49859687569685\t0.71449130961071\t0.99063426277316\t0.30616421419444\t0.43181899369393\t0.54818355986588\t8.64124014879148\n+0.59227891215502\t0.10793438223332\t0.72180302378353\t0.28781493382596\t0.71019549092984\t0.26491733998837\t0.32929177720525\t0.15393928318286\t0.30573627751887\t0.76759356843621\t9.40791896736063\n+0.57384804400007\t0.97171023509445\t0.69184936806689\t0.49136225796250\t0.41895381309770\t0.95287842205705\t0.14422252170336\t0.52121030585434\t0.88914945419428\t0.72431615291271\t17.58115736412586\n+0.65242730280799\t0.57321087719437\t0.18508275660220\t0.61388086886624\t0.07695021292316\t0.66809451701064\t0.23147976471743\t0.22373847184444\t0.07931564343309\t0.52905314066137\t17.73348320503098\n+0.29220722494692\t0.53474433027316\t0.49663946753281\t0.43871374689137\t0.40966714178368\t0.26061101484449\t0.08937483777811\t0.80668663205374\t0.15657531573242\t0.91392614525783\t11.14983699152543\n+0.44666536992173\t0.44940086096851\t0.08179437299051\t0.69649341618554\t0.20657215375014\t0.09570310018075\t0.72201072227904\t0.39365518629943\t0.59111307585184\t0.51276461818493\t17.39215032093714\n+0.02479244084719\t0.76279461390933\t0.26576180603379\t0.97882684017667\t0.94868600684785\t0.72566997348949\t0.72550502055146\t0.05082479081617\t0.59406611432528\t0.71712665638338\t16.22282316439366\n+0.04187295085350\t0.48584833343640\t0.98682425894389\t0.04782633490074\t0.57885197413725\t0.07155939791944\t0.28014174429831\t0.70182182600545\t0.16232193959805\t0.49228648720155\t8.75116795261410\n+0.95454571129748\t0.58935516236524\t0.60662682021074\t0.86798654403851\t0.93654793684458\t0.14416045993162\t0.27700719020078\t0.12532193725529\t0.88472078815751\t0.82673777046447\t23.39743606740882\n+0.99535888109278\t0.81386961579101\t0.11914570059659\t0.93153678351429\t0.00698669273111\t0.53839624945247\t0.78250154219744\t0.88886925172791\t0.30537562757152\t0.64467750393558\t17.86973520845505\n+0.12491934664886\t0.60858430036276\t0.18949843940085\t0.43906581937979\t0.97041260302138\t0.06809275523457\t0.20517286226115\t0.50757194094102\t0.14050011761811\t0.93373835572665\t13.53666671909896\n+0.60654543170675\t0.46153152916887\t0.80150217090955\t0.69870731207645\t0.74455734291899\t0.32516377858166\t0.17845078715926\t0.01435150262556\t0.10704972728076\t0.27305170093104\t20.23185859895480\n+0.61652177543964\t0.94757922376409\t0.90647236884292\t0.96509402821359\t0.33762107364120\t0.65640308766918\t0.29145578099293\t0.15086922353098\t0.03693206346401\t0.59796374251126\t24.29559045754858\n'
b
diff -r 000000000000 -r eaddff553324 test-data/friedman2.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/friedman2.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t0\n+54.34049417909655\t580.41577804498036\t0.42451759074913\t9.44776132319904\t252.31753213122840\n+0.47188561909726\t324.26244765650472\t0.67074908472678\t9.25852755105048\t217.49891878908315\n+13.67065896849530\t1065.15237514930618\t0.89132195431226\t3.09202122117190\t949.49181230866191\n+18.53282195500751\t302.71124845232475\t0.21969749262499\t10.78623784707370\t69.03858906148859\n+81.16831490893233\t406.55138981837536\t0.81622474872584\t3.74073747041699\t341.61946168251893\n+43.17041836631217\t1661.32290939370682\t0.81764937877673\t4.36111950120899\t1359.06532936898702\n+17.54104537423366\t734.73264332017334\t0.00568850735257\t3.52426353444840\t18.03201411041058\n+79.56625084732873\t150.58465705466725\t0.59884337692849\t7.03804539042854\t120.25989238218870\n+10.51476854120563\t749.61728091801888\t0.03647605659257\t9.90411563442076\t29.29500204274906\n+98.09208570123114\t223.58662823399155\t0.89054594472850\t6.76901499400033\t221.96451266962563\n+74.24796890979773\t1155.14994326908754\t0.58184219239878\t1.20439132026923\t676.20288008333796\n+21.00265776728606\t1015.47627228348676\t0.76911517110565\t3.50695229138396\t781.30027040619507\n+28.58956904068647\t1518.16034202109449\t0.97500649360659\t9.84853293491106\t1480.49219516480912\n+35.95078439369023\t1103.97655589147462\t0.35479561165730\t4.40190215370646\t393.33223818275417\n+17.80809895058049\t513.96766354295312\t0.04486228246078\t6.05431429635789\t29.13372581378542\n+37.62524542973630\t1094.08731435497407\t0.62994187558750\t2.42600314446284\t690.23728828859043\n+93.38412994664191\t1671.69654829222122\t0.60229665773087\t4.87766280326631\t1011.17845018088019\n+36.31880041093498\t459.48790885887036\t0.27676506139634\t3.46535881203550\t132.25413083472941\n+17.36080017402051\t1704.74454199041770\t0.95701260035280\t6.97973684328921\t1631.55429074897393\n+73.13007530599226\t681.72659818103102\t0.09205560337724\t5.63498018937148\t96.36589298307057\n+50.86988932381939\t270.17473755699689\t0.52803522331805\t10.92158036510528\t151.45967058029146\n+39.50359317582296\t673.90351039803500\t0.80545053732928\t8.54348994582354\t544.23136876662579\n+31.30664415885097\t1161.44389849996833\t0.54040457530072\t3.96793750880015\t628.42966975327408\n+11.07879011824457\t636.40170691532239\t0.45697913004927\t7.58940070226197\t291.03303662060034\n+25.42575178177181\t1172.98478850506444\t0.20012360721840\t7.57624805528984\t236.11479781477169\n+77.82892154498485\t1399.23761909305881\t0.61032815320939\t4.09000348524402\t857.53308148795691\n+69.77349075129560\t1529.96037797557256\t0.62532375775681\t10.82407829609550\t959.26142361657560\n+97.65001270158552\t397.97993628844188\t0.02317813647840\t2.60744548507082\t98.08464391759719\n+92.34968252590873\t1683.40961181445255\t0.21097841871845\t4.60525250814608\t366.97302133435386\n+54.93752616276721\t569.73424151618599\t0.46060162107485\t7.96161564823385\t268.10919955478056\n+50.03558966748651\t1295.45745511454766\t0.52595593622978\t1.01399023119044\t683.18750535064999\n+39.47002866898355\t929.68153737371244\t0.40288033137914\t4.54298300106321\t376.62409950100181\n+50.06143194429532\t852.91679202019429\t0.09043278819644\t3.73562920027441\t91.95318916050276\n+94.34770977427269\t169.02778025117351\t0.03999868964065\t3.83140359719820\t94.58952950769820\n+58.23441702167689\t1744.41411222868214\t0.99264223740297\t10.93117372481045\t1732.55803362523739\n+11.00483309665630\t1211.17932126885103\t0.52398683448831\t2.73149909808731\t634.73712227782266\n+94.29602449150258\t520.77315817937847\t0.99893226884321\t6.82693815149899\t528.69394897178495\n+18.32790006305758\t757.62528864091405\t0.18967352891215\t5.10770673025310\t144.86527485195924\n+59.46800689017054\t1296.29894117862568\t0.48689148236912\t4.09589817766705\t633.95209204331320\n+57.74413728278473\t847.25004745856268\t0.35967810260054\t4.21331932008814\t310.15968510981907\n+20.82072401960227\t862.85251081887418\t0.49184291026405\t9.99076314793711\t424.89820582123940\n+72.93604610294412\t1383.70406021234839\t0.37543924756199\t4.43739535235384\t524.59168356660120\n+65.50352059993224\t1287.23540880812243\t0.11353757521868\t2.33028689373575\t160.15715894498879\n+45.60390576061239\t386.61331307620571'..b'5.36613567278891\t0.68462427169271\t5.88293166805099\t1156.58767097944997\n+48.54143101843673\t1704.88050248556237\t0.21134788749712\t5.11648138177833\t363.57774253644357\n+98.96655767792834\t172.07811591269444\t0.70132651409352\t1.25171563884812\t156.06931868323713\n+32.08817260865362\t245.77958638999525\t0.06088456434664\t2.11406316704053\t35.40508437542623\n+16.92689081454309\t1151.06970045219464\t0.43839309463984\t9.30903764603975\t504.90473090436518\n+23.97921895644722\t436.13916546124790\t0.71189965858292\t9.58294925326778\t311.41167624355961\n+55.90558855960195\t1276.42473559746963\t0.60511203551818\t6.59217283268040\t774.40045791345551\n+86.03941909075867\t1628.20197943455605\t0.84960732575898\t3.54466535494455\t1386.00528001290149\n+87.75555422867708\t836.50464658900239\t0.72949434396451\t5.12640767538794\t616.50288055791896\n+19.08360458112225\t1279.03708947993277\t0.24063282092985\t9.51324426832995\t308.36928692774461\n+82.41022892585868\t983.66448115430603\t0.38634079430617\t6.90880790734925\t388.86234039746984\n+13.75236149078257\t1446.07702142766880\t0.96582581524448\t8.79795804232935\t1396.72614500682334\n+23.93350820958198\t1542.44475628035298\t0.80811501289370\t1.63681124220468\t1246.70212041837362\n+23.12283040488030\t1088.99047240300797\t0.13748694797777\t7.78440704371486\t151.49686527332432\n+99.21906895152472\t592.47620099114886\t0.76091275955885\t1.46527167666139\t461.61075902543962\n+33.25359065222067\t1668.71176293712756\t0.63651704125478\t7.01848606131893\t1062.68380316914022\n+92.81846814636464\t422.46031132251642\t0.01782318402652\t2.90072176134172\t93.12330768632674\n+52.18717978245897\t935.65247451329367\t0.80049120556915\t9.59436311444911\t750.79740145181643\n+21.29560322403450\t839.99840771015579\t0.42161750906259\t1.54717377081942\t354.79694525077520\n+0.99336936709830\t1415.84717539845406\t0.27531321879490\t8.17740004543336\t389.80262255819741\n+42.13559217565558\t359.82122610463938\t0.19252168025198\t4.13815233317635\t81.08093014555008\n+80.51701673672972\t146.28961840978741\t0.04910597269756\t6.66000384985094\t80.83675338792878\n+68.68106961543961\t1313.00248207047480\t0.47969376130168\t4.67656721778529\t633.57254918876924\n+83.99700992017513\t867.59808369591872\t0.32136583878220\t1.92719867171042\t291.19364899071132\n+6.04379321355856\t274.24409587470802\t0.68270645642831\t7.80735767230638\t187.32527058550369\n+24.31741658874254\t1171.93956616774358\t0.06913918311155\t9.72919961746265\t84.59721173364210\n+10.96069498325127\t401.83796801162464\t0.46737799144535\t8.75949219403373\t188.12950260375516\n+85.44445157050565\t469.35693097718968\t0.07664186926890\t8.88914797103218\t92.70787499286608\n+54.75000011493021\t1410.11180659606998\t0.92004704285871\t5.80972765927881\t1298.52380843775677\n+45.95536700101840\t1104.17293369002959\t0.59931878072428\t6.04373451233758\t663.34519384806902\n+30.68785297434506\t1010.03319009672180\t0.92492694340279\t10.70550802030219\t934.71071704336362\n+39.57946098969964\t1430.51649192529544\t0.63508814775093\t3.29969165249033\t909.36559893052390\n+5.12070928629372\t172.16298201137550\t0.12284775190377\t3.20212517833639\t21.75914684133634\n+82.90227537008228\t592.05120099602254\t0.78106408263109\t6.04665812596679\t469.80205128257876\n+13.84489237765847\t1396.68614300270474\t0.92133179352084\t10.43018632036191\t1286.88575739979092\n+70.44357972639433\t1259.26516594596546\t0.54655181336750\t4.69217229737883\t691.84909149860289\n+98.24675747269930\t232.84478566118992\t0.89767831074227\t3.63930989094871\t230.95708002350815\n+57.44758420233384\t963.49649420466915\t0.55447680807193\t7.47167331828399\t537.31617549230930\n+18.54741590544805\t569.97496501234991\t0.14843865774278\t1.30304170594405\t86.61413266611218\n+93.92555841521393\t692.13102468460193\t0.10956460430561\t4.78326995661470\t120.71709895964038\n+38.40794590414141\t1212.71859427964318\t0.24449092930616\t7.61480973773685\t298.97589013891826\n+9.84928837918622\t1074.57745936695619\t0.10686550466855\t6.48254507463987\t115.25672659315927\n+51.97517077112073\t609.60010892704452\t0.45572905099810\t1.38666520129567\t282.63144665101163\n+59.90030248885009\t126.45889013919340\t0.50181359368553\t6.01726121691614\t87.26338001352038\n'
b
diff -r 000000000000 -r eaddff553324 test-data/friedman3.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/friedman3.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t0\n+54.34049417909655\t580.41577804498036\t0.42451759074913\t9.44776132319904\t1.35373021827042\n+0.47188561909726\t324.26244765650472\t0.67074908472678\t9.25852755105048\t1.56862672525420\n+13.67065896849530\t1065.15237514930618\t0.89132195431226\t3.09202122117190\t1.55639796005439\n+18.53282195500751\t302.71124845232475\t0.21969749262499\t10.78623784707370\t1.29902155047722\n+81.16831490893233\t406.55138981837536\t0.81622474872584\t3.74073747041699\t1.33090339404347\n+43.17041836631217\t1661.32290939370682\t0.81764937877673\t4.36111950120899\t1.53902619730346\n+17.54104537423366\t734.73264332017334\t0.00568850735257\t3.52426353444840\t0.23388919220068\n+79.56625084732873\t150.58465705466725\t0.59884337692849\t7.03804539042854\t0.84782025617307\n+10.51476854120563\t749.61728091801888\t0.03647605659257\t9.90411563442076\t1.20367824178660\n+98.09208570123114\t223.58662823399155\t0.89054594472850\t6.76901499400033\t1.11305076538663\n+74.24796890979773\t1155.14994326908754\t0.58184219239878\t1.20439132026923\t1.46077316749872\n+21.00265776728606\t1015.47627228348676\t0.76911517110565\t3.50695229138396\t1.54391141597256\n+28.58956904068647\t1518.16034202109449\t0.97500649360659\t9.84853293491106\t1.55148427211649\n+35.95078439369023\t1103.97655589147462\t0.35479561165730\t4.40190215370646\t1.47926803122527\n+17.80809895058049\t513.96766354295312\t0.04486228246078\t6.05431429635789\t0.91315256357435\n+37.62524542973630\t1094.08731435497407\t0.62994187558750\t2.42600314446284\t1.51625869990221\n+93.38412994664191\t1671.69654829222122\t0.60229665773087\t4.87766280326631\t1.47831276444836\n+36.31880041093498\t459.48790885887036\t0.27676506139634\t3.46535881203550\t1.29260835966305\n+17.36080017402051\t1704.74454199041770\t0.95701260035280\t6.97973684328921\t1.56015547475739\n+73.13007530599226\t681.72659818103102\t0.09205560337724\t5.63498018937148\t0.70920593282267\n+50.86988932381939\t270.17473755699689\t0.52803522331805\t10.92158036510528\t1.22827369187885\n+39.50359317582296\t673.90351039803500\t0.80545053732928\t8.54348994582354\t1.49814640817714\n+31.30664415885097\t1161.44389849996833\t0.54040457530072\t3.96793750880015\t1.52095843815128\n+11.07879011824457\t636.40170691532239\t0.45697913004927\t7.58940070226197\t1.53272000488866\n+25.42575178177181\t1172.98478850506444\t0.20012360721840\t7.57624805528984\t1.46290326408829\n+77.82892154498485\t1399.23761909305881\t0.61032815320939\t4.09000348524402\t1.47991217301289\n+69.77349075129560\t1529.96037797557256\t0.62532375775681\t10.82407829609550\t1.49799535701286\n+97.65001270158552\t397.97993628844188\t0.02317813647840\t2.60744548507082\t0.09417496029834\n+92.34968252590873\t1683.40961181445255\t0.21097841871845\t4.60525250814608\t1.31640898791919\n+54.93752616276721\t569.73424151618599\t0.46060162107485\t7.96161564823385\t1.36442735303208\n+50.03558966748651\t1295.45745511454766\t0.52595593622978\t1.01399023119044\t1.49749225094498\n+39.47002866898355\t929.68153737371244\t0.40288033137914\t4.54298300106321\t1.46580400777824\n+50.06143194429532\t852.91679202019429\t0.09043278819644\t3.73562920027441\t0.99509523340377\n+94.34770977427269\t169.02778025117351\t0.03999868964065\t3.83140359719820\t0.07152072382162\n+58.23441702167689\t1744.41411222868214\t0.99264223740297\t10.93117372481045\t1.53717818150701\n+11.00483309665630\t1211.17932126885103\t0.52398683448831\t2.73149909808731\t1.55345783481985\n+94.29602449150258\t520.77315817937847\t0.99893226884321\t6.82693815149899\t1.39148036801250\n+18.32790006305758\t757.62528864091405\t0.18967352891215\t5.10770673025310\t1.44393949404119\n+59.46800689017054\t1296.29894117862568\t0.48689148236912\t4.09589817766705\t1.47685300084874\n+57.74413728278473\t847.25004745856268\t0.35967810260054\t4.21331932008814\t1.38352817292728\n+20.82072401960227\t862.85251081887418\t0.49184291026405\t9.99076314793711\t1.52177501985608\n+72.93604610294412\t1383.70406021234839\t0.37543924756199\t4.43739535235384\t1.43131051873998\n+65.50352059993224\t1287.23540880812243\t0.11353757521868\t2.33028689373575\t1.14944356563723\n+45.60390576061239\t386.61331307620571\t0.96164190377465\t9.37615744861810\t1.44874342727972\n+52.01606870379233\t482.23941725'..b'859781106711\t0.08226452393202\t7.35636709825399\t1.26428010560184\n+79.64052251862078\t1685.36613567278891\t0.68462427169271\t5.88293166805099\t1.50188361535352\n+48.54143101843673\t1704.88050248556237\t0.21134788749712\t5.11648138177833\t1.43688601455846\n+98.96655767792834\t172.07811591269444\t0.70132651409352\t1.25171563884812\t0.88392739834518\n+32.08817260865362\t245.77958638999525\t0.06088456434664\t2.11406316704053\t0.43631433888508\n+16.92689081454309\t1151.06970045219464\t0.43839309463984\t9.30903764603975\t1.53726512352234\n+23.97921895644722\t436.13916546124790\t0.71189965858292\t9.58294925326778\t1.49371835981379\n+55.90558855960195\t1276.42473559746963\t0.60511203551818\t6.59217283268040\t1.49854138074293\n+86.03941909075867\t1628.20197943455605\t0.84960732575898\t3.54466535494455\t1.50867912100600\n+87.75555422867708\t836.50464658900239\t0.72949434396451\t5.12640767538794\t1.42796708729724\n+19.08360458112225\t1279.03708947993277\t0.24063282092985\t9.51324426832995\t1.50887120141284\n+82.41022892585868\t983.66448115430603\t0.38634079430617\t6.90880790734925\t1.35725052598321\n+13.75236149078257\t1446.07702142766880\t0.96582581524448\t8.79795804232935\t1.56095002746356\n+23.93350820958198\t1542.44475628035298\t0.80811501289370\t1.63681124220468\t1.55159769213597\n+23.12283040488030\t1088.99047240300797\t0.13748694797777\t7.78440704371486\t1.41756832683904\n+99.21906895152472\t592.47620099114886\t0.76091275955885\t1.46527167666139\t1.35416492977877\n+33.25359065222067\t1668.71176293712756\t0.63651704125478\t7.01848606131893\t1.53949913387512\n+92.81846814636464\t422.46031132251642\t0.01782318402652\t2.90072176134172\t0.08093567500779\n+52.18717978245897\t935.65247451329367\t0.80049120556915\t9.59436311444911\t1.50123122833668\n+21.29560322403450\t839.99840771015579\t0.42161750906259\t1.54717377081942\t1.51073828234348\n+0.99336936709830\t1415.84717539845406\t0.27531321879490\t8.17740004543336\t1.56824793336494\n+42.13559217565558\t359.82122610463938\t0.19252168025198\t4.13815233317635\t1.02432784389074\n+80.51701673672972\t146.28961840978741\t0.04910597269756\t6.66000384985094\t0.08897131915549\n+68.68106961543961\t1313.00248207047480\t0.47969376130168\t4.67656721778529\t1.46218003661270\n+83.99700992017513\t867.59808369591872\t0.32136583878220\t1.92719867171042\t1.27818079494083\n+6.04379321355856\t274.24409587470802\t0.68270645642831\t7.80735767230638\t1.53852709677779\n+24.31741658874254\t1171.93956616774358\t0.06913918311155\t9.72919961746265\t1.27923356083904\n+10.96069498325127\t401.83796801162464\t0.46737799144535\t8.75949219403373\t1.51250187991915\n+85.44445157050565\t469.35693097718968\t0.07664186926890\t8.88914797103218\t0.39847812418013\n+54.75000011493021\t1410.11180659606998\t0.92004704285871\t5.80972765927881\t1.52862056179624\n+45.95536700101840\t1104.17293369002959\t0.59931878072428\t6.04373451233758\t1.50146258128116\n+30.68785297434506\t1010.03319009672180\t0.92492694340279\t10.70550802030219\t1.53795903482368\n+39.57946098969964\t1430.51649192529544\t0.63508814775093\t3.29969165249033\t1.52725831744223\n+5.12070928629372\t172.16298201137550\t0.12284775190377\t3.20212517833639\t1.33323212481198\n+82.90227537008228\t592.05120099602254\t0.78106408263109\t6.04665812596679\t1.39340530523187\n+13.84489237765847\t1396.68614300270474\t0.92133179352084\t10.43018632036191\t1.56003767212055\n+70.44357972639433\t1259.26516594596546\t0.54655181336750\t4.69217229737883\t1.46880028650007\n+98.24675747269930\t232.84478566118992\t0.89767831074227\t3.63930989094871\t1.13140390826337\n+57.44758420233384\t963.49649420466915\t0.55447680807193\t7.47167331828399\t1.46367578814173\n+18.54741590544805\t569.97496501234991\t0.14843865774278\t1.30304170594405\t1.35498659455596\n+93.92555841521393\t692.13102468460193\t0.10956460430561\t4.78326995661470\t0.67921924302924\n+38.40794590414141\t1212.71859427964318\t0.24449092930616\t7.61480973773685\t1.44197530054534\n+9.84928837918622\t1074.57745936695619\t0.10686550466855\t6.48254507463987\t1.48523676081889\n+51.97517077112073\t609.60010892704452\t0.45572905099810\t1.38666520129567\t1.38584637577290\n+59.90030248885009\t126.45889013919340\t0.50181359368553\t6.01726121691614\t0.81422640615706\n'
b
diff -r 000000000000 -r eaddff553324 test-data/gaus.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/gaus.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 0
+1.17052698294814 2.07771223225020 1
+2.03460756150493 -0.55071441191459 1
+-0.07602346572462 0.00395759398760 0
+-0.18949583082318 0.25500144427338 0
+1.29974807475531 -1.73309562365328 1
+1.94326226343400 -1.44743611231959 1
+1.18962226802913 -1.69061682638360 1
+-0.57882582479099 -1.19945119919393 1
+0.73100034383481 1.36155612514533 1
+-0.51442989136879 -0.21606012000326 0
+0.10886346783368 0.50780959049232 0
+-0.12620118371358 1.99027364975409 1
+-0.70441819973502 -0.59137512108517 0
+-1.50758516026439 0.10788413080661 1
+-0.45802698550262 0.43516348812289 0
+1.09368664965872 -0.22951775323996 0
+-0.94004616154477 -0.82793236436587 1
+0.46629936835719 0.26998723863109 0
+-0.32623805920230 0.05567601485478 0
+0.69012147022471 0.68689006613840 0
+1.58617093842324 0.69339065851659 1
+0.67272080570966 -0.10441114339063 0
+-0.59998304484887 1.57616672431921 1
+2.07479316794657 -0.34329768218247 1
+-0.54443916167246 -0.66817173681343 0
+0.52299780452075 -0.01634540275749 0
+-2.97331547405089 0.03331727813886 1
+-0.00889866329211 -0.54319800840717 0
+-1.29639180715015 0.09513944356545 1
+-1.49772038108317 -1.19388597679194 1
+-0.25187913921321 -0.84243573825130 0
+-0.07961124591740 -0.88973148126503 0
+0.89459770576001 0.75969311985021 0
+-0.23871286931468 -1.42906689844829 1
+0.22117966922140 -1.07004333056829 0
+-0.31983104711809 -1.14774159987659 0
+-0.42371509994342 -1.18598356492917 1
+0.98132078695123 0.51421884139438 0
+0.75044476153418 -0.45594692746800 0
+1.29626258639906 0.95227562608189 1
+-1.74976547305470 0.34268040332750 1
+0.73699516901821 0.43586725251491 0
+0.61303888168755 0.73620521332382 0
+-1.41504292085253 -0.64075992301057 1
+0.22239080944545 -0.68492173524723 0
+1.61898166067526 1.54160517451341 1
+1.87657342696217 -0.37690335016897 1
+0.00731456322890 -0.61293873547816 0
+0.74705565509915 0.42967643586261 0
+0.10887198989791 0.02828363482307 0
+-0.43813562270442 -1.11831824625544 0
+0.30104946378807 -1.68489996168518 1
+-1.39699934495328 -1.09717198463982 1
+-0.24888866705811 -0.45017643501165 0
+-1.63552939938082 -1.04420987770932 1
+-0.17478155445150 1.01726434325117 0
+-0.58359505032266 0.81684707168578 0
+-1.95808123420787 -0.13480131198999 1
+0.42238022042198 -1.09404293103224 0
+-0.98331009912963 0.35750775316737 0
+-1.56668752957839 0.90497412146668 1
+0.94900477650526 -0.01939758596247 0
+-0.53128037685191 1.02973268513335 0
+0.75306218769198 -1.60943889617295 1
+0.13024845535270 0.94936086466099 0
+-0.33177713505281 -0.68921797808975 0
+1.70362398812070 -0.72215077005575 1
+-1.84118830018672 0.36609322616730 1
+-0.36546199267663 -1.27102304084666 1
+-0.88179838948302 0.01863894948806 0
+-1.70595200573817 0.36916395710701 1
+-0.86222734651048 1.24946974272698 1
+-1.18801759731772 -0.54974619353549 1
+-1.70465120576096 -1.13626100682736 1
+-0.18501411089711 -2.48715153522277 1
+-0.45592201921402 0.64917292725468 0
+0.22239960855530 -1.44321699522534 1
+0.75045333032684 -1.30699233908082 1
+0.13242780114877 0.02221392803939 0
+1.83193608182554 0.00301743403121 1
+-0.41581633584065 -1.35850293675980 1
+-1.35639904886131 -1.23243451391493 1
+-1.54061602455261 2.04671396848214 1
+-1.21725413064101 -0.15726516737514 0
+1.02692143939979 -1.43219061105893 1
+1.15303580256364 -0.25243603652139 0
+0.58057333579427 -1.10452309266229 1
+1.77599358550677 0.51307437883965 1
+-0.75635230559444 0.81645401101929 0
+1.23690788519023 -0.23028467842711 1
+0.31736797594107 -0.75241417772504 0
+0.18451869056394 0.93708220110895 0
+-0.61662937168319 0.76318364605999 0
+0.77962630366370 -0.43812091634884 0
+0.23784462192362 0.01354854862861 0
+2.29865394071368 -0.16520955264073 1
+0.19291719182331 -0.34845893065237 0
+-1.61357850282218 1.47071386661213 1
+-2.01518871712253 -0.07954058693411 1
+0.77882239932307 0.42823287059674 0
b
diff -r 000000000000 -r eaddff553324 test-data/gbc_model01
b
Binary file test-data/gbc_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/gbc_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/gbc_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 predicted
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 1
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 1
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/gbr_model01
b
Binary file test-data/gbr_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/gbr_prediction_result01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/gbr_prediction_result01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,88 @@
+year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed predicted
+2016 9 29 69 68 66.1 63 71 68 57 0 0 0 0 1 0 0 69.58390938468499
+2016 4 27 59 60 60.7 59 65 60 50 0 0 0 0 0 0 1 62.52052253790107
+2016 11 28 53 48 48.0 46 48 49 44 0 1 0 0 0 0 0 51.680887055498296
+2016 10 12 60 62 61.0 60 63 63 52 0 0 0 0 0 0 1 61.246237852679315
+2016 6 19 67 65 70.4 69 73 70 58 0 0 0 1 0 0 0 65.03047512424794
+2016 5 7 68 77 63.0 61 65 63 83 0 0 1 0 0 0 0 71.59883326872612
+2016 7 25 75 80 77.1 75 82 76 81 0 1 0 0 0 0 0 78.5487110206859
+2016 8 15 90 83 76.6 76 79 75 70 0 1 0 0 0 0 0 80.77545676519121
+2016 10 28 58 60 55.6 52 56 55 52 1 0 0 0 0 0 0 62.11231551486949
+2016 6 5 80 81 68.0 64 70 66 54 0 0 0 1 0 0 0 72.42798354934989
+2016 3 19 58 63 54.2 54 59 54 62 0 0 1 0 0 0 0 61.63169537788603
+2016 6 7 92 86 68.3 67 69 70 58 0 0 0 0 0 1 0 74.4731129283374
+2016 12 10 41 36 45.9 44 48 44 65 0 0 1 0 0 0 0 39.39391240070939
+2016 4 23 73 64 59.9 56 63 59 57 0 0 1 0 0 0 0 62.93072314757922
+2016 6 24 75 68 71.5 67 73 73 65 1 0 0 0 0 0 0 73.42248151259705
+2016 2 9 51 57 49.4 45 52 49 57 0 0 0 0 0 1 0 55.106926049453094
+2016 11 10 71 65 52.2 52 54 51 38 0 0 0 0 1 0 0 62.931939262865185
+2016 3 21 61 55 54.5 52 56 55 52 0 1 0 0 0 0 0 56.54303204039889
+2016 2 28 60 57 51.3 48 56 53 66 0 0 0 1 0 0 0 57.5819236251605
+2016 6 28 78 85 72.4 72 76 74 67 0 0 0 0 0 1 0 77.87772901898535
+2016 10 6 63 66 63.3 62 67 63 55 0 0 0 0 1 0 0 64.65839290042257
+2016 2 17 55 56 50.0 45 51 49 46 0 0 0 0 0 0 1 54.26509333618539
+2016 6 15 66 60 69.7 65 73 71 69 0 0 0 0 0 0 1 66.15190585447276
+2016 10 15 60 60 59.9 59 62 59 46 0 0 1 0 0 0 0 62.135403207035466
+2016 3 26 54 57 55.2 53 57 55 54 0 0 1 0 0 0 0 59.148716891180484
+2016 1 26 51 54 48.3 44 53 50 61 0 0 0 0 0 1 0 53.05069255536133
+2016 5 23 59 66 66.1 63 68 68 66 0 1 0 0 0 0 0 64.85734973368784
+2016 1 10 48 50 46.5 45 48 48 49 0 0 0 1 0 0 0 45.06961558051259
+2016 5 22 66 59 65.9 62 66 65 80 0 0 0 1 0 0 0 60.46222634728846
+2016 7 15 75 77 76.0 74 80 78 75 1 0 0 0 0 0 0 82.42822449858019
+2016 4 22 81 73 59.7 59 64 60 59 1 0 0 0 0 0 0 72.82325656081416
+2016 4 29 61 64 61.2 61 65 61 49 1 0 0 0 0 0 0 65.00954748796826
+2016 1 23 52 57 48.0 45 49 50 37 0 0 1 0 0 0 0 50.836039030817304
+2016 8 16 83 84 76.5 72 78 78 90 0 0 0 0 0 1 0 82.12928759095375
+2016 8 1 76 73 77.4 76 78 79 65 0 1 0 0 0 0 0 72.22807576891064
+2016 2 27 61 60 51.2 51 53 53 61 0 0 1 0 0 0 0 61.680080402280524
+2016 2 12 56 55 49.6 49 52 48 33 1 0 0 0 0 0 0 54.563346197441135
+2016 1 31 52 48 48.7 47 52 49 61 0 0 0 1 0 0 0 51.05906646453181
+2016 9 5 67 68 73.5 71 75 73 54 0 1 0 0 0 0 0 68.96231670707674
+2016 12 20 39 46 45.1 45 49 45 62 0 0 0 0 0 1 0 41.12571355242521
+2016 5 1 61 68 61.6 60 65 60 75 0 0 0 1 0 0 0 66.15287588548186
+2016 3 28 59 51 55.5 55 57 55 47 0 1 0 0 0 0 0 59.11011722462772
+2016 4 21 81 81 59.4 55 61 59 55 0 0 0 0 1 0 0 74.41085058157081
+2016 1 6 40 44 46.1 43 49 48 40 0 0 0 0 0 0 1 41.20470505512009
+2016 10 21 58 62 57.8 56 60 59 44 1 0 0 0 0 0 0 61.62578223843827
+2016 5 2 68 77 61.9 60 66 61 59 0 1 0 0 0 0 0 72.48517225879384
+2016 3 1 53 54 51.5 48 56 50 53 0 0 0 0 0 1 0 53.70588500948454
+2016 7 21 78 82 76.8 73 81 78 84 0 0 0 0 1 0 0 82.7108327367616
+2016 3 17 51 53 53.9 49 58 52 62 0 0 0 0 1 0 0 53.251174797156146
+2016 12 6 46 40 46.4 44 50 45 56 0 0 0 0 0 1 0 42.363067913515295
+2016 12 21 46 51 45.1 44 50 46 39 0 0 0 0 0 0 1 45.6445314453422
+2016 1 4 44 41 45.9 44 48 46 53 0 1 0 0 0 0 0 42.214387828919136
+2016 10 2 67 63 64.9 62 69 66 82 0 0 0 1 0 0 0 62.736396078841445
+2016 5 28 65 64 66.8 64 69 65 64 0 0 1 0 0 0 0 63.947755881441275
+2016 9 11 74 77 72.1 69 75 71 70 0 0 0 1 0 0 0 73.98460722074996
+2016 10 25 62 61 56.5 53 60 55 70 0 0 0 0 0 1 0 61.917230159710556
+2016 2 18 56 57 50.1 47 55 49 34 0 0 0 0 1 0 0 55.720840480421955
+2016 11 1 117 59 54.5 51 59 55 61 0 0 0 0 0 1 0 61.52527009553642
+2016 3 16 49 51 53.7 52 54 55 65 0 0 0 0 0 0 1 54.86875365404632
+2016 4 26 55 59 60.5 56 61 62 75 0 0 0 0 0 1 0 61.34654097192005
+2016 6 10 67 65 68.8 67 71 67 73 1 0 0 0 0 0 0 65.38427016260138
+2016 2 3 46 51 48.9 48 49 50 40 0 0 0 0 0 0 1 49.75042424691725
+2016 3 7 64 60 52.4 49 57 53 71 0 1 0 0 0 0 0 61.08886411894317
+2016 9 18 75 68 70.0 66 73 71 90 0 0 0 1 0 0 0 70.7844532497458
+2016 3 20 63 61 54.3 51 56 55 50 0 0 0 1 0 0 0 59.66542877819202
+2016 4 6 60 57 56.8 53 59 57 64 0 0 0 0 0 0 1 59.301283011436794
+2016 7 2 73 76 73.3 70 77 73 84 0 0 1 0 0 0 0 71.22373270826222
+2016 7 5 71 68 74.0 72 77 74 62 0 0 0 0 0 1 0 69.18347305115272
+2016 7 19 80 73 76.6 76 78 77 90 0 0 0 0 0 1 0 77.46150755171419
+2016 12 9 40 41 46.0 43 51 44 54 1 0 0 0 0 0 0 41.72540550328788
+2016 6 29 85 79 72.6 68 76 74 81 0 0 0 0 0 0 1 76.10594345672801
+2016 3 22 55 56 54.6 51 55 54 64 0 0 0 0 0 1 0 58.39058086785531
+2016 4 3 71 63 56.3 54 61 56 64 0 0 0 1 0 0 0 60.14340322699943
+2016 1 17 48 54 47.4 45 51 46 47 0 0 0 1 0 0 0 50.26292708961779
+2016 3 10 54 55 52.8 49 55 53 50 0 0 0 0 1 0 0 55.522605642512985
+2016 5 9 82 63 63.4 59 66 62 64 0 1 0 0 0 0 0 61.00788720614107
+2016 1 8 51 45 46.3 43 47 46 34 1 0 0 0 0 0 0 44.83434926564482
+2016 8 11 72 76 76.9 74 81 75 80 0 0 0 0 1 0 0 74.70250254902773
+2016 12 29 47 48 45.3 43 50 45 65 0 0 0 0 1 0 0 49.53438043623214
+2016 11 23 54 54 49.1 48 52 49 38 0 0 0 0 0 0 1 51.467278500089826
+2016 11 19 52 55 50.0 50 54 49 56 0 0 1 0 0 0 0 53.781953941654095
+2016 4 7 57 68 56.9 52 61 55 38 0 0 0 0 1 0 0 68.59176558339176
+2016 6 4 71 80 67.9 63 72 66 76 0 0 1 0 0 0 0 72.73805569547436
+2016 6 17 67 71 70.0 66 74 69 54 1 0 0 0 0 0 0 74.00873400230815
+2016 10 5 61 63 63.7 61 66 65 48 0 0 0 0 0 0 1 63.553834877849695
+2016 3 4 55 59 51.9 47 56 53 45 1 0 0 0 0 0 0 57.389419897063036
+2016 12 22 51 49 45.1 42 47 46 38 0 0 0 0 1 0 0 44.218563783534144
b
diff -r 000000000000 -r eaddff553324 test-data/get_params.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+ Parameter Value
+@ copy_X copy_X: True
+@ fit_intercept fit_intercept: True
+* n_jobs n_jobs: 1
+@ normalize normalize: False
+ Note: @, params eligible for search in searchcv tool.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params01.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,30 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('robustscaler', RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)), ('selectkbest', SelectKBest(k=10, score_func=<function f_classif at 0x111ef0158>)), ('svr', SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
+  gamma='auto_deprecated', kernel='linear', max_iter=-1, shrinking=True,
+  tol=0.001, verbose=False))]"
+@ robustscaler "robustscaler: RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)"
+@ selectkbest selectkbest: SelectKBest(k=10, score_func=<function f_classif at 0x111ef0158>)
+@ svr "svr: SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
+  gamma='auto_deprecated', kernel='linear', max_iter=-1, shrinking=True,
+  tol=0.001, verbose=False)"
+@ robustscaler__copy robustscaler__copy: True
+@ robustscaler__quantile_range robustscaler__quantile_range: (25.0, 75.0)
+@ robustscaler__with_centering robustscaler__with_centering: True
+@ robustscaler__with_scaling robustscaler__with_scaling: True
+@ selectkbest__k selectkbest__k: 10
+@ selectkbest__score_func selectkbest__score_func: <function f_classif at 0x111ef0158>
+@ svr__C svr__C: 1.0
+@ svr__cache_size svr__cache_size: 200
+@ svr__coef0 svr__coef0: 0.0
+@ svr__degree svr__degree: 3
+@ svr__epsilon svr__epsilon: 0.1
+@ svr__gamma svr__gamma: 'auto_deprecated'
+@ svr__kernel svr__kernel: 'linear'
+@ svr__max_iter svr__max_iter: -1
+@ svr__shrinking svr__shrinking: True
+@ svr__tol svr__tol: 0.001
+* svr__verbose svr__verbose: False
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params02.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,33 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('robustscaler', RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)), ('lassocv', LassoCV(alphas=None, copy_X=True, cv='warn', eps=0.001, fit_intercept=True,
+    max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
+    precompute='auto', random_state=None, selection='cyclic', tol=0.0001,
+    verbose=False))]"
+@ robustscaler "robustscaler: RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)"
+@ lassocv "lassocv: LassoCV(alphas=None, copy_X=True, cv='warn', eps=0.001, fit_intercept=True,
+    max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
+    precompute='auto', random_state=None, selection='cyclic', tol=0.0001,
+    verbose=False)"
+@ robustscaler__copy robustscaler__copy: True
+@ robustscaler__quantile_range robustscaler__quantile_range: (25.0, 75.0)
+@ robustscaler__with_centering robustscaler__with_centering: True
+@ robustscaler__with_scaling robustscaler__with_scaling: True
+@ lassocv__alphas lassocv__alphas: None
+@ lassocv__copy_X lassocv__copy_X: True
+@ lassocv__cv lassocv__cv: 'warn'
+@ lassocv__eps lassocv__eps: 0.001
+@ lassocv__fit_intercept lassocv__fit_intercept: True
+@ lassocv__max_iter lassocv__max_iter: 1000
+@ lassocv__n_alphas lassocv__n_alphas: 100
+* lassocv__n_jobs lassocv__n_jobs: 1
+@ lassocv__normalize lassocv__normalize: False
+@ lassocv__positive lassocv__positive: False
+@ lassocv__precompute lassocv__precompute: 'auto'
+@ lassocv__random_state lassocv__random_state: None
+@ lassocv__selection lassocv__selection: 'cyclic'
+@ lassocv__tol lassocv__tol: 0.0001
+* lassocv__verbose lassocv__verbose: False
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params03.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,43 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('robustscaler', RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)), ('xgbclassifier', XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1))]"
+@ robustscaler "robustscaler: RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
+       with_scaling=True)"
+@ xgbclassifier "xgbclassifier: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1)"
+@ robustscaler__copy robustscaler__copy: True
+@ robustscaler__quantile_range robustscaler__quantile_range: (25.0, 75.0)
+@ robustscaler__with_centering robustscaler__with_centering: True
+@ robustscaler__with_scaling robustscaler__with_scaling: True
+@ xgbclassifier__base_score xgbclassifier__base_score: 0.5
+@ xgbclassifier__booster xgbclassifier__booster: 'gbtree'
+@ xgbclassifier__colsample_bylevel xgbclassifier__colsample_bylevel: 1
+@ xgbclassifier__colsample_bytree xgbclassifier__colsample_bytree: 1
+@ xgbclassifier__gamma xgbclassifier__gamma: 0
+@ xgbclassifier__learning_rate xgbclassifier__learning_rate: 0.1
+@ xgbclassifier__max_delta_step xgbclassifier__max_delta_step: 0
+@ xgbclassifier__max_depth xgbclassifier__max_depth: 3
+@ xgbclassifier__min_child_weight xgbclassifier__min_child_weight: 1
+@ xgbclassifier__missing xgbclassifier__missing: nan
+@ xgbclassifier__n_estimators xgbclassifier__n_estimators: 100
+* xgbclassifier__n_jobs xgbclassifier__n_jobs: 1
+* xgbclassifier__nthread xgbclassifier__nthread: None
+@ xgbclassifier__objective xgbclassifier__objective: 'binary:logistic'
+@ xgbclassifier__random_state xgbclassifier__random_state: 0
+@ xgbclassifier__reg_alpha xgbclassifier__reg_alpha: 0
+@ xgbclassifier__reg_lambda xgbclassifier__reg_lambda: 1
+@ xgbclassifier__scale_pos_weight xgbclassifier__scale_pos_weight: 1
+@ xgbclassifier__seed xgbclassifier__seed: None
+@ xgbclassifier__silent xgbclassifier__silent: True
+@ xgbclassifier__subsample xgbclassifier__subsample: 1
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params04.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params04.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,39 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('selectfrommodel', SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None),
+        max_features=None, norm_order=1, prefit=False, threshold=None)), ('linearsvc', LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
+     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
+     multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
+     verbose=0))]"
+@ selectfrommodel "selectfrommodel: SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None),
+        max_features=None, norm_order=1, prefit=False, threshold=None)"
+@ linearsvc "linearsvc: LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
+     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
+     multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
+     verbose=0)"
+@ selectfrommodel__estimator__algorithm selectfrommodel__estimator__algorithm: 'SAMME.R'
+@ selectfrommodel__estimator__base_estimator selectfrommodel__estimator__base_estimator: None
+@ selectfrommodel__estimator__learning_rate selectfrommodel__estimator__learning_rate: 1.0
+@ selectfrommodel__estimator__n_estimators selectfrommodel__estimator__n_estimators: 50
+@ selectfrommodel__estimator__random_state selectfrommodel__estimator__random_state: None
+@ selectfrommodel__estimator "selectfrommodel__estimator: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None)"
+@ selectfrommodel__max_features selectfrommodel__max_features: None
+@ selectfrommodel__norm_order selectfrommodel__norm_order: 1
+@ selectfrommodel__prefit selectfrommodel__prefit: False
+@ selectfrommodel__threshold selectfrommodel__threshold: None
+@ linearsvc__C linearsvc__C: 1.0
+@ linearsvc__class_weight linearsvc__class_weight: None
+@ linearsvc__dual linearsvc__dual: True
+@ linearsvc__fit_intercept linearsvc__fit_intercept: True
+@ linearsvc__intercept_scaling linearsvc__intercept_scaling: 1
+@ linearsvc__loss linearsvc__loss: 'squared_hinge'
+@ linearsvc__max_iter linearsvc__max_iter: 1000
+@ linearsvc__multi_class linearsvc__multi_class: 'ovr'
+@ linearsvc__penalty linearsvc__penalty: 'l2'
+@ linearsvc__random_state linearsvc__random_state: None
+@ linearsvc__tol linearsvc__tol: 0.0001
+* linearsvc__verbose linearsvc__verbose: 0
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params05.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params05.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,31 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('randomforestregressor', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
+           max_features='auto', max_leaf_nodes=None,
+           min_impurity_decrease=0.0, min_impurity_split=None,
+           min_samples_leaf=1, min_samples_split=2,
+           min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,
+           oob_score=False, random_state=42, verbose=0, warm_start=False))]"
+@ randomforestregressor "randomforestregressor: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
+           max_features='auto', max_leaf_nodes=None,
+           min_impurity_decrease=0.0, min_impurity_split=None,
+           min_samples_leaf=1, min_samples_split=2,
+           min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,
+           oob_score=False, random_state=42, verbose=0, warm_start=False)"
+@ randomforestregressor__bootstrap randomforestregressor__bootstrap: True
+@ randomforestregressor__criterion randomforestregressor__criterion: 'mse'
+@ randomforestregressor__max_depth randomforestregressor__max_depth: None
+@ randomforestregressor__max_features randomforestregressor__max_features: 'auto'
+@ randomforestregressor__max_leaf_nodes randomforestregressor__max_leaf_nodes: None
+@ randomforestregressor__min_impurity_decrease randomforestregressor__min_impurity_decrease: 0.0
+@ randomforestregressor__min_impurity_split randomforestregressor__min_impurity_split: None
+@ randomforestregressor__min_samples_leaf randomforestregressor__min_samples_leaf: 1
+@ randomforestregressor__min_samples_split randomforestregressor__min_samples_split: 2
+@ randomforestregressor__min_weight_fraction_leaf randomforestregressor__min_weight_fraction_leaf: 0.0
+@ randomforestregressor__n_estimators randomforestregressor__n_estimators: 100
+* randomforestregressor__n_jobs randomforestregressor__n_jobs: 1
+@ randomforestregressor__oob_score randomforestregressor__oob_score: False
+@ randomforestregressor__random_state randomforestregressor__random_state: 42
+* randomforestregressor__verbose randomforestregressor__verbose: 0
+@ randomforestregressor__warm_start randomforestregressor__warm_start: False
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params06.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params06.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,22 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
+  svd_solver='auto', tol=0.0, whiten=False)), ('adaboostregressor', AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear',
+         n_estimators=50, random_state=None))]"
+@ pca "pca: PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
+  svd_solver='auto', tol=0.0, whiten=False)"
+@ adaboostregressor "adaboostregressor: AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear',
+         n_estimators=50, random_state=None)"
+@ pca__copy pca__copy: True
+@ pca__iterated_power pca__iterated_power: 'auto'
+@ pca__n_components pca__n_components: None
+@ pca__random_state pca__random_state: None
+@ pca__svd_solver pca__svd_solver: 'auto'
+@ pca__tol pca__tol: 0.0
+@ pca__whiten pca__whiten: False
+@ adaboostregressor__base_estimator adaboostregressor__base_estimator: None
+@ adaboostregressor__learning_rate adaboostregressor__learning_rate: 1.0
+@ adaboostregressor__loss adaboostregressor__loss: 'linear'
+@ adaboostregressor__n_estimators adaboostregressor__n_estimators: 50
+@ adaboostregressor__random_state adaboostregressor__random_state: None
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params07.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params07.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,16 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('rbfsampler', RBFSampler(gamma=2.0, n_components=10, random_state=None)), ('adaboostclassifier', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None))]"
+@ rbfsampler rbfsampler: RBFSampler(gamma=2.0, n_components=10, random_state=None)
+@ adaboostclassifier "adaboostclassifier: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None)"
+@ rbfsampler__gamma rbfsampler__gamma: 2.0
+@ rbfsampler__n_components rbfsampler__n_components: 10
+@ rbfsampler__random_state rbfsampler__random_state: None
+@ adaboostclassifier__algorithm adaboostclassifier__algorithm: 'SAMME.R'
+@ adaboostclassifier__base_estimator adaboostclassifier__base_estimator: None
+@ adaboostclassifier__learning_rate adaboostclassifier__learning_rate: 1.0
+@ adaboostclassifier__n_estimators adaboostclassifier__n_estimators: 50
+@ adaboostclassifier__random_state adaboostclassifier__random_state: None
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params08.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params08.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,24 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('featureagglomeration', FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto',
+           connectivity=None, linkage='ward', memory=None, n_clusters=3,
+           pooling_func=<function mean at 0x1123f1620>)), ('adaboostclassifier', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None))]"
+@ featureagglomeration "featureagglomeration: FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto',
+           connectivity=None, linkage='ward', memory=None, n_clusters=3,
+           pooling_func=<function mean at 0x1123f1620>)"
+@ adaboostclassifier "adaboostclassifier: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
+          learning_rate=1.0, n_estimators=50, random_state=None)"
+@ featureagglomeration__affinity featureagglomeration__affinity: 'euclidean'
+@ featureagglomeration__compute_full_tree featureagglomeration__compute_full_tree: 'auto'
+@ featureagglomeration__connectivity featureagglomeration__connectivity: None
+@ featureagglomeration__linkage featureagglomeration__linkage: 'ward'
+* featureagglomeration__memory featureagglomeration__memory: None
+@ featureagglomeration__n_clusters featureagglomeration__n_clusters: 3
+@ featureagglomeration__pooling_func featureagglomeration__pooling_func: <function mean at 0x1123f1620>
+@ adaboostclassifier__algorithm adaboostclassifier__algorithm: 'SAMME.R'
+@ adaboostclassifier__base_estimator adaboostclassifier__base_estimator: None
+@ adaboostclassifier__learning_rate adaboostclassifier__learning_rate: 1.0
+@ adaboostclassifier__n_estimators adaboostclassifier__n_estimators: 50
+@ adaboostclassifier__random_state adaboostclassifier__random_state: None
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params09.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params09.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,39 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('relieff', ReliefF(discrete_threshold=10, n_features_to_select=3, n_jobs=1,
+    n_neighbors=100, verbose=False)), ('randomforestregressor', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
+           max_features='auto', max_leaf_nodes=None,
+           min_impurity_decrease=0.0, min_impurity_split=None,
+           min_samples_leaf=1, min_samples_split=2,
+           min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=1,
+           oob_score=False, random_state=None, verbose=0, warm_start=False))]"
+@ relieff "relieff: ReliefF(discrete_threshold=10, n_features_to_select=3, n_jobs=1,
+    n_neighbors=100, verbose=False)"
+@ randomforestregressor "randomforestregressor: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
+           max_features='auto', max_leaf_nodes=None,
+           min_impurity_decrease=0.0, min_impurity_split=None,
+           min_samples_leaf=1, min_samples_split=2,
+           min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=1,
+           oob_score=False, random_state=None, verbose=0, warm_start=False)"
+@ relieff__discrete_threshold relieff__discrete_threshold: 10
+@ relieff__n_features_to_select relieff__n_features_to_select: 3
+* relieff__n_jobs relieff__n_jobs: 1
+@ relieff__n_neighbors relieff__n_neighbors: 100
+* relieff__verbose relieff__verbose: False
+@ randomforestregressor__bootstrap randomforestregressor__bootstrap: True
+@ randomforestregressor__criterion randomforestregressor__criterion: 'mse'
+@ randomforestregressor__max_depth randomforestregressor__max_depth: None
+@ randomforestregressor__max_features randomforestregressor__max_features: 'auto'
+@ randomforestregressor__max_leaf_nodes randomforestregressor__max_leaf_nodes: None
+@ randomforestregressor__min_impurity_decrease randomforestregressor__min_impurity_decrease: 0.0
+@ randomforestregressor__min_impurity_split randomforestregressor__min_impurity_split: None
+@ randomforestregressor__min_samples_leaf randomforestregressor__min_samples_leaf: 1
+@ randomforestregressor__min_samples_split randomforestregressor__min_samples_split: 2
+@ randomforestregressor__min_weight_fraction_leaf randomforestregressor__min_weight_fraction_leaf: 0.0
+@ randomforestregressor__n_estimators randomforestregressor__n_estimators: 'warn'
+* randomforestregressor__n_jobs randomforestregressor__n_jobs: 1
+@ randomforestregressor__oob_score randomforestregressor__oob_score: False
+@ randomforestregressor__random_state randomforestregressor__random_state: None
+* randomforestregressor__verbose randomforestregressor__verbose: 0
+@ randomforestregressor__warm_start randomforestregressor__warm_start: False
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params10.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params10.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,12 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('adaboostregressor', AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear',
+         n_estimators=50, random_state=None))]"
+@ adaboostregressor "adaboostregressor: AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear',
+         n_estimators=50, random_state=None)"
+@ adaboostregressor__base_estimator adaboostregressor__base_estimator: None
+@ adaboostregressor__learning_rate adaboostregressor__learning_rate: 1.0
+@ adaboostregressor__loss adaboostregressor__loss: 'linear'
+@ adaboostregressor__n_estimators adaboostregressor__n_estimators: 50
+@ adaboostregressor__random_state adaboostregressor__random_state: None
+ Note: @, params eligible for search in searchcv tool.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params11.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params11.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,46 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('editednearestneighbours', EditedNearestNeighbours(kind_sel='all', n_jobs=1, n_neighbors=3,
+            random_state=None, ratio=None, return_indices=False,
+            sampling_strategy='auto')), ('randomforestclassifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
+            max_depth=None, max_features='auto', max_leaf_nodes=None,
+            min_impurity_decrease=0.0, min_impurity_split=None,
+            min_samples_leaf=1, min_samples_split=2,
+            min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=1,
+            oob_score=False, random_state=None, verbose=0,
+            warm_start=False))]"
+@ editednearestneighbours "editednearestneighbours: EditedNearestNeighbours(kind_sel='all', n_jobs=1, n_neighbors=3,
+            random_state=None, ratio=None, return_indices=False,
+            sampling_strategy='auto')"
+@ randomforestclassifier "randomforestclassifier: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
+            max_depth=None, max_features='auto', max_leaf_nodes=None,
+            min_impurity_decrease=0.0, min_impurity_split=None,
+            min_samples_leaf=1, min_samples_split=2,
+            min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=1,
+            oob_score=False, random_state=None, verbose=0,
+            warm_start=False)"
+@ editednearestneighbours__kind_sel editednearestneighbours__kind_sel: 'all'
+* editednearestneighbours__n_jobs editednearestneighbours__n_jobs: 1
+@ editednearestneighbours__n_neighbors editednearestneighbours__n_neighbors: 3
+@ editednearestneighbours__random_state editednearestneighbours__random_state: None
+@ editednearestneighbours__ratio editednearestneighbours__ratio: None
+@ editednearestneighbours__return_indices editednearestneighbours__return_indices: False
+@ editednearestneighbours__sampling_strategy editednearestneighbours__sampling_strategy: 'auto'
+@ randomforestclassifier__bootstrap randomforestclassifier__bootstrap: True
+@ randomforestclassifier__class_weight randomforestclassifier__class_weight: None
+@ randomforestclassifier__criterion randomforestclassifier__criterion: 'gini'
+@ randomforestclassifier__max_depth randomforestclassifier__max_depth: None
+@ randomforestclassifier__max_features randomforestclassifier__max_features: 'auto'
+@ randomforestclassifier__max_leaf_nodes randomforestclassifier__max_leaf_nodes: None
+@ randomforestclassifier__min_impurity_decrease randomforestclassifier__min_impurity_decrease: 0.0
+@ randomforestclassifier__min_impurity_split randomforestclassifier__min_impurity_split: None
+@ randomforestclassifier__min_samples_leaf randomforestclassifier__min_samples_leaf: 1
+@ randomforestclassifier__min_samples_split randomforestclassifier__min_samples_split: 2
+@ randomforestclassifier__min_weight_fraction_leaf randomforestclassifier__min_weight_fraction_leaf: 0.0
+@ randomforestclassifier__n_estimators randomforestclassifier__n_estimators: 'warn'
+* randomforestclassifier__n_jobs randomforestclassifier__n_jobs: 1
+@ randomforestclassifier__oob_score randomforestclassifier__oob_score: False
+@ randomforestclassifier__random_state randomforestclassifier__random_state: None
+* randomforestclassifier__verbose randomforestclassifier__verbose: 0
+@ randomforestclassifier__warm_start randomforestclassifier__warm_start: False
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/get_params12.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/get_params12.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,47 @@
+ Parameter Value
+* memory memory: None
+* steps "steps: [('rfe', RFE(estimator=XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1),
+  n_features_to_select=None, step=1, verbose=0))]"
+@ rfe "rfe: RFE(estimator=XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1),
+  n_features_to_select=None, step=1, verbose=0)"
+@ rfe__estimator__base_score rfe__estimator__base_score: 0.5
+@ rfe__estimator__booster rfe__estimator__booster: 'gbtree'
+@ rfe__estimator__colsample_bylevel rfe__estimator__colsample_bylevel: 1
+@ rfe__estimator__colsample_bytree rfe__estimator__colsample_bytree: 1
+@ rfe__estimator__gamma rfe__estimator__gamma: 0
+@ rfe__estimator__learning_rate rfe__estimator__learning_rate: 0.1
+@ rfe__estimator__max_delta_step rfe__estimator__max_delta_step: 0
+@ rfe__estimator__max_depth rfe__estimator__max_depth: 3
+@ rfe__estimator__min_child_weight rfe__estimator__min_child_weight: 1
+@ rfe__estimator__missing rfe__estimator__missing: nan
+@ rfe__estimator__n_estimators rfe__estimator__n_estimators: 100
+* rfe__estimator__n_jobs rfe__estimator__n_jobs: 1
+* rfe__estimator__nthread rfe__estimator__nthread: None
+@ rfe__estimator__objective rfe__estimator__objective: 'reg:linear'
+@ rfe__estimator__random_state rfe__estimator__random_state: 0
+@ rfe__estimator__reg_alpha rfe__estimator__reg_alpha: 0
+@ rfe__estimator__reg_lambda rfe__estimator__reg_lambda: 1
+@ rfe__estimator__scale_pos_weight rfe__estimator__scale_pos_weight: 1
+@ rfe__estimator__seed rfe__estimator__seed: None
+@ rfe__estimator__silent rfe__estimator__silent: True
+@ rfe__estimator__subsample rfe__estimator__subsample: 1
+@ rfe__estimator "rfe__estimator: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1)"
+@ rfe__n_features_to_select rfe__n_features_to_select: None
+@ rfe__step rfe__step: 1
+* rfe__verbose rfe__verbose: 0
+ Note: @, searchable params in searchcv too.
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model01
b
Binary file test-data/glm_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model02
b
Binary file test-data/glm_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model03
b
Binary file test-data/glm_model03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model04
b
Binary file test-data/glm_model04 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model05
b
Binary file test-data/glm_model05 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model06
b
Binary file test-data/glm_model06 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model07
b
Binary file test-data/glm_model07 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_model08
b
Binary file test-data/glm_model08 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+86.97021227350001 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331 3703215242836.872
+91.2021798817 -0.6215229712070001 1.11914889596 0.390012184498 1.28956938152 3875943636708.156
+-47.4101632272 -0.638416457964 -0.7327774684530001 -0.8640261049779999 -1.06109770116 -2071574726112.0168
+61.712804630200004 -1.0999480057700002 -0.739679672932 0.585657963012 1.4890682753600002 2642119730255.405
+-206.998295124 0.130238853011 0.70574123041 1.3320656526399999 -1.3322092373799999 -8851040854159.11
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result02
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result02 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result03
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result03 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result04
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result04 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+86.97021227350001 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331 0.5282637592226301
+91.2021798817 -0.6215229712070001 1.11914889596 0.390012184498 1.28956938152 0.5180352211818147
+-47.4101632272 -0.638416457964 -0.7327774684530001 -0.8640261049779999 -1.06109770116 0.012682414140451959
+61.712804630200004 -1.0999480057700002 -0.739679672932 0.585657963012 1.4890682753600002 0.1869842234155321
+-206.998295124 0.130238853011 0.70574123041 1.3320656526399999 -1.3322092373799999 -1.6599360904302456
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result05
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result05 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 1
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 1
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result06
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result06 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 1
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 1
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result07
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result07 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+86.97021227350001 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331 0.6093152833692663
+91.2021798817 -0.6215229712070001 1.11914889596 0.390012184498 1.28956938152 0.5963828164943974
+-47.4101632272 -0.638416457964 -0.7327774684530001 -0.8640261049779999 -1.06109770116 -0.07927429227257943
+61.712804630200004 -1.0999480057700002 -0.739679672932 0.585657963012 1.4890682753600002 0.2621440442022235
+-206.998295124 0.130238853011 0.70574123041 1.3320656526399999 -1.3322092373799999 -1.7330414645145749
b
diff -r 000000000000 -r eaddff553324 test-data/glm_result08
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/glm_result08 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 0
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/grid_scores_.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/grid_scores_.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,18 @@
+grid_scores_
+0.7634899597102532
+0.7953981831108754
+0.7937021172447345
+0.7951323776809974
+0.793206654688313
+0.8046265123256906
+0.7972524937034748
+0.8106427221191455
+0.8072746749161711
+0.8146665413082648
+0.8155998800333571
+0.8056801877422021
+0.8123573954396127
+0.8155472512482351
+0.8164562575257928
+0.8151250518677203
+0.8107710182153142
b
diff -r 000000000000 -r eaddff553324 test-data/hamming_loss.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hamming_loss.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+hamming_loss : 
+0.15384615384615385
b
diff -r 000000000000 -r eaddff553324 test-data/hastie.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hastie.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,12001 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t0\n+-1.74976547305470\t0.34268040332750\t1.15303580256364\t-0.25243603652139\t0.98132078695123\t0.51421884139438\t0.22117966922140\t-1.07004333056829\t-0.18949583082318\t0.25500144427338\t-1.00000000000000\n+-0.45802698550262\t0.43516348812289\t-0.58359505032266\t0.81684707168578\t0.67272080570966\t-0.10441114339063\t-0.53128037685191\t1.02973268513335\t-0.43813562270442\t-1.11831824625544\t-1.00000000000000\n+1.61898166067526\t1.54160517451341\t-0.25187913921321\t-0.84243573825130\t0.18451869056394\t0.93708220110895\t0.73100034383481\t1.36155612514533\t-0.32623805920230\t0.05567601485478\t-1.00000000000000\n+0.22239960855530\t-1.44321699522534\t-0.75635230559444\t0.81645401101929\t0.75044476153418\t-0.45594692746800\t1.18962226802913\t-1.69061682638360\t-1.35639904886131\t-1.23243451391493\t1.00000000000000\n+-0.54443916167246\t-0.66817173681343\t0.00731456322890\t-0.61293873547816\t1.29974807475531\t-1.73309562365328\t-0.98331009912963\t0.35750775316737\t-1.61357850282218\t1.47071386661213\t1.00000000000000\n+-1.18801759731772\t-0.54974619353549\t-0.94004616154477\t-0.82793236436587\t0.10886346783368\t0.50780959049232\t-0.86222734651048\t1.24946974272698\t-0.07961124591740\t-0.88973148126503\t-1.00000000000000\n+-0.88179838948302\t0.01863894948806\t0.23784462192362\t0.01354854862861\t-1.63552939938082\t-1.04420987770932\t0.61303888168755\t0.73620521332382\t1.02692143939979\t-1.43219061105893\t-1.00000000000000\n+-1.84118830018672\t0.36609322616730\t-0.33177713505281\t-0.68921797808975\t2.03460756150493\t-0.55071441191459\t0.75045333032684\t-1.30699233908082\t0.58057333579427\t-1.10452309266229\t1.00000000000000\n+0.69012147022471\t0.68689006613840\t-1.56668752957839\t0.90497412146668\t0.77882239932307\t0.42823287059674\t0.10887198989791\t0.02828363482307\t-0.57882582479099\t-1.19945119919393\t-1.00000000000000\n+-1.70595200573817\t0.36916395710701\t1.87657342696217\t-0.37690335016897\t1.83193608182554\t0.00301743403121\t-0.07602346572462\t0.00395759398760\t-0.18501411089711\t-2.48715153522277\t1.00000000000000\n+-1.70465120576096\t-1.13626100682736\t-2.97331547405089\t0.03331727813886\t-0.24888866705811\t-0.45017643501165\t0.13242780114877\t0.02221392803939\t0.31736797594107\t-0.75241417772504\t1.00000000000000\n+-1.29639180715015\t0.09513944356545\t-0.42371509994342\t-1.18598356492917\t-0.36546199267663\t-1.27102304084666\t1.58617093842324\t0.69339065851659\t-1.95808123420787\t-0.13480131198999\t1.00000000000000\n+-1.54061602455261\t2.04671396848214\t-1.39699934495328\t-1.09717198463982\t-0.23871286931468\t-1.42906689844829\t0.94900477650526\t-0.01939758596247\t0.89459770576001\t0.75969311985021\t1.00000000000000\n+-1.49772038108317\t-1.19388597679194\t1.29626258639906\t0.95227562608189\t-1.21725413064101\t-0.15726516737514\t-1.50758516026439\t0.10788413080661\t0.74705565509915\t0.42967643586261\t1.00000000000000\n+-1.41504292085253\t-0.64075992301057\t0.77962630366370\t-0.43812091634884\t2.07479316794657\t-0.34329768218247\t-0.61662937168319\t0.76318364605999\t0.19291719182331\t-0.34845893065237\t-1.00000000000000\n+2.29865394071368\t-0.16520955264073\t0.46629936835719\t0.26998723863109\t-0.31983104711809\t-1.14774159987659\t1.70362398812070\t-0.72215077005575\t1.09368664965872\t-0.22951775323996\t1.00000000000000\n+-0.00889866329211\t-0.54319800840717\t0.75306218769198\t-1.60943889617295\t1.94326226343400\t-1.44743611231959\t0.13024845535270\t0.94936086466099\t-2.01518871712253\t-0.07954058693411\t1.00000000000000\n+0.30104946378807\t-1.68489996168518\t0.22239080944545\t-0.68492173524723\t-0.12620118371358\t1.99027364975409\t0.52299780452075\t-0.01634540275749\t-0.41581633584065\t-1.35850293675980\t1.00000000000000\n+-0.51442989136879\t-0.21606012000326\t0.42238022042198\t-1.09404293103224\t1.23690788519023\t-0.23028467842711\t-0.70441819973502\t-0.59137512108517\t0.73699516901821\t0.43586725251491\t-1.00000000000000\n+1.77599358550677\t0.51307437883965\t1.17052698294814\t2.07771223225020\t-0.45592201921402\t0.64917292725468\t-0.17478155445150\t1.01726434325117\t-0.59998304484887\t1.57616672431921\t1.00000000000000\n+0.60442353858920\t-0.90703041748070\t0.59202326936038\t-0.43706441565157\t0.101775772'..b'06309931633\t-1.06717262694293\t0.50073241156502\t0.18992453098454\t2.04628516955088\t1.82528927949279\t0.42917283635627\t1.00000000000000\n+-1.22259082208966\t1.80486825966875\t0.25472873542702\t-1.14612326011794\t-0.65895878644957\t-0.50665881367303\t-0.58717488257737\t1.98654951853110\t-0.92459516782334\t0.30357698596096\t1.00000000000000\n+-0.45373427820446\t-0.61483801155467\t-0.47897312964695\t-0.04537445187094\t1.32531372085786\t0.33328592586201\t-0.71798479536006\t-0.10644860260678\t-1.33607751334297\t-1.07453058288167\t-1.00000000000000\n+0.27622491542758\t-0.42838847957279\t-2.04367124772039\t-1.90685851796119\t0.96798821663439\t2.17219080431942\t0.10964573562466\t-1.27426723194757\t1.23222183027782\t-0.21419343967053\t1.00000000000000\n+1.25575137679073\t-0.82899667584661\t-0.31025868800052\t1.16595362276325\t0.39295553260644\t1.18950871662693\t-0.40465579431053\t-0.26518694565902\t1.53187556786493\t-0.67960362882453\t-1.00000000000000\n+1.50485411320375\t-1.23818277073586\t0.36024637121746\t-1.70726489995878\t2.04691378922358\t-0.91974061417311\t-0.74871898187249\t-0.18819401708008\t-0.06675497482732\t1.13417573817667\t1.00000000000000\n+-0.99461699492346\t0.61660727541860\t2.07874813007413\t-0.16292573253302\t0.19275302467826\t0.39123837209778\t-1.91087474789752\t-0.03029080425482\t0.60144061405756\t-1.50549085992392\t1.00000000000000\n+-0.89012378251865\t-0.34737909401570\t-1.21739990485979\t-0.36097243202727\t1.53931715782095\t0.96461318969018\t-0.33536048200336\t-0.39976788596124\t0.80781874858536\t-0.01648269060780\t-1.00000000000000\n+2.71624984831006\t-1.10170839054615\t0.40823857179199\t1.25331975589293\t0.24343699441434\t0.96603756159211\t0.16755705151620\t0.52653125273934\t-0.70407892178746\t0.33239506844990\t1.00000000000000\n+1.28538553907580\t0.72766461340125\t-0.76023886670864\t-1.11152239856363\t-0.44518987222192\t-1.49074021117829\t-0.22775458347687\t0.99289407328571\t0.96480612313626\t-0.06280974312666\t-1.00000000000000\n+-0.80234755283167\t-0.44824994889487\t1.87749617599518\t1.83135584380522\t-2.36024606600980\t0.39528743184894\t-0.89400524994086\t0.48937627815753\t-0.40659070466213\t0.31275234803913\t1.00000000000000\n+0.13505159908171\t-1.15605347603301\t0.64922003423281\t1.69618114190407\t-0.70155197211798\t1.08145071330605\t0.85047933757755\t1.10637056716661\t-1.04623999358839\t-1.30135399847546\t1.00000000000000\n+1.67077062936354\t0.64354784129343\t0.59812997964100\t-0.17237698634320\t-0.50352290746151\t0.51328398132421\t-0.58000465555931\t0.23233150054032\t-0.78335885157152\t-1.39723167543104\t-1.00000000000000\n+1.04247849341898\t-1.81435068819736\t0.71293771767906\t-0.21705433945730\t-0.10080393703821\t-0.88205424097537\t0.72201960894325\t-0.79149023242802\t0.28627214656039\t-1.50545688584277\t-1.00000000000000\n+0.21341208874143\t0.72014711833863\t-1.79828012260809\t1.71395949654835\t0.76266388164113\t-1.31967951126868\t0.85347469034475\t0.62002640738142\t0.30566431217301\t-1.56924194492647\t1.00000000000000\n+-0.64999199308320\t-1.02562683437324\t-0.13050507880770\t-0.14950841874608\t-0.31428180397186\t-0.84782684899640\t0.81216245245208\t1.21473327282491\t0.95005680843726\t-0.08427812455387\t-1.00000000000000\n+-0.45255217423509\t0.17011399688269\t0.95454352978426\t-0.50524967574339\t-1.87634064821904\t-1.74871436736529\t-0.90831051008574\t-0.37931872451117\t0.52607520147334\t1.57222444122907\t1.00000000000000\n+0.66169157934456\t0.88668364824582\t-0.25547151405970\t-1.24022983583502\t-1.04307067938948\t1.26349810720956\t0.40213622984300\t0.19115412195518\t-0.78010551786820\t0.30644220235020\t-1.00000000000000\n+0.90409905530316\t0.81499532233643\t0.32991900836553\t-0.64930144336002\t0.41358068830326\t0.33464811275834\t1.13234913031482\t1.77786603651925\t1.41434355354132\t-0.74600858518167\t-1.00000000000000\n+0.69637765860924\t1.04166053271514\t0.34093340616616\t-0.06843683271006\t0.99366591723931\t0.41459338970991\t0.55689330161166\t0.44922520374121\t-0.88329582162890\t1.27761891051187\t-1.00000000000000\n+2.42943479416636\t1.38124984515009\t1.05541499372178\t0.69618399416012\t-0.74518317796755\t0.99911118671284\t1.92133407983838\t0.36285784396181\t-0.27791688211903\t-1.15010888994762\t1.00000000000000\n'
b
diff -r 000000000000 -r eaddff553324 test-data/hinge_loss.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hinge_loss.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+hinge_loss : 
+2.7688227126800844
b
diff -r 000000000000 -r eaddff553324 test-data/imblearn_X.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/imblearn_X.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,1001 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t10\t11\t12\t13\t14\t15\t16\t17\t18\t19\n+0.6001306800348731\t-1.427664018242596\t-0.8128431040977644\t0.1861963773309323\t-0.44607171267571116\t1.4615378813401159\t-0.20792618079810765\t-0.12137371720639965\t-0.06446772833491145\t-1.3310164666152242\t-1.6691939894626755\t-0.13944961174285558\t0.030953613196132247\t-0.5179508164020254\t-0.42962235164106233\t-0.4500954165849111\t2.3038532915304692\t-0.553023784461563\t0.14876985407627283\t-1.7479587701471315\n+0.2536411543894025\t-1.4563873415342614\t-0.5225979569522042\t-1.2005696101463839\t-0.5955528693207531\t3.498593261471326\t0.4473543934217947\t0.7526786936590912\t-0.43342196111582254\t1.5525428863494506\t2.169113462445944\t-0.7532432311768639\t0.6556246969801681\t0.6124285450253644\t-1.1902855719466887\t0.1977380945472285\t1.0019115951772508\t1.694093458508633\t-0.24969904983753968\t0.45875979745362017\n+0.18225579346195472\t-1.2796018753350356\t0.6780773010107425\t-0.10707199060615594\t-1.8915329365851754\t2.9791576382913614\t3.7762486948586975\t0.7669666081001365\t-1.4611274189917611\t-0.5051625294981158\t3.5706473853319283\t0.361457272353967\t0.5353157105921461\t-1.1171165238191816\t0.5003091857920472\t-0.062337162720739185\t-1.664216917267093\t-0.8111511264316701\t-0.2873360912302924\t-1.8361890958897182\n+-0.3139065727141332\t-2.714269287754568\t-0.4617890824485205\t0.45142947949293805\t0.29920888623517505\t2.3280472639084735\t4.721085791340013\t-1.4606647440626481\t-1.0757028886615319\t0.3037546381512859\t3.8378027329578264\t-0.8505759374119342\t-2.4566574243609414\t-0.5335097714369801\t-1.4769442197132496\t0.43056336705151876\t-1.7354548844106463\t-2.0028486121607005\t1.215284108701237\t-2.4579651124937256\n+-1.2628695216496104\t0.11918065353143902\t-1.2346278008576206\t0.2531467787794355\t1.551433469203308\t2.3537000928251253\t3.6644773361790386\t-0.6331477268237771\t-1.7695433837247796\t-0.16479992734977722\t2.8574163681600524\t1.0802040441260066\t-0.7659697128037619\t-0.6336634851328513\t-2.961579371739917\t1.4941732279481985\t-2.712420873286752\t-0.6176127736001279\t-1.4459486909547319\t-2.1836873518837896\n+0.42487189699856703\t-0.5373034697510026\t-1.1657883437507215\t-1.35351449329613\t1.2670224544537296\t2.5781881776435234\t1.0747708563973197\t0.40242575332019875\t-0.7595747370840253\t1.1128259625451298\t1.3044963239922482\t0.657714479238077\t-0.4536911884265618\t0.03825851981369715\t1.6218469815954708\t-0.10738702838298275\t0.26418374248900883\t-1.3036201837106316\t-0.7840346128822773\t-0.772900984348529\n+-1.3152539737693658\t0.04739388964208212\t0.5667176906282858\t0.16723645448034968\t-1.3237156046414544\t2.5576869458278955\t2.970895813541885\t0.36800572011534793\t1.6753411364337387\t-2.235192749512666\t3.0193747039169194\t1.635306712078988\t0.07453719247058022\t-0.3316821738414471\t0.12148384247015409\t0.012671348866862102\t-0.5792108700037811\t0.6156470679976609\t0.6011935845440075\t-1.3138953376368692\n+-1.1420064626568525\t-0.26584154465143667\t0.4013439975765152\t1.2247115662795574\t-0.39875703183699024\t2.1389258755397287\t5.048265811735874\t0.838787906446567\t1.3340919123877284\t0.04328433744956178\t3.6904114144831635\t0.8071200727172667\t1.2016866972951539\t-0.6410634897182509\t-0.6346817606270283\t1.8890510410569996\t0.266916933787833\t1.8832612181439792\t1.4865109081694494\t-2.9062233054748243\n+0.8154945938187875\t-1.3942602322147186\t1.3918151037180722\t0.30202718503532827\t0.653444631281608\t1.4452870874986299\t3.8061827873167413\t-1.1277346263276433\t-0.22425124977321367\t2.2090491331008986\t1.7562433930226553\t0.5570092974580497\t-0.5401661645837045\t1.3119452613127471\t1.7224918758723826\t-1.5521406849496893\t0.8659915301504891\t0.4448835159980526\t0.2696306769788708\t-3.091110583794352\n+0.31171461250717486\t-0.27367105664188995\t0.21180263497907753\t-0.07760204005752984\t0.035673036767129906\t2.3879833063367846\t4.706387286358583\t-0.9578325355578868\t1.452350881861973\t0.6231711985001551\t3.3855289481852875\t-1.0022023758320022\t0.5131015704227361\t0.013664588304865943\t-0.23597344957725325\t-0.4882209765908194\t0.2629281407481283\t0.6789361892009779\t-2.094347254072613\t-2.878015482344443\n+0.845414'..b'19843444\t0.277030189641092\t0.7769336725785939\t-0.5364575947101988\t-1.8525358877628713\n+3.360397523602019\t-0.5470601729870943\t-1.2873197463278891\t-1.2598328753246546\t-0.1428061049836398\t2.0156505744173994\t1.6557719775496316\t1.6226882110628915\t1.0952934126831912\t0.9112290228632093\t1.4494450439546436\t0.10500821788528955\t-0.00704828378956637\t1.4293902174127222\t-1.0197533088358766\t-1.0939163125693334\t1.2480042976575871\t1.093432051347689\t0.07892365771029007\t-1.1246763094116352\n+1.1837495881016549\t1.0465439135904016\t0.9867846466870027\t0.18141633300379795\t-0.38250091701406874\t1.3552926291694947\t-0.6963529623482592\t-0.04799858970990036\t-0.26349548563128933\t0.4449421462300397\t-2.50135342841587\t-0.28897896057116645\t0.6918896525925219\t-0.36785408107246365\t-0.25362665416838454\t0.6945368590910528\t-0.9631718574199114\t-0.1258334517145733\t1.3844996029899148\t-1.936695694110503\n+-0.10861657840399971\t-1.1113143899161724\t-0.3279133081403911\t1.2330194506587273\t0.12110654437697854\t1.872199882968341\t-0.4549985193677535\t1.5812439085428185\t-0.3377141669910402\t-0.7052349840605608\t-2.2530794383766417\t-1.050108501130314\t-2.0828949891173947\t-0.9650369080270697\t0.9659310723796818\t0.21141440268416584\t0.9539162478560591\t-0.6228822167376097\t-0.8694400986582542\t-2.1330641628444216\n+-1.2253999879465634\t-0.21255556808360254\t-0.6426725761169916\t-1.196072883128891\t1.266922746784227\t2.2256888487009903\t3.0054762074122117\t0.13990086989650774\t1.3039648168375455\t-0.5952644743053549\t2.182944202202095\t0.8015328128947369\t1.1283724168682476\t1.3503051252630927\t-1.0955795777766877\t0.7109722757632584\t1.0636052867267143\t-0.8840342072804078\t-1.5759278459319386\t-2.0279117003180893\n+-0.8693927846256988\t-1.4015773896239008\t-0.5767475073478409\t-0.514877043990522\t-0.6926301958015578\t2.810943852625326\t2.1414294878660685\t-0.42261866857539526\t0.722102167933471\t0.41277555491293927\t2.4994899525619645\t-0.9740548736776437\t0.2030120207547904\t-1.8464325894173563\t1.258794140437278\t-1.740830606254658\t-0.2595500855948115\t-0.9467397049189886\t-0.9526964140458886\t-0.937055275475108\n+2.465979504831791\t-0.11647472229306143\t-1.3673978078088291\t0.25792387327309524\t2.02220177737093\t0.056556687812697515\t-0.8599660532852478\t0.2030008126873168\t-0.25092959743335835\t0.24839919756489393\t-2.555666173944962\t-1.2043480430753424\t-0.17953917839861058\t1.7189292170192134\t2.7852928968634107\t0.008400346195698861\t-0.6359320009596753\t0.2357521308160045\t1.2368008363755216\t-1.4146247373944343\n+-0.0163256591828519\t-0.6183055444853768\t-1.159263079089029\t-1.4303550879907347\t-0.28069199914747095\t2.1243880986329158\t1.6951821208174769\t-0.8716165521678049\t-0.33251342254751937\t-0.27386404780277435\t1.4788860902136713\t-0.201208090929832\t2.311548044859444\t1.1017628776236508\t1.4194572000947938\t0.512700384954193\t-1.867727607756348\t-0.031861613113337746\t-0.34307616045334116\t-1.174287965982148\n+-1.4702455093030349\t1.4429199785590026\t-0.6102517293773445\t2.2320246366695096\t0.420092258000585\t3.0690234982020463\t4.577711412585288\t-2.4029905021664475\t2.227258236085046\t1.5521556562795078\t4.273030813010738\t0.4943038596328826\t0.7063998227941131\t2.0814669381342634\t-0.293247790344005\t-0.6595177990179122\t-0.7393112877406384\t-0.808565352079177\t0.9289957408518578\t-2.115107772813518\n+1.1608029701501765\t1.0793013183923594\t-0.10917057298490165\t-0.2777148871472186\t-0.553122987814596\t2.6222096121401433\t1.8145098546790979\t-1.0713142333102095\t0.4451638694576139\t1.10157387968243\t2.088384076464559\t0.6293028510604814\t0.32476475385705694\t0.1207669042410038\t-0.39081080441050287\t1.0757434445088958\t-0.3913471598720806\t-2.584943822716165\t-1.7432615574905008\t-0.8931788187442695\n+-0.29874434526655697\t-1.4814434332669864\t-0.3405176552373323\t-1.5472128948094663\t1.460141833448219\t2.7503298497261937\t1.4919435584703815\t-0.5014938556215274\t1.3898511809047607\t2.1536872532393594\t1.8252155237674077\t-0.055976242115569654\t-1.024054711552412\t0.9786166674778746\t-0.930534193318163\t-1.0692142888694698\t1.1760360066245013\t-0.1777204619951954\t-0.13834763375383666\t-0.8119518506990913\n'
b
diff -r 000000000000 -r eaddff553324 test-data/imblearn_y.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/imblearn_y.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,1001 @@
+0
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+0
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+0
+1
+1
+1
+1
+1
+0
+0
+1
+1
+0
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+0
+0
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+0
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+0
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+0
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+0
+0
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+0
+1
+1
+1
+1
+1
+1
+1
+0
+0
+1
+1
+1
+0
+1
+1
+1
+1
+0
+0
+1
+1
+0
+1
+1
+1
+1
b
diff -r 000000000000 -r eaddff553324 test-data/jaccard_similarity_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/jaccard_similarity_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+jaccard_similarity_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/keras01.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras01.json Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,1 @@
+{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 32, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_1", "trainable": true, "activation": "relu"}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "softmax"}}]}, "keras_version": "2.2.4", "backend": "tensorflow"}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/keras02.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras02.json Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,1 @@
+{"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "main_input", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 100], "dtype": "int32", "sparse": false, "name": "main_input"}, "inbound_nodes": []}, {"name": "embedding_1", "class_name": "Embedding", "config": {"name": "embedding_1", "trainable": true, "batch_input_shape": [null, 100], "dtype": "float32", "input_dim": 10000, "output_dim": 512, "embeddings_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "maxval": 0.05, "seed": null}}, "embeddings_regularizer": null, "activity_regularizer": null, "embeddings_constraint": null, "mask_zero": false, "input_length": 100}, "inbound_nodes": [[["main_input", 0, 0, {}]]]}, {"name": "lstm_1", "class_name": "LSTM", "config": {"name": "lstm_1", "trainable": true, "return_sequences": false, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "units": 32, "activation": "tanh", "recurrent_activation": "hard_sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.0, "recurrent_dropout": 0.0, "implementation": 1}, "inbound_nodes": [[["embedding_1", 0, 0, {}]]]}, {"name": "dense_1", "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["lstm_1", 0, 0, {}]]]}, {"name": "aux_input", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 5], "dtype": "float32", "sparse": false, "name": "aux_input"}, "inbound_nodes": []}, {"name": "concatenate_1", "class_name": "Concatenate", "config": {"name": "concatenate_1", "trainable": true, "axis": -1}, "inbound_nodes": [[["dense_1", 0, 0, {}], ["aux_input", 0, 0, {}]]]}, {"name": "dense_2", "class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["concatenate_1", 0, 0, {}]]]}, {"name": "dense_3", "class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["dense_2", 0, 0, {}]]]}, {"name": "dense_4", "class_name": "Dense", "config": {"name": "dense_4", "trainable": true, "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["dense_3", 0, 0, {}]]]}, {"name": "dense_5", "class_name": "Dense", "config": {"name": "dense_5", "trainable": true, "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["dense_4", 0, 0, {}]]]}], "input_layers": [["main_input", 0, 0], ["aux_input", 0, 0]], "output_layers": [["dense_1", 0, 0], ["dense_5", 0, 0]]}, "keras_version": "2.2.4", "backend": "tensorflow"}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/keras03.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras03.json Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,1 @@
+{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 17], "dtype": "float32", "units": 100, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": 0}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "rate": 0.1, "noise_shape": null, "seed": 0}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": 0}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.4", "backend": "tensorflow"}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/keras04.json
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras04.json Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,1 @@
+{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 17], "dtype": "float32", "units": 32, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_1", "trainable": true, "activation": "linear"}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "linear"}}]}, "keras_version": "2.2.4", "backend": "tensorflow"}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/keras_batch_model01
b
Binary file test-data/keras_batch_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_batch_model02
b
Binary file test-data/keras_batch_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_batch_model03
b
Binary file test-data/keras_batch_model03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_batch_params01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras_batch_params01.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,94 @@
+ Parameter Value
+@ amsgrad amsgrad: None
+@ batch_size batch_size: 32
+@ beta_1 beta_1: None
+@ beta_2 beta_2: None
+@ callbacks callbacks: [{'callback_selection': {'callback_type': 'None'}}]
+@ class_positive_factor class_positive_factor: 1.0
+@ config config: {'name': 'sequential_1', 'layers': [{'class_name': 'Dense', 'config': {'name': 'dense_1', 'trainable
+@ data_batch_generator "data_batch_generator: FastaDNABatchGenerator(fasta_path='to_be_determined', seed=999,
+            seq_length=1000, shuffle=True)"
+@ decay decay: 0.0
+@ epochs epochs: 100
+@ epsilon epsilon: None
+@ layers_0_Dense layers_0_Dense: {'class_name': 'Dense', 'config': {'name': 'dense_1', 'trainable': True, 'batch_input_shape': [None,
+@ layers_1_Activation layers_1_Activation: {'class_name': 'Activation', 'config': {'name': 'activation_1', 'trainable': True, 'activation': 're
+@ layers_2_Dense layers_2_Dense: {'class_name': 'Dense', 'config': {'name': 'dense_2', 'trainable': True, 'units': 10, 'activation': 
+@ layers_3_Activation layers_3_Activation: {'class_name': 'Activation', 'config': {'name': 'activation_2', 'trainable': True, 'activation': 'so
+@ loss loss: 'binary_crossentropy'
+@ lr lr: 0.01
+@ metrics metrics: ['acc']
+@ model_type model_type: 'sequential'
+@ momentum momentum: 0.0
+* n_jobs n_jobs: 1
+@ nesterov nesterov: False
+@ optimizer optimizer: 'sgd'
+@ prediction_steps prediction_steps: None
+@ rho rho: None
+@ schedule_decay schedule_decay: None
+@ seed seed: None
+@ steps_per_epoch steps_per_epoch: None
+@ validation_data validation_data: None
+@ validation_steps validation_steps: None
+@ verbose verbose: 0
+* data_batch_generator__fasta_path data_batch_generator__fasta_path: 'to_be_determined'
+@ data_batch_generator__seed data_batch_generator__seed: 999
+@ data_batch_generator__seq_length data_batch_generator__seq_length: 1000
+@ data_batch_generator__shuffle data_batch_generator__shuffle: True
+* layers_0_Dense__class_name layers_0_Dense__class_name: 'Dense'
+@ layers_0_Dense__config layers_0_Dense__config: {'name': 'dense_1', 'trainable': True, 'batch_input_shape': [None, 784], 'dtype': 'float32', 'units'
+@ layers_0_Dense__config__activation layers_0_Dense__config__activation: 'linear'
+@ layers_0_Dense__config__activity_regularizer layers_0_Dense__config__activity_regularizer: None
+@ layers_0_Dense__config__batch_input_shape layers_0_Dense__config__batch_input_shape: [None, 784]
+@ layers_0_Dense__config__bias_constraint layers_0_Dense__config__bias_constraint: None
+@ layers_0_Dense__config__bias_initializer layers_0_Dense__config__bias_initializer: {'class_name': 'Zeros', 'config': {}}
+* layers_0_Dense__config__bias_initializer__class_name layers_0_Dense__config__bias_initializer__class_name: 'Zeros'
+@ layers_0_Dense__config__bias_initializer__config layers_0_Dense__config__bias_initializer__config: {}
+@ layers_0_Dense__config__bias_regularizer layers_0_Dense__config__bias_regularizer: None
+@ layers_0_Dense__config__dtype layers_0_Dense__config__dtype: 'float32'
+@ layers_0_Dense__config__kernel_constraint layers_0_Dense__config__kernel_constraint: None
+@ layers_0_Dense__config__kernel_initializer layers_0_Dense__config__kernel_initializer: {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'unifo
+* layers_0_Dense__config__kernel_initializer__class_name layers_0_Dense__config__kernel_initializer__class_name: 'VarianceScaling'
+@ layers_0_Dense__config__kernel_initializer__config layers_0_Dense__config__kernel_initializer__config: {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}
+@ layers_0_Dense__config__kernel_initializer__config__distribution layers_0_Dense__config__kernel_initializer__config__distribution: 'uniform'
+@ layers_0_Dense__config__kernel_initializer__config__mode layers_0_Dense__config__kernel_initializer__config__mode: 'fan_avg'
+@ layers_0_Dense__config__kernel_initializer__config__scale layers_0_Dense__config__kernel_initializer__config__scale: 1.0
+@ layers_0_Dense__config__kernel_initializer__config__seed layers_0_Dense__config__kernel_initializer__config__seed: None
+@ layers_0_Dense__config__kernel_regularizer layers_0_Dense__config__kernel_regularizer: None
+* layers_0_Dense__config__name layers_0_Dense__config__name: 'dense_1'
+@ layers_0_Dense__config__trainable layers_0_Dense__config__trainable: True
+@ layers_0_Dense__config__units layers_0_Dense__config__units: 32
+@ layers_0_Dense__config__use_bias layers_0_Dense__config__use_bias: True
+* layers_1_Activation__class_name layers_1_Activation__class_name: 'Activation'
+@ layers_1_Activation__config layers_1_Activation__config: {'name': 'activation_1', 'trainable': True, 'activation': 'relu'}
+@ layers_1_Activation__config__activation layers_1_Activation__config__activation: 'relu'
+* layers_1_Activation__config__name layers_1_Activation__config__name: 'activation_1'
+@ layers_1_Activation__config__trainable layers_1_Activation__config__trainable: True
+* layers_2_Dense__class_name layers_2_Dense__class_name: 'Dense'
+@ layers_2_Dense__config layers_2_Dense__config: {'name': 'dense_2', 'trainable': True, 'units': 10, 'activation': 'linear', 'use_bias': True, 'kerne
+@ layers_2_Dense__config__activation layers_2_Dense__config__activation: 'linear'
+@ layers_2_Dense__config__activity_regularizer layers_2_Dense__config__activity_regularizer: None
+@ layers_2_Dense__config__bias_constraint layers_2_Dense__config__bias_constraint: None
+@ layers_2_Dense__config__bias_initializer layers_2_Dense__config__bias_initializer: {'class_name': 'Zeros', 'config': {}}
+* layers_2_Dense__config__bias_initializer__class_name layers_2_Dense__config__bias_initializer__class_name: 'Zeros'
+@ layers_2_Dense__config__bias_initializer__config layers_2_Dense__config__bias_initializer__config: {}
+@ layers_2_Dense__config__bias_regularizer layers_2_Dense__config__bias_regularizer: None
+@ layers_2_Dense__config__kernel_constraint layers_2_Dense__config__kernel_constraint: None
+@ layers_2_Dense__config__kernel_initializer layers_2_Dense__config__kernel_initializer: {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'unifo
+* layers_2_Dense__config__kernel_initializer__class_name layers_2_Dense__config__kernel_initializer__class_name: 'VarianceScaling'
+@ layers_2_Dense__config__kernel_initializer__config layers_2_Dense__config__kernel_initializer__config: {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}
+@ layers_2_Dense__config__kernel_initializer__config__distribution layers_2_Dense__config__kernel_initializer__config__distribution: 'uniform'
+@ layers_2_Dense__config__kernel_initializer__config__mode layers_2_Dense__config__kernel_initializer__config__mode: 'fan_avg'
+@ layers_2_Dense__config__kernel_initializer__config__scale layers_2_Dense__config__kernel_initializer__config__scale: 1.0
+@ layers_2_Dense__config__kernel_initializer__config__seed layers_2_Dense__config__kernel_initializer__config__seed: None
+@ layers_2_Dense__config__kernel_regularizer layers_2_Dense__config__kernel_regularizer: None
+* layers_2_Dense__config__name layers_2_Dense__config__name: 'dense_2'
+@ layers_2_Dense__config__trainable layers_2_Dense__config__trainable: True
+@ layers_2_Dense__config__units layers_2_Dense__config__units: 10
+@ layers_2_Dense__config__use_bias layers_2_Dense__config__use_bias: True
+* layers_3_Activation__class_name layers_3_Activation__class_name: 'Activation'
+@ layers_3_Activation__config layers_3_Activation__config: {'name': 'activation_2', 'trainable': True, 'activation': 'softmax'}
+@ layers_3_Activation__config__activation layers_3_Activation__config__activation: 'softmax'
+* layers_3_Activation__config__name layers_3_Activation__config__name: 'activation_2'
+@ layers_3_Activation__config__trainable layers_3_Activation__config__trainable: True
+ Note: @, params eligible for search in searchcv tool.
b
diff -r 000000000000 -r eaddff553324 test-data/keras_model01
b
Binary file test-data/keras_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_model02
b
Binary file test-data/keras_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_model04
b
Binary file test-data/keras_model04 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_params04.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/keras_params04.tabular Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,85 @@
+ Parameter Value
+@ amsgrad amsgrad: False
+@ batch_size batch_size: 32
+@ beta_1 beta_1: 0.9
+@ beta_2 beta_2: 0.999
+@ callbacks callbacks: [{'callback_selection': {'callback_type': 'None'}}]
+@ config config: {'name': 'sequential_1', 'layers': [{'class_name': 'Dense', 'config': {'name': 'dense_1', 'trainable
+@ decay decay: 0.0
+@ epochs epochs: 100
+@ epsilon epsilon: None
+@ layers_0_Dense layers_0_Dense: {'class_name': 'Dense', 'config': {'name': 'dense_1', 'trainable': True, 'batch_input_shape': [None,
+@ layers_1_Activation layers_1_Activation: {'class_name': 'Activation', 'config': {'name': 'activation_1', 'trainable': True, 'activation': 'li
+@ layers_2_Dense layers_2_Dense: {'class_name': 'Dense', 'config': {'name': 'dense_2', 'trainable': True, 'units': 1, 'activation': '
+@ layers_3_Activation layers_3_Activation: {'class_name': 'Activation', 'config': {'name': 'activation_2', 'trainable': True, 'activation': 'li
+@ loss loss: 'mean_squared_error'
+@ lr lr: 0.001
+@ metrics metrics: ['mse']
+@ model_type model_type: 'sequential'
+@ momentum momentum: None
+@ nesterov nesterov: None
+@ optimizer optimizer: 'adam'
+@ rho rho: None
+@ schedule_decay schedule_decay: None
+@ seed seed: 42
+@ steps_per_epoch steps_per_epoch: None
+@ validation_data validation_data: None
+@ validation_steps validation_steps: None
+@ verbose verbose: 0
+* layers_0_Dense__class_name layers_0_Dense__class_name: 'Dense'
+@ layers_0_Dense__config layers_0_Dense__config: {'name': 'dense_1', 'trainable': True, 'batch_input_shape': [None, 17], 'dtype': 'float32', 'units':
+@ layers_0_Dense__config__activation layers_0_Dense__config__activation: 'linear'
+@ layers_0_Dense__config__activity_regularizer layers_0_Dense__config__activity_regularizer: None
+@ layers_0_Dense__config__batch_input_shape layers_0_Dense__config__batch_input_shape: [None, 17]
+@ layers_0_Dense__config__bias_constraint layers_0_Dense__config__bias_constraint: None
+@ layers_0_Dense__config__bias_initializer layers_0_Dense__config__bias_initializer: {'class_name': 'Zeros', 'config': {}}
+* layers_0_Dense__config__bias_initializer__class_name layers_0_Dense__config__bias_initializer__class_name: 'Zeros'
+@ layers_0_Dense__config__bias_initializer__config layers_0_Dense__config__bias_initializer__config: {}
+@ layers_0_Dense__config__bias_regularizer layers_0_Dense__config__bias_regularizer: None
+@ layers_0_Dense__config__dtype layers_0_Dense__config__dtype: 'float32'
+@ layers_0_Dense__config__kernel_constraint layers_0_Dense__config__kernel_constraint: None
+@ layers_0_Dense__config__kernel_initializer layers_0_Dense__config__kernel_initializer: {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'unifo
+* layers_0_Dense__config__kernel_initializer__class_name layers_0_Dense__config__kernel_initializer__class_name: 'VarianceScaling'
+@ layers_0_Dense__config__kernel_initializer__config layers_0_Dense__config__kernel_initializer__config: {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}
+@ layers_0_Dense__config__kernel_initializer__config__distribution layers_0_Dense__config__kernel_initializer__config__distribution: 'uniform'
+@ layers_0_Dense__config__kernel_initializer__config__mode layers_0_Dense__config__kernel_initializer__config__mode: 'fan_avg'
+@ layers_0_Dense__config__kernel_initializer__config__scale layers_0_Dense__config__kernel_initializer__config__scale: 1.0
+@ layers_0_Dense__config__kernel_initializer__config__seed layers_0_Dense__config__kernel_initializer__config__seed: None
+@ layers_0_Dense__config__kernel_regularizer layers_0_Dense__config__kernel_regularizer: None
+* layers_0_Dense__config__name layers_0_Dense__config__name: 'dense_1'
+@ layers_0_Dense__config__trainable layers_0_Dense__config__trainable: True
+@ layers_0_Dense__config__units layers_0_Dense__config__units: 32
+@ layers_0_Dense__config__use_bias layers_0_Dense__config__use_bias: True
+* layers_1_Activation__class_name layers_1_Activation__class_name: 'Activation'
+@ layers_1_Activation__config layers_1_Activation__config: {'name': 'activation_1', 'trainable': True, 'activation': 'linear'}
+@ layers_1_Activation__config__activation layers_1_Activation__config__activation: 'linear'
+* layers_1_Activation__config__name layers_1_Activation__config__name: 'activation_1'
+@ layers_1_Activation__config__trainable layers_1_Activation__config__trainable: True
+* layers_2_Dense__class_name layers_2_Dense__class_name: 'Dense'
+@ layers_2_Dense__config layers_2_Dense__config: {'name': 'dense_2', 'trainable': True, 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel
+@ layers_2_Dense__config__activation layers_2_Dense__config__activation: 'linear'
+@ layers_2_Dense__config__activity_regularizer layers_2_Dense__config__activity_regularizer: None
+@ layers_2_Dense__config__bias_constraint layers_2_Dense__config__bias_constraint: None
+@ layers_2_Dense__config__bias_initializer layers_2_Dense__config__bias_initializer: {'class_name': 'Zeros', 'config': {}}
+* layers_2_Dense__config__bias_initializer__class_name layers_2_Dense__config__bias_initializer__class_name: 'Zeros'
+@ layers_2_Dense__config__bias_initializer__config layers_2_Dense__config__bias_initializer__config: {}
+@ layers_2_Dense__config__bias_regularizer layers_2_Dense__config__bias_regularizer: None
+@ layers_2_Dense__config__kernel_constraint layers_2_Dense__config__kernel_constraint: None
+@ layers_2_Dense__config__kernel_initializer layers_2_Dense__config__kernel_initializer: {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'unifo
+* layers_2_Dense__config__kernel_initializer__class_name layers_2_Dense__config__kernel_initializer__class_name: 'VarianceScaling'
+@ layers_2_Dense__config__kernel_initializer__config layers_2_Dense__config__kernel_initializer__config: {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}
+@ layers_2_Dense__config__kernel_initializer__config__distribution layers_2_Dense__config__kernel_initializer__config__distribution: 'uniform'
+@ layers_2_Dense__config__kernel_initializer__config__mode layers_2_Dense__config__kernel_initializer__config__mode: 'fan_avg'
+@ layers_2_Dense__config__kernel_initializer__config__scale layers_2_Dense__config__kernel_initializer__config__scale: 1.0
+@ layers_2_Dense__config__kernel_initializer__config__seed layers_2_Dense__config__kernel_initializer__config__seed: None
+@ layers_2_Dense__config__kernel_regularizer layers_2_Dense__config__kernel_regularizer: None
+* layers_2_Dense__config__name layers_2_Dense__config__name: 'dense_2'
+@ layers_2_Dense__config__trainable layers_2_Dense__config__trainable: True
+@ layers_2_Dense__config__units layers_2_Dense__config__units: 1
+@ layers_2_Dense__config__use_bias layers_2_Dense__config__use_bias: True
+* layers_3_Activation__class_name layers_3_Activation__class_name: 'Activation'
+@ layers_3_Activation__config layers_3_Activation__config: {'name': 'activation_2', 'trainable': True, 'activation': 'linear'}
+@ layers_3_Activation__config__activation layers_3_Activation__config__activation: 'linear'
+* layers_3_Activation__config__name layers_3_Activation__config__name: 'activation_2'
+@ layers_3_Activation__config__trainable layers_3_Activation__config__trainable: True
+ Note: @, params eligible for search in searchcv tool.
b
diff -r 000000000000 -r eaddff553324 test-data/keras_prefitted01.zip
b
Binary file test-data/keras_prefitted01.zip has changed
b
diff -r 000000000000 -r eaddff553324 test-data/keras_save_weights01.h5
b
Binary file test-data/keras_save_weights01.h5 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/lda_model01
b
Binary file test-data/lda_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/lda_model02
b
Binary file test-data/lda_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/lda_prediction_result01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/lda_prediction_result01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774 0
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/lda_prediction_result02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/lda_prediction_result02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774 0
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/log_loss.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/log_loss.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+log_loss : 
+3.7248735402728403
b
diff -r 000000000000 -r eaddff553324 test-data/matthews_corrcoef.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/matthews_corrcoef.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+matthews_corrcoef : 
+1.0
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis01.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ml_vis01.html Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,14 @@\n+<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">/**\n+* plotly.js v1.39.4\n+* Copyright 2012-2018, Plotly, Inc.\n+* All rights reserved.\n+* Licensed under the MIT license\n+*/\n+!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module \'"+o+"\'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:\'Open Sans\', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:\'Open Sans\', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;background:rgba(255,255,255,0.7);","X .modebar--hover":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;margin-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-group:first-child":"margin-left:0px;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar-btn path":"fill:rgba(0,31,95,0.3);","X .modebar-btn.active path,X .modebar-btn:hover path":"fill:rgba(0,22,72,0.5);","X .modebar-btn.modebar-btn--logo":"padding:3px 1px;","X .modebar-btn.modebar-btn--logo path":"fill:#447adb !important;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:\'\';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);backgr'..b' l(t,e){return function(r,i,a){n.keyedContainer(r,"transforms["+e+"].styles","target","value."+i).set(String(t),a)}}r.moduleType="transform",r.name="groupby",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"data_array",dflt:[],editType:"calc"},nameformat:{valType:"string",editType:"calc"},styles:{_isLinkedToArray:"style",target:{valType:"string",editType:"calc"},value:{valType:"any",dflt:{},editType:"calc",_compareAsJSON:!0},editType:"calc"},editType:"calc"},r.supplyDefaults=function(t,e,i){var a,o={};function s(e,i){return n.coerce(t,o,r.attributes,e,i)}if(!s("enabled"))return o;s("groups"),s("nameformat",i._dataLength>1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a<l.length;a++){var u=c[a]={};n.coerce(l[a],c[a],r.attributes.styles,"target");var h=n.coerce(l[a],c[a],r.attributes.styles,"value");n.isPlainObject(h)?u.value=n.extendDeep({},h):h&&delete u.value}return o},r.transform=function(t,e){var r,n,i,a=[];for(n=0;n<t.length;n++)for(r=s(t[n],e),i=0;i<r.length;i++)a.push(r[i]);return a}},{"../lib":684,"../plot_api/plot_schema":721,"../plots/plots":795,"./helpers":1128}],1128:[function(t,e,r){"use strict";r.pointsAccessorFunction=function(t,e){for(var r,n,i=0;i<t.length&&(r=t[i])!==e;i++)r._indexToPoints&&!1!==r.enabled&&(n=r._indexToPoints);return n?function(t){return n[t]}:function(t){return[t]}}},{}],1129:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/cartesian/axes"),a=t("./helpers").pointsAccessorFunction;r.moduleType="transform",r.name="sort",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},target:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},order:{valType:"enumerated",values:["ascending","descending"],dflt:"ascending",editType:"calc"},editType:"calc"},r.supplyDefaults=function(t){var e={};function i(i,a){return n.coerce(t,e,r.attributes,i,a)}return i("enabled")&&(i("target"),i("order")),e},r.calcTransform=function(t,e,r){if(r.enabled){var o=n.getTargetArray(e,r);if(o){var s=r.target,l=o.length;e._length&&(l=Math.min(l,e._length));var c,u,h=e._arrayAttrs,f=function(t,e,r,n){var i,a=new Array(n),o=new Array(n);for(i=0;i<n;i++)a[i]={v:e[i],i:i};for(a.sort(function(t,e){switch(t.order){case"ascending":return function(t,r){return e(t.v)-e(r.v)};case"descending":return function(t,r){return e(r.v)-e(t.v)}}}(t,r)),i=0;i<n;i++)o[i]=a[i].i;return o}(r,o,i.getDataToCoordFunc(t,e,s,o),l),p=a(e.transforms,r),d={};for(c=0;c<h.length;c++){var g=n.nestedProperty(e,h[c]),m=g.get(),v=new Array(l);for(u=0;u<l;u++)v[u]=m[f[u]];g.set(v)}for(u=0;u<l;u++)d[u]=p(f[u]);r._indexToPoints=d,e._length=l}}}},{"../lib":684,"../plots/cartesian/axes":732,"./helpers":1128}]},{},[21])(21)});</script><div id="fa7ac07f-0942-4484-8341-187a2f547557" style="height: 100%; width: 100%;" class="plotly-graph-div"></div><script type="text/javascript">window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL="https://plot.ly";\n+        Plotly.plot(\n+            \'fa7ac07f-0942-4484-8341-187a2f547557\',\n+            [{"x": ["average", "temp_1", "temp_2", "friend", "forecast_acc", "forecast_under", "forecast_noaa", "week_Fri", "week_Sun", "week_Wed"], "y": [0.2207130789756775, 0.2037351429462433, 0.15959252417087555, 0.1307300478219986, 0.0984719842672348, 0.06960950791835785, 0.06281833350658417, 0.02716468647122383, 0.02207130752503872, 0.005093378480523825], "type": "bar", "uid": "8e643be2-c63f-11e9-ae51-acbc32846fd5"}],\n+            {"title": "Feature Importances"},\n+            {"showLink": true, "linkText": "Export to plot.ly"}\n+        ).then(function () {return Plotly.addFrames(\'fa7ac07f-0942-4484-8341-187a2f547557\',{});}).then(function(){Plotly.animate(\'fa7ac07f-0942-4484-8341-187a2f547557\');})\n+        </script><script type="text/javascript">window.addEventListener("resize", function(){Plotly.Plots.resize(document.getElementById("fa7ac07f-0942-4484-8341-187a2f547557"));});</script></body></html>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis02.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ml_vis02.html Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,14 @@\n+<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">/**\n+* plotly.js v1.39.4\n+* Copyright 2012-2018, Plotly, Inc.\n+* All rights reserved.\n+* Licensed under the MIT license\n+*/\n+!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module \'"+o+"\'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:\'Open Sans\', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:\'Open Sans\', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;background:rgba(255,255,255,0.7);","X .modebar--hover":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;margin-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-group:first-child":"margin-left:0px;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar-btn path":"fill:rgba(0,31,95,0.3);","X .modebar-btn.active path,X .modebar-btn:hover path":"fill:rgba(0,22,72,0.5);","X .modebar-btn.modebar-btn--logo":"padding:3px 1px;","X .modebar-btn.modebar-btn--logo path":"fill:#447adb !important;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:\'\';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);backgr'..b'es={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"data_array",dflt:[],editType:"calc"},nameformat:{valType:"string",editType:"calc"},styles:{_isLinkedToArray:"style",target:{valType:"string",editType:"calc"},value:{valType:"any",dflt:{},editType:"calc",_compareAsJSON:!0},editType:"calc"},editType:"calc"},r.supplyDefaults=function(t,e,i){var a,o={};function s(e,i){return n.coerce(t,o,r.attributes,e,i)}if(!s("enabled"))return o;s("groups"),s("nameformat",i._dataLength>1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a<l.length;a++){var u=c[a]={};n.coerce(l[a],c[a],r.attributes.styles,"target");var h=n.coerce(l[a],c[a],r.attributes.styles,"value");n.isPlainObject(h)?u.value=n.extendDeep({},h):h&&delete u.value}return o},r.transform=function(t,e){var r,n,i,a=[];for(n=0;n<t.length;n++)for(r=s(t[n],e),i=0;i<r.length;i++)a.push(r[i]);return a}},{"../lib":684,"../plot_api/plot_schema":721,"../plots/plots":795,"./helpers":1128}],1128:[function(t,e,r){"use strict";r.pointsAccessorFunction=function(t,e){for(var r,n,i=0;i<t.length&&(r=t[i])!==e;i++)r._indexToPoints&&!1!==r.enabled&&(n=r._indexToPoints);return n?function(t){return n[t]}:function(t){return[t]}}},{}],1129:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/cartesian/axes"),a=t("./helpers").pointsAccessorFunction;r.moduleType="transform",r.name="sort",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},target:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},order:{valType:"enumerated",values:["ascending","descending"],dflt:"ascending",editType:"calc"},editType:"calc"},r.supplyDefaults=function(t){var e={};function i(i,a){return n.coerce(t,e,r.attributes,i,a)}return i("enabled")&&(i("target"),i("order")),e},r.calcTransform=function(t,e,r){if(r.enabled){var o=n.getTargetArray(e,r);if(o){var s=r.target,l=o.length;e._length&&(l=Math.min(l,e._length));var c,u,h=e._arrayAttrs,f=function(t,e,r,n){var i,a=new Array(n),o=new Array(n);for(i=0;i<n;i++)a[i]={v:e[i],i:i};for(a.sort(function(t,e){switch(t.order){case"ascending":return function(t,r){return e(t.v)-e(r.v)};case"descending":return function(t,r){return e(r.v)-e(t.v)}}}(t,r)),i=0;i<n;i++)o[i]=a[i].i;return o}(r,o,i.getDataToCoordFunc(t,e,s,o),l),p=a(e.transforms,r),d={};for(c=0;c<h.length;c++){var g=n.nestedProperty(e,h[c]),m=g.get(),v=new Array(l);for(u=0;u<l;u++)v[u]=m[f[u]];g.set(v)}for(u=0;u<l;u++)d[u]=p(f[u]);r._indexToPoints=d,e._length=l}}}},{"../lib":684,"../plots/cartesian/axes":732,"./helpers":1128}]},{},[21])(21)});</script><div id="452e7600-7341-488f-8b38-c08c5bda7150" style="height: 100%; width: 100%;" class="plotly-graph-div"></div><script type="text/javascript">window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL="https://plot.ly";\n+        Plotly.plot(\n+            \'452e7600-7341-488f-8b38-c08c5bda7150\',\n+            [{"mode": "lines", "name": "Train Scores", "x": [17.0, 56.0, 95.0, 134.0, 174.0], "y": [0.9668700841937652, 0.973000860241936, 0.9728783377589098, 0.9739086338111184, 0.9726218628287784], "type": "scatter", "uid": "a1e79fe8-c63f-11e9-a0e4-acbc32846fd5"}, {"mode": "lines", "name": "Test Scores", "x": [17.0, 56.0, 95.0, 134.0, 174.0], "y": [0.7008862995946905, 0.7963376762427242, 0.814592845745573, 0.7985540571195479, 0.8152971572131146], "type": "scatter", "uid": "a1e8f0f4-c63f-11e9-85e7-acbc32846fd5"}],\n+            {"title": "Learning Curve", "xaxis": {"title": "No. of samples"}, "yaxis": {"title": "Performance Score"}},\n+            {"showLink": true, "linkText": "Export to plot.ly"}\n+        ).then(function () {return Plotly.addFrames(\'452e7600-7341-488f-8b38-c08c5bda7150\',{});}).then(function(){Plotly.animate(\'452e7600-7341-488f-8b38-c08c5bda7150\');})\n+        </script><script type="text/javascript">window.addEventListener("resize", function(){Plotly.Plots.resize(document.getElementById("452e7600-7341-488f-8b38-c08c5bda7150"));});</script></body></html>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis03.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ml_vis03.html Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,14 @@\n+<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">/**\n+* plotly.js v1.39.4\n+* Copyright 2012-2018, Plotly, Inc.\n+* All rights reserved.\n+* Licensed under the MIT license\n+*/\n+!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module \'"+o+"\'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:\'Open Sans\', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:\'Open Sans\', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;background:rgba(255,255,255,0.7);","X .modebar--hover":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;margin-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-group:first-child":"margin-left:0px;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar-btn path":"fill:rgba(0,31,95,0.3);","X .modebar-btn.active path,X .modebar-btn:hover path":"fill:rgba(0,22,72,0.5);","X .modebar-btn.modebar-btn--logo":"padding:3px 1px;","X .modebar-btn.modebar-btn--logo path":"fill:#447adb !important;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:\'\';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);backgr'..b'!0,arrayOk:!0,dflt:"x",editType:"calc"},order:{valType:"enumerated",values:["ascending","descending"],dflt:"ascending",editType:"calc"},editType:"calc"},r.supplyDefaults=function(t){var e={};function i(i,a){return n.coerce(t,e,r.attributes,i,a)}return i("enabled")&&(i("target"),i("order")),e},r.calcTransform=function(t,e,r){if(r.enabled){var o=n.getTargetArray(e,r);if(o){var s=r.target,l=o.length;e._length&&(l=Math.min(l,e._length));var c,u,h=e._arrayAttrs,f=function(t,e,r,n){var i,a=new Array(n),o=new Array(n);for(i=0;i<n;i++)a[i]={v:e[i],i:i};for(a.sort(function(t,e){switch(t.order){case"ascending":return function(t,r){return e(t.v)-e(r.v)};case"descending":return function(t,r){return e(r.v)-e(t.v)}}}(t,r)),i=0;i<n;i++)o[i]=a[i].i;return o}(r,o,i.getDataToCoordFunc(t,e,s,o),l),p=a(e.transforms,r),d={};for(c=0;c<h.length;c++){var g=n.nestedProperty(e,h[c]),m=g.get(),v=new Array(l);for(u=0;u<l;u++)v[u]=m[f[u]];g.set(v)}for(u=0;u<l;u++)d[u]=p(f[u]);r._indexToPoints=d,e._length=l}}}},{"../lib":684,"../plots/cartesian/axes":732,"./helpers":1128}]},{},[21])(21)});</script><div id="315d311c-52cd-46dc-a366-ad0d4c28f48f" style="height: 100%; width: 100%;" class="plotly-graph-div"></div><script type="text/javascript">window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL="https://plot.ly";\n+        Plotly.plot(\n+            \'315d311c-52cd-46dc-a366-ad0d4c28f48f\',\n+            [{"mode": "lines", "name": "column 0 (area = 0.80)", "x": [1.0, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9565217391304348, 0.9130434782608695, 0.9130434782608695, 0.9130434782608695, 0.9130434782608695, 0.9130434782608695, 0.8695652173913043, 0.8695652173913043, 0.8695652173913043, 0.8695652173913043, 0.8260869565217391, 0.8260869565217391, 0.8260869565217391, 0.8260869565217391, 0.8260869565217391, 0.782608695652174, 0.7391304347826086, 0.6956521739130435, 0.6956521739130435, 0.6521739130434783, 0.6521739130434783, 0.6521739130434783, 0.6086956521739131, 0.5652173913043478, 0.5652173913043478, 0.5217391304347826, 0.5217391304347826, 0.5217391304347826, 0.5217391304347826, 0.5217391304347826, 0.4782608695652174, 0.4782608695652174, 0.43478260869565216, 0.391304347826087, 0.391304347826087, 0.34782608695652173, 0.30434782608695654, 0.2608695652173913, 0.21739130434782608, 0.17391304347826086, 0.13043478260869565, 0.08695652173913043, 0.043478260869565216, 0.0], "y": [0.42592592592592593, 0.41509433962264153, 0.4230769230769231, 0.43137254901960786, 0.44, 0.4489795918367347, 0.4583333333333333, 0.46808510638297873, 0.4782608695652174, 0.4888888888888889, 0.5, 0.5116279069767442, 0.5, 0.5121951219512195, 0.525, 0.5384615384615384, 0.5526315789473685, 0.5405405405405406, 0.5555555555555556, 0.5714285714285714, 0.5882352941176471, 0.5757575757575758, 0.59375, 0.6129032258064516, 0.6333333333333333, 0.6551724137931034, 0.6428571428571429, 0.6296296296296297, 0.6153846153846154, 0.64, 0.625, 0.6521739130434783, 0.6818181818181818, 0.6666666666666666, 0.65, 0.6842105263157895, 0.6666666666666666, 0.7058823529411765, 0.75, 0.8, 0.8571428571428571, 0.8461538461538461, 0.9166666666666666, 0.9090909090909091, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "type": "scatter", "uid": "b87beca2-c63f-11e9-93bf-acbc32846fd5"}],\n+            {"title": "Precision-Recall curve", "xaxis": {"title": "Recall"}, "yaxis": {"title": "Precision"}},\n+            {"showLink": true, "linkText": "Export to plot.ly"}\n+        ).then(function () {return Plotly.addFrames(\'315d311c-52cd-46dc-a366-ad0d4c28f48f\',{});}).then(function(){Plotly.animate(\'315d311c-52cd-46dc-a366-ad0d4c28f48f\');})\n+        </script><script type="text/javascript">window.addEventListener("resize", function(){Plotly.Plots.resize(document.getElementById("315d311c-52cd-46dc-a366-ad0d4c28f48f"));});</script></body></html>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis04.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ml_vis04.html Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,14 @@\n+<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">/**\n+* plotly.js v1.39.4\n+* Copyright 2012-2018, Plotly, Inc.\n+* All rights reserved.\n+* Licensed under the MIT license\n+*/\n+!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module \'"+o+"\'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:\'Open Sans\', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:\'Open Sans\', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;background:rgba(255,255,255,0.7);","X .modebar--hover":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;margin-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-group:first-child":"margin-left:0px;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar-btn path":"fill:rgba(0,31,95,0.3);","X .modebar-btn.active path,X .modebar-btn:hover path":"fill:rgba(0,22,72,0.5);","X .modebar-btn.modebar-btn--logo":"padding:3px 1px;","X .modebar-btn.modebar-btn--logo path":"fill:#447adb !important;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:\'\';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);backgr'..b';n.isPlainObject(h)?u.value=n.extendDeep({},h):h&&delete u.value}return o},r.transform=function(t,e){var r,n,i,a=[];for(n=0;n<t.length;n++)for(r=s(t[n],e),i=0;i<r.length;i++)a.push(r[i]);return a}},{"../lib":684,"../plot_api/plot_schema":721,"../plots/plots":795,"./helpers":1128}],1128:[function(t,e,r){"use strict";r.pointsAccessorFunction=function(t,e){for(var r,n,i=0;i<t.length&&(r=t[i])!==e;i++)r._indexToPoints&&!1!==r.enabled&&(n=r._indexToPoints);return n?function(t){return n[t]}:function(t){return[t]}}},{}],1129:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/cartesian/axes"),a=t("./helpers").pointsAccessorFunction;r.moduleType="transform",r.name="sort",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},target:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},order:{valType:"enumerated",values:["ascending","descending"],dflt:"ascending",editType:"calc"},editType:"calc"},r.supplyDefaults=function(t){var e={};function i(i,a){return n.coerce(t,e,r.attributes,i,a)}return i("enabled")&&(i("target"),i("order")),e},r.calcTransform=function(t,e,r){if(r.enabled){var o=n.getTargetArray(e,r);if(o){var s=r.target,l=o.length;e._length&&(l=Math.min(l,e._length));var c,u,h=e._arrayAttrs,f=function(t,e,r,n){var i,a=new Array(n),o=new Array(n);for(i=0;i<n;i++)a[i]={v:e[i],i:i};for(a.sort(function(t,e){switch(t.order){case"ascending":return function(t,r){return e(t.v)-e(r.v)};case"descending":return function(t,r){return e(r.v)-e(t.v)}}}(t,r)),i=0;i<n;i++)o[i]=a[i].i;return o}(r,o,i.getDataToCoordFunc(t,e,s,o),l),p=a(e.transforms,r),d={};for(c=0;c<h.length;c++){var g=n.nestedProperty(e,h[c]),m=g.get(),v=new Array(l);for(u=0;u<l;u++)v[u]=m[f[u]];g.set(v)}for(u=0;u<l;u++)d[u]=p(f[u]);r._indexToPoints=d,e._length=l}}}},{"../lib":684,"../plots/cartesian/axes":732,"./helpers":1128}]},{},[21])(21)});</script><div id="1fb80e80-e509-483d-9953-2833c228f571" style="height: 100%; width: 100%;" class="plotly-graph-div"></div><script type="text/javascript">window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL="https://plot.ly";\n+        Plotly.plot(\n+            \'1fb80e80-e509-483d-9953-2833c228f571\',\n+            [{"mode": "lines", "name": "column 0 (area = 0.88)", "x": [0.0, 0.0, 0.0, 0.019230769230769232, 0.019230769230769232, 0.038461538461538464, 0.038461538461538464, 0.11538461538461539, 0.11538461538461539, 0.1346153846153846, 0.1346153846153846, 0.17307692307692307, 0.17307692307692307, 0.19230769230769232, 0.19230769230769232, 0.2692307692307692, 0.2692307692307692, 0.3269230769230769, 0.3269230769230769, 0.40384615384615385, 0.40384615384615385, 0.5961538461538461, 0.5961538461538461, 1.0], "y": [0.0, 0.043478260869565216, 0.391304347826087, 0.391304347826087, 0.4782608695652174, 0.4782608695652174, 0.5217391304347826, 0.5217391304347826, 0.5652173913043478, 0.5652173913043478, 0.6521739130434783, 0.6521739130434783, 0.6956521739130435, 0.6956521739130435, 0.8260869565217391, 0.8260869565217391, 0.8695652173913043, 0.8695652173913043, 0.9130434782608695, 0.9130434782608695, 0.9565217391304348, 0.9565217391304348, 1.0, 1.0], "type": "scatter", "uid": "cf54f2fa-c63f-11e9-96b2-acbc32846fd5"}, {"line": {"color": "black", "dash": "dash"}, "mode": "lines", "showlegend": false, "x": [0, 1], "y": [0, 1], "type": "scatter", "uid": "cf563868-c63f-11e9-ac6a-acbc32846fd5"}],\n+            {"title": "Receiver operating characteristic curve", "xaxis": {"title": "False Positive Rate"}, "yaxis": {"title": "True Positive Rate"}},\n+            {"showLink": true, "linkText": "Export to plot.ly"}\n+        ).then(function () {return Plotly.addFrames(\'1fb80e80-e509-483d-9953-2833c228f571\',{});}).then(function(){Plotly.animate(\'1fb80e80-e509-483d-9953-2833c228f571\');})\n+        </script><script type="text/javascript">window.addEventListener("resize", function(){Plotly.Plots.resize(document.getElementById("1fb80e80-e509-483d-9953-2833c228f571"));});</script></body></html>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis05.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ml_vis05.html Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,14 @@\n+<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">/**\n+* plotly.js v1.39.4\n+* Copyright 2012-2018, Plotly, Inc.\n+* All rights reserved.\n+* Licensed under the MIT license\n+*/\n+!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module \'"+o+"\'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:\'Open Sans\', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:\'Open Sans\', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;background:rgba(255,255,255,0.7);","X .modebar--hover":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;margin-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-group:first-child":"margin-left:0px;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar-btn path":"fill:rgba(0,31,95,0.3);","X .modebar-btn.active path,X .modebar-btn:hover path":"fill:rgba(0,22,72,0.5);","X .modebar-btn.modebar-btn--logo":"padding:3px 1px;","X .modebar-btn.modebar-btn--logo path":"fill:#447adb !important;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:\'\';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);backgr'..b'"groupby",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"data_array",dflt:[],editType:"calc"},nameformat:{valType:"string",editType:"calc"},styles:{_isLinkedToArray:"style",target:{valType:"string",editType:"calc"},value:{valType:"any",dflt:{},editType:"calc",_compareAsJSON:!0},editType:"calc"},editType:"calc"},r.supplyDefaults=function(t,e,i){var a,o={};function s(e,i){return n.coerce(t,o,r.attributes,e,i)}if(!s("enabled"))return o;s("groups"),s("nameformat",i._dataLength>1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a<l.length;a++){var u=c[a]={};n.coerce(l[a],c[a],r.attributes.styles,"target");var h=n.coerce(l[a],c[a],r.attributes.styles,"value");n.isPlainObject(h)?u.value=n.extendDeep({},h):h&&delete u.value}return o},r.transform=function(t,e){var r,n,i,a=[];for(n=0;n<t.length;n++)for(r=s(t[n],e),i=0;i<r.length;i++)a.push(r[i]);return a}},{"../lib":684,"../plot_api/plot_schema":721,"../plots/plots":795,"./helpers":1128}],1128:[function(t,e,r){"use strict";r.pointsAccessorFunction=function(t,e){for(var r,n,i=0;i<t.length&&(r=t[i])!==e;i++)r._indexToPoints&&!1!==r.enabled&&(n=r._indexToPoints);return n?function(t){return n[t]}:function(t){return[t]}}},{}],1129:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/cartesian/axes"),a=t("./helpers").pointsAccessorFunction;r.moduleType="transform",r.name="sort",r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},target:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},order:{valType:"enumerated",values:["ascending","descending"],dflt:"ascending",editType:"calc"},editType:"calc"},r.supplyDefaults=function(t){var e={};function i(i,a){return n.coerce(t,e,r.attributes,i,a)}return i("enabled")&&(i("target"),i("order")),e},r.calcTransform=function(t,e,r){if(r.enabled){var o=n.getTargetArray(e,r);if(o){var s=r.target,l=o.length;e._length&&(l=Math.min(l,e._length));var c,u,h=e._arrayAttrs,f=function(t,e,r,n){var i,a=new Array(n),o=new Array(n);for(i=0;i<n;i++)a[i]={v:e[i],i:i};for(a.sort(function(t,e){switch(t.order){case"ascending":return function(t,r){return e(t.v)-e(r.v)};case"descending":return function(t,r){return e(r.v)-e(t.v)}}}(t,r)),i=0;i<n;i++)o[i]=a[i].i;return o}(r,o,i.getDataToCoordFunc(t,e,s,o),l),p=a(e.transforms,r),d={};for(c=0;c<h.length;c++){var g=n.nestedProperty(e,h[c]),m=g.get(),v=new Array(l);for(u=0;u<l;u++)v[u]=m[f[u]];g.set(v)}for(u=0;u<l;u++)d[u]=p(f[u]);r._indexToPoints=d,e._length=l}}}},{"../lib":684,"../plots/cartesian/axes":732,"./helpers":1128}]},{},[21])(21)});</script><div id="edd029ca-914f-4bdd-b3bb-a1170240666b" style="height: 100%; width: 100%;" class="plotly-graph-div"></div><script type="text/javascript">window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL="https://plot.ly";\n+        Plotly.plot(\n+            \'edd029ca-914f-4bdd-b3bb-a1170240666b\',\n+            [{"mode": "lines", "x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "y": [0.7634899597102532, 0.7953981831108754, 0.7937021172447345, 0.7951323776809974, 0.793206654688313, 0.8046265123256906, 0.7972524937034748, 0.8106427221191455, 0.8072746749161711, 0.8146665413082648, 0.8155998800333571, 0.8056801877422021, 0.8123573954396127, 0.8155472512482351, 0.8164562575257928, 0.8151250518677203, 0.8107710182153142], "type": "scatter", "uid": "793d6528-c63f-11e9-9baf-acbc32846fd5"}],\n+            {"xaxis": {"title": "Number of features selected"}, "yaxis": {"title": "Cross validation score"}},\n+            {"showLink": true, "linkText": "Export to plot.ly"}\n+        ).then(function () {return Plotly.addFrames(\'edd029ca-914f-4bdd-b3bb-a1170240666b\',{});}).then(function(){Plotly.animate(\'edd029ca-914f-4bdd-b3bb-a1170240666b\');})\n+        </script><script type="text/javascript">window.addEventListener("resize", function(){Plotly.Plots.resize(document.getElementById("edd029ca-914f-4bdd-b3bb-a1170240666b"));});</script></body></html>\n\\ No newline at end of file\n'
b
diff -r 000000000000 -r eaddff553324 test-data/ml_vis05.png
b
Binary file test-data/ml_vis05.png has changed
b
diff -r 000000000000 -r eaddff553324 test-data/model_fit01
b
Binary file test-data/model_fit01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/model_fit02
b
Binary file test-data/model_fit02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/model_fit02.h5
b
Binary file test-data/model_fit02.h5 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/model_pred01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/model_pred01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+Predicted
+71.129364
+60.96111
+77.885765
+57.212738
+51.806957
+52.089592
+51.571884
+80.762184
+36.772987
+41.643093
+46.386948
+77.97063
+72.768776
+40.0386
+79.81385
+74.40216
+52.089592
+75.51107
+55.705868
+39.944202
+49.643826
+59.17941
+69.848915
+64.62096
+48.310116
+43.391766
+68.25893
+60.198105
+65.16974
+72.130005
+56.351482
+53.20132
+56.86578
+54.342987
+43.521133
+59.663773
+66.097626
+51.960022
+41.559486
+45.16049
+66.40008
+71.488754
+45.16049
+63.34996
+69.83631
+55.652687
+61.311596
+71.85501
+75.12588
+54.93247
+70.09855
+74.20223
+57.898273
+55.23022
+75.70524
+66.94729
+65.12762
+59.3189
+61.22922
+61.2382
+54.017147
+51.633373
+51.633373
+65.16974
+65.16873
+57.874527
+59.740753
+43.990814
+66.06423
+64.436615
+41.245773
+63.278465
+63.27533
+71.13793
+65.47819
+72.620995
+62.598015
+36.986706
+73.2002
+71.966644
+72.912926
+75.46711
+55.12616
+46.19641
+87.20736
+72.11753
+57.952766
+84.67858
+69.21688
+64.257095
+43.59384
+44.723145
+67.051605
+50.021965
+69.202095
+75.10072
+70.80699
+83.08025
+69.62026
+42.441116
+64.38655
+59.430386
+69.366035
+73.87479
+59.973484
+75.76153
+56.195892
+71.16636
+60.419106
+61.630756
+51.81593
+54.924137
+60.73048
+78.496635
+77.921555
+73.66453
+60.904953
+71.26717
+72.01454
+53.52841
+46.66952
+54.504898
+56.28563
+59.398067
+72.71433
+51.745968
+67.80466
+51.571823
+52.010742
+54.19355
+74.193825
+64.57627
+67.48214
+68.41867
+82.102806
+55.8638
+76.90198
+62.577324
+73.70229
+78.93923
+73.51925
+54.81887
+65.2422
+59.700085
+84.08965
+64.35592
+54.001873
+41.397793
+64.64837
+62.784557
+42.990005
+45.430832
+52.089592
+60.374348
+51.67288
+62.4257
+79.536285
+76.4169
+55.978775
+74.43581
+76.89248
+65.3203
+72.10233
+59.23278
+51.736633
+73.13266
+59.45746
+73.0939
+70.58273
+53.08009
+49.893116
+73.89228
+52.64392
+54.801548
+63.534626
+68.1002
+63.70472
+63.8851
+63.268097
+62.438057
+61.989746
+71.47914
+73.92875
+48.089043
+54.874943
+50.261494
+69.11724
+57.448387
+50.528027
+58.67657
+73.969376
+53.745205
+74.81751
+85.582954
+75.10767
+48.855537
+70.66616
+41.341694
+48.55276
+63.48302
+73.02358
+69.50546
+55.603634
+74.26824
+76.03213
+62.601646
+81.99045
+59.26651
+44.504597
+53.54178
+55.247334
+82.123795
+51.84111
+66.27524
+66.23033
+58.565033
+67.452
+72.54107
+49.840427
+70.26608
+62.447872
+67.045
+42.600086
+64.88309
+55.31232
+39.07865
+71.81975
+59.447086
+53.20132
+75.12621
+72.9902
+53.1043
+72.42816
+72.10233
+55.836628
+53.2467
+74.670074
+74.5721
+54.103737
+49.212822
+67.238785
+60.09495
+74.5011
+63.0043
+67.7362
+53.029213
+74.860016
+78.597946
+75.369064
+60.000134
+68.83947
+40.24504
+81.21449
+61.465557
+42.74572
+52.089592
+73.162025
+52.033802
+79.690926
+62.542553
+59.557045
b
diff -r 000000000000 -r eaddff553324 test-data/model_pred02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/model_pred02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+Predicted
+71.08584
+61.23427
+75.80197
+66.19323
+52.35754
+52.987312
+51.777576
+75.66966
+49.61427
+51.20531
+49.255173
+76.143936
+74.00767
+50.80104
+72.37281
+68.69481
+52.816956
+76.27541
+57.82054
+49.72029
+52.400383
+57.968666
+61.28138
+58.4683
+53.114418
+50.45093
+67.63649
+60.31344
+66.52325
+72.48887
+58.755577
+53.332912
+55.175415
+53.437675
+50.452156
+61.153603
+66.69711
+51.1279
+51.37375
+50.732525
+67.677734
+74.2334
+51.287792
+70.154366
+68.460396
+58.35005
+59.828957
+74.98557
+73.3624
+54.043793
+73.04924
+77.22285
+59.452316
+56.143288
+74.41183
+60.254143
+67.18662
+63.53044
+60.43683
+60.07025
+57.257767
+52.143753
+52.872334
+67.748436
+63.986977
+55.532387
+59.70022
+49.43772
+65.30266
+67.30055
+49.907486
+57.864845
+56.207542
+70.46542
+55.503044
+73.822784
+63.741142
+49.693428
+71.36254
+71.87617
+72.02608
+65.63652
+54.059746
+51.300495
+76.06125
+73.98534
+63.071587
+75.93381
+69.479454
+63.85415
+51.218174
+49.468956
+68.23912
+50.83457
+70.77809
+72.129776
+74.53812
+68.9107
+72.47451
+50.62992
+62.99655
+56.105698
+72.927025
+65.86492
+58.282486
+75.063446
+54.558403
+65.59456
+57.257263
+58.336494
+51.988983
+57.355415
+56.631332
+62.632957
+76.11209
+76.99285
+65.670746
+74.464355
+68.042145
+54.761986
+51.070145
+56.55138
+55.53712
+57.753426
+75.02803
+57.397556
+71.05187
+51.134808
+53.119152
+52.581924
+70.8574
+66.85955
+67.29634
+66.589584
+76.06389
+54.559666
+60.37111
+63.455887
+72.6416
+75.51883
+63.990837
+53.491386
+59.82952
+60.56826
+76.53373
+66.729385
+52.592728
+48.729107
+68.03414
+56.391117
+50.800247
+50.053703
+52.03207
+55.326523
+52.58854
+60.38707
+75.923096
+75.2882
+54.893684
+78.00183
+76.06732
+60.791916
+70.38205
+60.582397
+53.582005
+77.20325
+54.903778
+68.63178
+70.27207
+54.5502
+53.928703
+74.93919
+52.267735
+51.70433
+59.89312
+74.00166
+66.61868
+70.04806
+55.62455
+65.638214
+55.330837
+65.8484
+65.45604
+50.942883
+56.04741
+52.147808
+69.9472
+52.90547
+51.568893
+57.65322
+76.28175
+53.421043
+73.63155
+77.357666
+77.49912
+51.669907
+67.80663
+49.745773
+52.792336
+62.308838
+76.21391
+70.10635
+53.58763
+76.36336
+75.63791
+66.51898
+59.851395
+53.114918
+50.095005
+54.76951
+58.387985
+76.39301
+53.754196
+66.004395
+59.4105
+53.724583
+63.857407
+70.29119
+50.46862
+58.864563
+61.946457
+70.4472
+50.738815
+65.65154
+52.600437
+49.42977
+70.38036
+56.012196
+53.824024
+71.119225
+75.3495
+49.078987
+74.36192
+71.18959
+54.9702
+54.477818
+72.231705
+68.62958
+52.298077
+52.34682
+70.110405
+60.08683
+74.98835
+55.85307
+66.53965
+53.608902
+67.770744
+66.93648
+68.07121
+59.94021
+58.784706
+50.237366
+77.0887
+65.06997
+50.1484
+51.08928
+74.907234
+56.82161
+62.303955
+62.67704
+61.49601
b
diff -r 000000000000 -r eaddff553324 test-data/moons.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/moons.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 0
+-0.71834935009773 0.69568255060349 0
+0.28165064990227 -0.19568255060349 1
+-0.09602302590768 0.99537911294920 0
+-0.87131870412339 0.49071755200394 0
+-0.62348980185873 0.78183148246803 0
+-0.03205157757165 0.99948621620069 0
+-0.67230089026132 0.74027799707532 0
+-0.51839256831052 0.85514276300535 0
+1.15959989503338 -0.48718178341445 1
+0.22252093395631 0.97492791218182 0
+1.62348980185873 -0.28183148246803 1
+0.00000000000000 0.50000000000000 1
+1.90096886790242 0.06611626088244 1
+0.65463494557869 -0.43846842204976 1
+1.98155915699107 0.30884137129863 1
+1.22252093395631 -0.47492791218182 1
+0.84040010496662 -0.48718178341445 1
+0.94905574701067 0.31510821802362 0
+-0.83808810489184 0.54553490121055 0
+0.76144595836913 0.64822839530779 0
+-0.28452758663103 0.95866785303666 0
+1.51839256831052 -0.35514276300535 1
+1.46253829024084 -0.38659930637300 1
+-0.92691675734602 0.37526700487937 0
+-0.22252093395631 0.97492791218182 0
+0.15959989503338 0.98718178341445 0
+0.09602302590768 0.99537911294920 0
+1.83808810489184 -0.04553490121055 1
+1.67230089026132 -0.24027799707532 1
+0.28452758663103 0.95866785303666 0
+-0.46253829024084 0.88659930637300 0
+0.92691675734602 0.37526700487937 0
+0.98155915699107 0.19115862870137 0
+0.71834935009773 0.69568255060349 0
+0.00205460724966 0.43592978001929 1
+1.57211666012217 -0.32017225459696 1
+0.90397697409232 -0.49537911294920 1
+0.37651019814127 -0.28183148246803 1
+0.03270513696097 0.24634541609049 1
+0.59521665687761 -0.41441262301581 1
+1.03205157757165 -0.49948621620069 1
+0.96794842242834 -0.49948621620069 1
+0.09903113209758 0.06611626088244 1
+-0.90096886790242 0.43388373911756 0
+1.09602302590768 -0.49537911294920 1
+2.00000000000000 0.50000000000000 1
+0.46253829024084 0.88659930637300 0
+1.92691675734602 0.12473299512063 1
+0.32769910973868 -0.24027799707532 1
+1.00000000000000 0.00000000000000 0
+0.40478334312239 0.91441262301581 0
+-0.94905574701067 0.31510821802362 0
+-0.76144595836913 0.64822839530779 0
+-0.96729486303903 0.25365458390951 0
+-0.80141362186796 0.59811053049122 0
+0.71547241336897 -0.45866785303666 1
+1.94905574701067 0.18489178197638 1
+-0.34536505442131 0.93846842204976 0
+0.77747906604369 -0.47492791218182 1
+-0.98155915699107 0.19115862870137 0
+0.07308324265398 0.12473299512063 1
+1.34536505442131 -0.43846842204976 1
+1.87131870412339 0.00928244799606 1
+1.76144595836913 -0.14822839530779 1
+0.34536505442131 0.93846842204976 0
+1.40478334312239 -0.41441262301581 1
+0.05094425298933 0.18489178197638 1
+1.80141362186796 -0.09811053049122 1
+0.23855404163087 -0.14822839530779 1
+0.42788333987783 -0.32017225459696 1
+-0.99179001382325 0.12787716168451 0
+-1.00000000000000 0.00000000000000 0
+0.90096886790242 0.43388373911756 0
+1.99179001382325 0.37212283831549 1
+0.16191189510816 -0.04553490121055 1
+1.96729486303903 0.24634541609049 1
+0.67230089026132 0.74027799707532 0
+0.99794539275034 0.06407021998071 0
+-0.40478334312239 0.91441262301581 0
+0.96729486303903 0.25365458390951 0
+-0.15959989503338 0.98718178341445 0
+0.99179001382325 0.12787716168451 0
+0.83808810489184 0.54553490121055 0
+0.51839256831053 0.85514276300535 0
+0.12868129587661 0.00928244799606 1
+0.19858637813204 -0.09811053049122 1
+0.57211666012217 0.82017225459696 0
+1.99794539275034 0.43592978001929 1
+-0.57211666012217 0.82017225459696 0
+0.62348980185873 0.78183148246803 0
+0.48160743168947 -0.35514276300535 1
+0.01844084300893 0.30884137129863 1
+0.00820998617675 0.37212283831549 1
+0.80141362186796 0.59811053049122 0
+-0.99794539275034 0.06407021998071 0
+1.28452758663103 -0.45866785303666 1
+1.71834935009773 -0.19568255060349 1
+0.53746170975916 -0.38659930637300 1
+0.03205157757166 0.99948621620069 0
+0.87131870412339 0.49071755200394 0
b
diff -r 000000000000 -r eaddff553324 test-data/mv_result02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/mv_result02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,11 @@
+Predicted
+1.578912095858962
+-1.199072894940544
+-0.7173258906076226
+0.3255908318822695
+0.21919344304093213
+-0.6841926371423699
+1.1144698671662865
+0.19379531649046616
+0.9405094785593062
+1.2581284896870837
b
diff -r 000000000000 -r eaddff553324 test-data/mv_result03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/mv_result03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+train_sizes_abs mean_train_scores std_train_scores mean_test_scores std_test_scores
+17 0.9668700841937653 0.00277836829836518 0.7008862995946905 0.03857541198731935
+56 0.9730008602419361 0.006839342612121988 0.7963376762427242 0.004846330083938778
+95 0.9728783377589098 0.0037790183626530663 0.814592845745573 0.020457691766770824
+134 0.9739086338111185 0.001627343246847077 0.7985540571195479 0.03954641079310707
+174 0.9726218628287785 0.0032867750457225182 0.8152971572131146 0.04280261115004303
b
diff -r 000000000000 -r eaddff553324 test-data/mv_result05.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/mv_result05.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+Predicted
+70.16
+62.06
+83.04
+62.84
+48.63
+51.25
+54.98
+80.3
+42.84
+41.52
+43.83
+73.15
+74.22
+42.88
+74.93
+72.9
+53.74
+78.86
+59.0
+40.28
+54.52
+58.34
+62.74
+62.35
+49.15
+41.92
+65.59
+59.91
+66.49
+72.08
+60.44
+53.84
+54.82
+52.66
+42.37
+61.3
+63.14
+50.62
+42.75
+47.39
+67.8
+73.58
+49.97
+67.04
+67.45
+54.67
+64.87
+77.23
+73.52
+53.55
+70.53
+77.98
+61.99
+53.08
+78.12
+66.55
+63.95
+60.57
+61.6
+60.37
+55.29
+54.31
+52.54
+65.31
+61.51
+57.3
+60.02
+43.64
+74.78
+68.26
+42.72
+61.26
+61.25
+71.58
+61.03
+70.53
+70.25
+43.4
+71.39
+72.31
+72.7
+72.11
+53.55
+43.4
+80.6
+73.72
+58.86
+76.71
+68.36
+60.26
+48.56
+38.96
+69.67
+52.9
+67.63
+75.12
+70.92
+70.89
+67.05
+43.89
+59.94
+62.98
+71.1
+79.22
+77.31
+79.06
+61.11
+66.32
+54.7
+61.1
+54.59
+58.7
+59.6
+73.79
+72.69
+81.83
+61.08
+69.21
+74.8
+54.37
+50.85
+53.07
+58.53
+55.44
+72.62
+54.14
+68.12
+48.81
+50.11
+56.06
+73.63
+63.29
+71.0
+74.87
+81.24
+54.67
+66.96
+61.37
+74.84
+76.71
+69.27
+56.53
+71.91
+58.74
+77.83
+64.57
+51.93
+42.84
+64.11
+59.47
+42.46
+43.79
+51.75
+63.98
+54.71
+64.95
+79.72
+72.12
+60.66
+79.3
+71.26
+59.9
+74.25
+59.68
+52.37
+78.52
+58.52
+71.98
+71.77
+54.48
+48.96
+81.42
+54.08
+53.52
+64.38
+70.79
+63.95
+67.48
+61.76
+66.15
+62.1
+75.68
+69.72
+43.8
+56.27
+53.38
+81.31
+57.54
+48.15
+59.47
+78.01
+56.39
+72.33
+78.8
+78.66
+52.01
+66.68
+48.56
+47.75
+65.67
+77.93
+72.68
+58.0
+77.83
+73.37
+65.39
+69.79
+55.98
+46.35
+54.31
+55.58
+79.69
+52.76
+62.62
+66.54
+60.29
+62.57
+74.86
+48.05
+65.09
+65.02
+67.84
+41.86
+62.28
+57.05
+43.68
+72.0
+63.04
+54.41
+73.37
+75.11
+42.65
+73.16
+71.68
+58.61
+53.54
+73.33
+72.16
+49.96
+54.78
+64.24
+60.13
+76.46
+61.53
+68.36
+53.1
+71.33
+76.12
+70.86
+61.35
+67.12
+43.25
+80.2
+71.16
+58.63
+52.37
+74.93
+53.34
+76.41
+63.87
+59.97
b
diff -r 000000000000 -r eaddff553324 test-data/named_steps.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/named_steps.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+{'preprocessing_1': SelectKBest(k=10, score_func=<function f_regression at 0x113310ea0>), 'estimator': XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
+       colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
+       max_depth=3, min_child_weight=1, missing=nan, n_estimators=100,
+       n_jobs=1, nthread=None, objective='reg:linear', random_state=10,
+       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
+       silent=True, subsample=1)}
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/nn_model01
b
Binary file test-data/nn_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/nn_model02
b
Binary file test-data/nn_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/nn_model03
b
Binary file test-data/nn_model03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/nn_prediction_result01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/nn_prediction_result01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/nn_prediction_result02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/nn_prediction_result02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/nn_prediction_result03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/nn_prediction_result03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/numeric_values.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/numeric_values.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67
+0 44 64 -76
+0 51 48 -73
+0 58 65 -49
+0 43 61 -49
+0 45 43 -79
+0 42 60 -98
+0 50 55 -59
+0 53 53 -56
+0 45 44 -61
+0 43 65 -84
+0 35 52 -75
+0 56 56 -70
+1 -61 86 43
+1 -67 93 15
+1 -59 94 36
+1 -50 92 62
+1 -78 91 70
+1 -35 87 47
+1 -56 91 52
+1 -61 81 46
+1 -83 78 34
+1 -50 87 45
+1 -67 73 50
+1 -50 97 45
+1 -61 111 45
+2 -109 23 -92
+2 -94 20 -96
+2 -85 26 -88
+2 -90 33 -114
+2 -63 9 -106
+2 -79 9 -93
+2 -99 26 -108
+2 -81 19 -110
+2 -108 21 -108
+2 -92 27 -106
+2 -88 2 -106
+2 -88 15 -103
+3 54 -74 4
+3 42 -92 31
+3 39 -99 -7
+3 48 -115 -5
+3 39 -96 2
+3 31 -109 9
+3 33 -96 -8
+3 23 -102 4
+3 38 -90 21
+3 34 -107 1
+3 35 -78 18
b
diff -r 000000000000 -r eaddff553324 test-data/pickle_blacklist
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pickle_blacklist Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+cos
+system
+(S'ls ~'
+tR.
\ No newline at end of file
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline01
b
Binary file test-data/pipeline01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline02
b
Binary file test-data/pipeline02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline03
b
Binary file test-data/pipeline03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline04
b
Binary file test-data/pipeline04 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline05
b
Binary file test-data/pipeline05 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline06
b
Binary file test-data/pipeline06 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline07
b
Binary file test-data/pipeline07 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline08
b
Binary file test-data/pipeline08 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline09
b
Binary file test-data/pipeline09 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline10
b
Binary file test-data/pipeline10 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline11
b
Binary file test-data/pipeline11 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline12
b
Binary file test-data/pipeline12 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline14
b
Binary file test-data/pipeline14 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline15
b
Binary file test-data/pipeline15 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/pipeline16
b
Binary file test-data/pipeline16 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/precision_recall_curve.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/precision_recall_curve.txt Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,2 @@
+precision_recall_curve : 
+(array([1., 1.]), array([1., 0.]), array([1]))
b
diff -r 000000000000 -r eaddff553324 test-data/precision_recall_fscore_support.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/precision_recall_fscore_support.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+precision_recall_fscore_support : 
+(0.8461538461538461, 0.8461538461538461, 0.8461538461538461, None)
b
diff -r 000000000000 -r eaddff553324 test-data/precision_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/precision_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+precision_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model01
b
Binary file test-data/prp_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model02
b
Binary file test-data/prp_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model03
b
Binary file test-data/prp_model03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model04
b
Binary file test-data/prp_model04 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model05
b
Binary file test-data/prp_model05 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model06
b
Binary file test-data/prp_model06 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model07
b
Binary file test-data/prp_model07 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model08
b
Binary file test-data/prp_model08 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_model09
b
Binary file test-data/prp_model09 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+0.34079224150348947 -0.3921227933085925 0.2490507280911941 -0.7698156258582727 -0.1701382209728926
+-0.8620757555306106 -0.19048588419219253 0.24710543975009408 0.7422931346186274 -0.6790706051909926
+-0.44857543757211044 0.19920312300180737 -0.812112096739406 0.2785593090771274 0.04069143168750737
+1.3342816328356895 1.6641608262566074 -3.000113357933606 -0.6701123839490727 -0.07045038775469255
+0.7615267260378895 0.9176274108888074 -1.954493327131406 -0.5675301168878727 0.10063563654750733
+0.3517077819346894 0.6351202511326074 -1.518915029366606 -0.30971697444707263 0.09957030020130735
+-1.1546995581165105 -0.5289323469785927 0.7279548225941941 0.8261855855227276 -0.6127421735668926
+-0.17683671467671042 -1.5830256329757926 1.8352445249339941 -1.0553955128494728 0.23777966502290743
+-0.04589044764567053 0.4089694362054475 -1.1558632189207658 -0.02446696726223259 0.07501752707814739
+-2.322599763463111 -1.5464662131621925 2.233148890877594 1.4052188634961276 -0.5115354482934926
+0.3359621667503495 -0.16218071845273258 -0.03556840603494589 -0.5958346262657126 -0.28461208654203257
+0.09817425011268949 -0.29803272230839256 0.18230400872239416 -0.42567750847007263 -0.2990016986016926
+0.6939725287059254 -0.046625817910626616 -0.25306728129413986 -0.9172273915573068 -0.2192857084889266
+-1.8560091420543106 -0.8903352997473926 0.8320084501263939 1.0765172991949272 0.09558502193530742
+0.7235684795430894 -0.41357463008399253 0.19661484068979412 -1.2196980959976726 -0.029144264696292624
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result02
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result02 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+0.5507843815769634 0.3509713593582132 0.5024983733118504 0.21181277111109376 0.0
+0.3861806964013367 0.5069547456108511 0.6109599535763046 0.8290928000628373 0.0
+0.5507375738755746 0.6540163740150353 0.4443100403766963 0.7730482551190299 1.0
+1.0 1.0 0.0 0.517244227590485 1.0
+0.8235586181451755 0.7985651943678985 0.18709221814790866 0.4963213476362478 1.0
+0.7266009913523925 0.7367833962232062 0.2805049676108317 0.5753897601225946 1.0
+0.30103611027291544 0.41809900797558924 0.6996399175984136 0.8344573213929083 0.0
+0.3312417925943893 0.0 0.7545711939364796 0.0 0.0
+0.6381134490835961 0.6925288168071413 0.36342661590035497 0.6700118165314028 1.0
+0.0 0.17251430929709788 1.0 0.9803983325686505 0.0
+0.5767922296995018 0.42657716609772306 0.4660985815769355 0.29991460317209145 0.0
+0.5238014571892052 0.39991387603944323 0.5157872357238816 0.3562801111416092 0.0
+0.6462177807916674 0.4376032758632245 0.4055927537907609 0.18180023195970593 0.0
+0.2038689924106734 0.40279192286335813 0.7842991022590049 1.0 1.0
+0.6081358906411253 0.3153114383337088 0.4611172283355056 0.03134330438976468 0.0
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result03
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result03 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+1.0 -0.409899987374 -0.649450145317 0.510268556953 -0.229110484125 0.0 0.16801799964920539 0.26620960636548074 -0.2091590750523839 0.09391238455008853 -0.0 0.4217854912522724 -0.33139398846382173 0.14879583720862946 -0.0 0.260374000214897 -0.11690787611726697 0.0 0.05249161393599188 -0.0 0.0
+1.0 -1.10383560019 0.0611191480175 1.0172556528299999 1.79193066057 0.0 1.2184530322468177 -0.06746549143499857 -1.1228830040882731 -1.9779968562091492 -0.0 0.003735550254385074 0.06217379881695535 0.10952127528047438 0.0 1.0348090632145892 1.8228515939442282 0.0 3.2110154922908367 0.0 0.0
+1.0 -0.41009731910999997 0.7310461183329999 0.238276079462 1.60843479815 1.0 0.16817981114120914 -0.29980005327413506 -0.09771638139540752 -0.659614798684549 -0.41009731910999997 0.5344284271297466 0.17419080298230055 1.1758400157792797 0.7310461183329999 0.05677549004378134 0.38325153777343535 0.238276079462 2.5870624998998313 1.60843479815 1.0
+1.0 1.48390157074 2.30714564103 -1.83858336229 0.7709049245659999 1.0 2.2019638716446392 3.423577040650361 -2.7282767392385616 1.1439470284546884 1.48390157074 5.322921008923729 -4.241879589977655 1.7785899363610076 2.30714564103 3.3803887800896018 -1.417372968214475 -1.83858336229 0.59429440272011 0.7709049245659999 1.0
+1.0 0.74006063964 1.38952620136 -0.96404935579 0.702401167325 1.0 0.547689750344366 1.028333649375021 -0.7134549828904773 0.5198194571744222 0.74006063964 1.9307830642659514 -1.3395718392744338 0.9760048258639371 1.38952620136 0.929391160399114 -0.6771493928658102 -0.96404935579 0.49336739985952266 0.702401167325 1.0
+1.0 0.331307031883 1.10808437795 -0.527405721679 0.961279646112 1.0 0.10976434937512317 0.3671161463345349 -0.17473322424758106 0.3184787063629073 0.331307031883 1.2278509886568385 -0.5844100410339456 1.0651789586980116 1.10808437795 0.27815679525974685 -0.5069843854930332 -0.527405721679 0.924058558029212 0.961279646112 1.0
+1.0 -1.4627878344 -0.34365574639300006 1.43177660405 1.8094946798500002 0.0 2.139748248468642 0.5026954450453321 -2.0943853979828857 -2.646906804096103 -0.0 0.11809927202892997 -0.49203825753283764 -0.6218432447980146 -0.0 2.0499842439049503 2.5907921477621754 0.0 3.274270996405455 0.0 0.0
+1.0 -1.33544682955 -2.24827087098 1.6885444678000001 -0.922608257112 0.0 1.7834182345551466 3.0024462066198576 -2.254961356077702 1.2320942718768715 -0.0 5.054721909297167 -3.7963053413091665 2.074273269790536 -0.0 2.851182419737986 -1.5578650684930677 0.0 0.8512059960912424 -0.0 0.0
+1.0 -0.041738424574199996 0.906486336146 -0.13980113811 1.27108242642 1.0 0.001742096085936182 -0.03783531156877273 0.005835079258391552 -0.05305297798272229 -0.041738424574199996 0.821717477619399 -0.12672782147437484 1.1522188516650336 0.906486336146 0.019544358216851295 -0.17769876984513633 -0.13980113811 1.6156505347537549 1.27108242642 1.0
+1.0 -2.7318947650200003 -1.46239633785 2.83576394706 2.28732123255 0.0 7.463249007143682 3.9951128997568346 -7.747008681805666 -6.24872090112244 -0.0 2.1386030489570915 -4.147010811187605 -3.344970193967668 -0.0 8.04155716344531 6.486303086610132 0.0 5.231838420874052 0.0 0.0
+1.0 -0.300256196558 -0.305034204892 0.340123288396 0.0593443810367 0.0 0.09015378357147634 0.0915884101809656 -0.1021241249345827 -0.017818518137168244 -0.0 0.09304586615409464 -0.10374923684112626 -0.01810206608433767 -0.0 0.11568385130930857 0.020184406026027626 0.0 0.0035217555606290385 0.0 0.0
+1.0 -0.523654501136 -0.42649659668799994 0.5723853152130001 0.24389111089200002 0.0 0.274214036559993 0.22333686257485638 -0.29973214669543563 -0.1277146780056551 -0.0 0.18189934698644647 -0.2441203889325326 -0.1040187287578936 -0.0 0.3276249490714854 0.1395996903855662 0.0 0.05948287397213385 0.0 0.0
+1.0 -0.007572212655529999 -0.254805682403 0.0572980350837 -0.327374762308 0.0 5.733840450056868e-05 0.0019294428129929542 -0.00043387290639779506 0.002478951318249763 -0.0 0.0649259357848585 -0.014599864929853214 0.08341694971140987 -0.0 0.003283064824452916 -0.018757930616241734 0.0 0.1071742349962195 -0.0 0.0
+1.0 -1.87242461384 -0.413385894664 1.8275030360799998 2.35149919802 1.0 3.5059739345138734 0.7740339241831431 -3.421861666623521 -4.403004977797668 -1.87242461384 0.1708878979071557 -0.755463977571107 -0.9720765997751761 -0.413385894664 3.339767346881617 4.297371923721235 1.8275030360799998 5.529548478288703 2.35149919802 1.0
+1.0 -0.16811770561099998 -0.811895938369 0.316838713275 -0.819986910541 0.0 0.028263562939906853 0.13649408235348612 -0.053266197524534487 0.1378543180312052 -0.0 0.659175014740079 -0.25724006442603264 0.6657440421839824 -0.0 0.10038677022975767 -0.25980359763815297 0.0 0.672378533458574 -0.0 0.0
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result04
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result04 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+0.0 -0.25385559680817016 0.13442061387070464 -0.5602120769938709 0.0
+-0.5807061112525813 0.2698773982744695 0.5349578561360192 0.571982134735025 0.0
+-0.00016513310878258202 0.7636545174678359 -0.0804627978317235 0.4691871204655464 1.0
+1.584789882498885 1.9253361878040125 -1.7212531850763018 0.0 1.0
+0.9623215057330502 1.248994581161877 -1.0303412425843197 -0.038376040801309956 1.0
+0.6202642404230927 1.0415547572084232 -0.6853777543973235 0.1066485748494791 1.0
+-0.881088095119412 -0.028466436412001278 0.862443663986116 0.5818215588435884 0.0
+-0.7745253270992509 -1.4322841823191093 1.0652991072215634 -0.9487119185155306 0.0
+0.30808862594408043 0.8929646798898123 -0.37915680271103425 0.2802011596461483 1.0
+-1.9431147973567746 -0.8530466232854528 1.97164195151228 0.8495016397748227 0.0
+0.09175320910447847 0.0 0.0 -0.3986186678055577 0.0
+-0.0951931852237634 -0.08952520583418162 0.18349498924288923 -0.2952349539785941 0.0
+0.33667993570408733 0.03702149075186114 -0.22344167716683067 -0.6152600641516485 0.0
+-1.223884424953702 -0.07986181719203675 1.1750811552867684 0.8854543571237001 1.0
+0.20233065722424093 -0.37358807403702804 -0.01839561515890641 -0.8912230866367292 0.0
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result05
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result05 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,7 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 4
+1 1 1.000000000000000e+00
+2 3 1.000000000000000e+00
+3 1 1.000000000000000e+00
+3 3 1.000000000000000e+00
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result06
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result06 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 6
+1 1 1.000000000000000e+00
+3 1 4.000000000000000e-02
+3 2 -5.000000000000000e+00
+1 3 -2.000000000000000e-01
+2 3 1.100000000000000e+01
+3 3 2.600000000000000e+00
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result07
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result07 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+0.10866513901130055 -0.5565683482001781 0.01697338750768846 -0.9589623671667038 -0.816496580927726
+-0.5710995365177258 0.07926796585473102 0.46542360804755395 0.9797654572160418 -0.816496580927726
+0.10847183700890116 0.6787364476581768 -0.2236147606088382 0.803743046654752 1.224744871391589
+1.9637931622636124 2.0890722453009336 -2.0606794162148767 0.00032423752699077795 1.224744871391589
+1.2351422905746392 1.2679619500798842 -1.2871193566513779 -0.06538948660301952 1.224744871391589
+0.8347358862676002 1.0161203164819261 -0.9008907216292501 0.18294534382616373 1.224744871391589
+-0.922721566734639 -0.28293538193724904 0.8320838514832234 0.9966141260199964 -0.816496580927726
+-0.7979810068833711 -1.9872356829362412 1.059205224122999 -1.6242152405020795 -0.816496580927726
+0.4693084330819043 0.8357250235474191 -0.5580390743243027 0.48013042183945476 1.224744871391589
+-2.1659119218220786 -1.284014236214121 2.073966413639728 1.4549796745789692 -0.816496580927726
+0.2160698816290759 -0.2483757987671466 -0.1335268595966537 -0.6822557426452339 -0.816496580927726
+-0.0027663810163240663 -0.35706357942460004 0.07191812706310458 -0.5052252645629531 -0.816496580927726
+0.5027769329398427 -0.20342998011241972 -0.3836970281346616 -1.053224520491157 -0.816496580927726
+-1.3239931073762934 -0.34533177433843787 1.182119596299028 1.5165437885484256 1.224744871391589
+0.3455099575735564 -0.7019291669926769 -0.15412299100336474 -1.5257734742396478 -0.816496580927726
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result08
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result08 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 6
+1 1 1.000000000000000e+00
+1 3 -1.818181818181818e-02
+2 3 1.000000000000000e+00
+3 1 4.000000000000000e-02
+3 2 -1.000000000000000e+00
+3 3 2.363636363636364e-01
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result09
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result09 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+%%MatrixMarket matrix coordinate real general
+%
+3 3 6
+1 1 8.333333333333334e-01
+1 3 -1.666666666666667e-01
+2 3 1.000000000000000e+00
+3 1 5.235602094240837e-03
+3 2 -6.544502617801047e-01
+3 3 3.403141361256544e-01
b
diff -r 000000000000 -r eaddff553324 test-data/prp_result10
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/prp_result10 Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+year\tmonth\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Thurs\tweek_Tues\tweek_Wed\n+-1.0\t0.4545454545454546\t0.19999999999999996\t0.22222222222222188\t-0.17073170731707288\t0.5232198142414863\t0.33333333333333304\t0.6000000000000001\t0.5428571428571427\t0.791044776119403\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.4545454545454546\t-0.1333333333333333\t-0.07407407407407396\t-0.41463414634146334\t-0.195046439628483\t-0.11111111111111116\t-0.02857142857142847\t-0.20000000000000018\t0.13432835820895517\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t0.09090909090909083\t0.9333333333333333\t0.8518518518518516\t0.29268292682926855\t0.9938080495356032\t0.8888888888888884\t0.8857142857142857\t0.8857142857142852\t0.25373134328358193\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.2727272727272727\t-0.06666666666666665\t0.7407407407407405\t-0.26829268292682906\t0.21362229102167207\t0.22222222222222232\t0.31428571428571406\t0.1428571428571428\t-0.10447761194029859\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-1.0\t0.1333333333333333\t-0.2962962962962963\t-0.6341463414634145\t-0.8513931888544892\t-0.8333333333333335\t-0.8857142857142857\t-0.7142857142857144\t-0.10447761194029859\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-1.0\t0.6000000000000001\t-0.5185185185185186\t-0.6097560975609755\t-0.8080495356037152\t-0.7777777777777777\t-0.7142857142857144\t-0.7142857142857144\t0.04477611940298498\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.8181818181818181\t0.6000000000000001\t-0.4814814814814816\t-0.5853658536585364\t-0.7832817337461302\t-0.7777777777777777\t-0.657142857142857\t-0.8285714285714287\t-0.6119402985074627\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.09090909090909083\t0.2666666666666666\t0.40740740740740744\t0.048780487804878314\t0.956656346749226\t0.8888888888888884\t0.8285714285714287\t0.8857142857142852\t0.13432835820895517\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.9999999999999998\t0.06666666666666665\t-0.8518518518518519\t-0.9999999999999999\t-0.9938080495356036\t-0.8888888888888888\t-0.9428571428571431\t-0.8857142857142857\t-0.7014925373134329\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.9999999999999998\t-0.5333333333333333\t-0.7407407407407409\t-0.8780487804878048\t-0.9380804953560373\t-0.7777777777777777\t-0.7142857142857144\t-0.8285714285714287\t-0.7611940298507462\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t0.9999999999999998\t0.8\t-0.7407407407407409\t-0.7073170731707314\t-0.9876160990712077\t-1.0\t-0.8285714285714287\t-1.0\t-0.10447761194029859\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.09090909090909083\t0.06666666666666665\t0.5185185185185186\t-0.09756097560975596\t0.9318885448916405\t0.9444444444444446\t0.8285714285714287\t0.8857142857142852\t0.791044776119403\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.09090909090909083\t-0.6\t0.2592592592592591\t2.220446049250313e-16\t0.8142414860681115\t0.7777777777777777\t0.7714285714285709\t0.7142857142857144\t0.31343283582089554\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t0.9999999999999998\t-0.06666666666666665\t-0.8148148148148149\t-0.9024390243902437\t-0.9876160990712077\t-0.7777777777777777\t-0.8285714285714287\t-0.8285714285714287\t-0.4626865671641791\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t-0.09090909090909105\t0.7333333333333334\t0.33333333333333304\t0.048780487804878314\t0.6780185758513935\t0.6111111111111112\t0.6000000000000001\t0.5999999999999996\t0.6716417910447763\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.2727272727272727\t0.9999999999999998\t0.07407407407407396\t-0.12195121951219501\t0.3746130030959747\t0.22222222222222232\t0.4857142857142853\t0.37142857142857144\t0.7014925373134326\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\n+-1.0\t-1.0\t0.2666666666666666\t-0.2962962962962963\t-0.6829268292682924\t-0.8390092879256965\t-0.8333333333333335\t-0.657142857142857\t-0.7142857142857144\t-0.014925373134328401\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.2727272727272727\t-0.4\t0.40740740740740744\t-0.09756097560975596\t0.9752321981424141\t1.0\t0.8285714285714287\t0.8857142857142852\t0.19402985074626877\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t-0.6363636363636365\t0.4666666666666'..b'444444444442\t0.024390243902439268\t0.888544891640866\t0.833333333333333\t0.8285714285714287\t0.8285714285714283\t-0.16417910447761197\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.8181818181818181\t-0.6\t-0.14814814814814836\t-0.36585365853658525\t-0.51702786377709\t-0.44444444444444464\t-0.4285714285714288\t-0.6000000000000001\t-0.791044776119403\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.6363636363636365\t-1.0\t0.14814814814814792\t-0.21951219512195097\t0.2507739938080493\t0.2777777777777777\t0.37142857142857144\t0.1428571428571428\t-0.22388059701492535\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t0.8181818181818181\t0.3999999999999999\t-0.2592592592592595\t-0.5365853658536583\t-0.7399380804953566\t-0.7222222222222223\t-0.5428571428571431\t-0.7142857142857144\t-0.10447761194029859\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\n+-1.0\t-0.09090909090909105\t-1.0\t0.33333333333333304\t0.07317073170731736\t0.3808049535603719\t0.33333333333333304\t0.31428571428571406\t0.2571428571428571\t-0.10447761194029859\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t-0.2727272727272727\t-0.19999999999999996\t0.7037037037037037\t0.024390243902439268\t0.1888544891640862\t0.22222222222222232\t0.19999999999999973\t0.2571428571428571\t0.16417910447761197\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.09090909090909105\t-0.8666666666666667\t0.4814814814814814\t-0.12195121951219501\t0.3993808049535601\t0.2777777777777777\t0.4285714285714284\t0.2571428571428571\t-0.19402985074626855\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.4545454545454546\t-0.2666666666666666\t-0.11111111111111116\t-0.43902439024390216\t-0.21981424148606798\t-0.2777777777777777\t-0.2571428571428571\t-0.2571428571428571\t-0.014925373134328401\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\n+-1.0\t-0.6363636363636365\t0.9999999999999998\t0.07407407407407396\t-0.19512195121951192\t-0.3312693498452015\t-0.22222222222222232\t-0.2571428571428571\t-0.3142857142857145\t-0.16417910447761197\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t0.9999999999999998\t-0.1333333333333333\t-0.7037037037037037\t-0.8780487804878048\t-0.9814241486068114\t-0.7777777777777777\t-0.8857142857142857\t-0.9428571428571431\t-0.3731343283582089\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.2727272727272727\t-0.7333333333333334\t0.4814814814814814\t0.09756097560975618\t0.9938080495356032\t0.8888888888888884\t0.9999999999999996\t0.9428571428571431\t0.28358208955223874\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.2727272727272727\t-0.8\t0.9259259259259256\t-0.04878048780487787\t0.06501547987616041\t0.0\t0.08571428571428541\t0.1428571428571428\t-0.014925373134328401\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\n+-1.0\t0.9999999999999998\t0.9999999999999998\t-0.5185185185185186\t-0.4634146341463412\t-0.975232198142415\t-0.9444444444444446\t-0.8857142857142857\t-0.8285714285714287\t-0.13432835820895517\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-1.0\t0.33333333333333326\t-0.5185185185185186\t-0.5853658536585364\t-0.8328173374613006\t-0.8888888888888888\t-0.7142857142857144\t-0.8857142857142857\t-0.13432835820895517\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\n+-1.0\t0.09090909090909083\t-0.4\t0.4444444444444442\t-0.12195121951219501\t0.8575851393188851\t0.6666666666666665\t0.7714285714285709\t0.8285714285714283\t0.9999999999999998\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.6363636363636365\t-0.06666666666666665\t-0.2962962962962963\t-0.6585365853658536\t-0.47368421052631593\t-0.5555555555555558\t-0.3142857142857145\t-0.5428571428571427\t0.25373134328358193\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\n+-1.0\t-0.4545454545454546\t0.19999999999999996\t0.5555555555555554\t0.3170731707317076\t-0.13931888544891669\t0.0\t-0.02857142857142847\t-0.1428571428571428\t-0.014925373134328401\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t1.0\t-1.0\n+-1.0\t0.6363636363636365\t-0.1333333333333333\t0.14814814814814792\t-0.3902439024390243\t-0.06501547987616085\t-0.16666666666666696\t0.02857142857142847\t-0.08571428571428585\t0.4925373134328359\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n+-1.0\t-0.4545454545454546\t-0.06666666666666665\t-0.11111111111111116\t-0.41463414634146334\t-0.18266253869969074\t-0.0555555555555558\t-0.1428571428571428\t-0.08571428571428585\t-0.6417910447761195\t1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/pw_metric01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pw_metric01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+3.0431466614809506e-10 1.0 0.0014178061201292206 0.04636609716221582 0.012120163495312785 0.012120163495312785 0.03966478547536481 4.837152686522704e-11
+0.00827235898637926 0.0014178061201292193 1.0 0.5030530725911153 0.005949415154775898 0.005949415154775898 0.001821364614043494 1.4472984886595985e-15
+0.0001805433897597471 0.04636609716221582 0.5030530725911155 1.0 0.05154646069476933 0.05154646069476933 0.032127855194777344 6.217339473667583e-13
+1.9087117205849074e-06 0.012120163495312775 0.005949415154775898 0.05154646069476933 1.0 1.0 0.6882765785347926 7.171478371468866e-07
b
diff -r 000000000000 -r eaddff553324 test-data/pw_metric02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pw_metric02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0.0 6.991989327202 4.700302055636 5.583279679695999
+6.991989327202 0.0 2.2916872715660004 5.558713150412
+4.700302055636 2.2916872715660004 0.0 4.078323200938
+5.583279679695999 5.558713150412 4.078323200938 0.0
b
diff -r 000000000000 -r eaddff553324 test-data/pw_metric03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/pw_metric03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,4 @@
+0.0 0.7801459919993865 0.69641542739614 0.649889281728111
+0.7801459919993865 0.0 0.7727193167666271 0.7669511761085644
+0.69641542739614 0.7727193167666271 0.0 0.6761972684325525
+0.649889281728111 0.7669511761085644 0.6761972684325525 0.0
b
diff -r 000000000000 -r eaddff553324 test-data/qda_model01
b
Binary file test-data/qda_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/qda_prediction_result01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/qda_prediction_result01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774 0
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 0
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 0
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 0
b
diff -r 000000000000 -r eaddff553324 test-data/ranking_.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/ranking_.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,18 @@
+ranking_
+17
+7
+4
+5
+2
+1
+9
+6
+8
+3
+10
+15
+14
+11
+13
+12
+16
b
diff -r 000000000000 -r eaddff553324 test-data/recall_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/recall_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+recall_score : 
+0.8461538461538461
b
diff -r 000000000000 -r eaddff553324 test-data/regression.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t10\t11\t12\t13\t14\t15\t16\t17\t18\t19\t20\t21\t22\t23\t24\t25\t26\t27\t28\t29\t30\t31\t32\t33\t34\t35\t36\t37\t38\t39\t40\t41\t42\t43\t44\t45\t46\t47\t48\t49\t50\t51\t52\t53\t54\t55\t56\t57\t58\t59\t60\t61\t62\t63\t64\t65\t66\t67\t68\t69\t70\t71\t72\t73\t74\t75\t76\t77\t78\t79\t80\t81\t82\t83\t84\t85\t86\t87\t88\t89\t90\t91\t92\t93\t94\t95\t96\t97\t98\t99\t0\n+0.04046644371002\t-0.32221869168671\t-1.94327028847757\t0.14089076168331\t0.50797298196983\t-1.18817519027507\t-0.55837864669810\t-1.47620399282446\t-0.24067909072797\t-0.06358029107758\t0.80929510932574\t0.35754611398417\t-0.35463528505326\t-0.01380073878907\t-0.08714823571983\t-0.79453654989307\t0.04252844430409\t1.18480579060701\t-0.34427022696108\t1.81291648390238\t1.93725134258407\t-0.23132382095439\t0.47212052875794\t-1.08604982624795\t-0.22514835388271\t-0.26881282015314\t-2.61290454860335\t-1.40689902631265\t-0.68522413053158\t0.30338447890179\t0.23198841547816\t1.07743876868911\t0.16518761240476\t-1.00475952205489\t-0.44900112900871\t0.06253225964953\t0.50965618717347\t0.34198041660066\t0.20063772499325\t-0.88958780218396\t0.10327990808768\t-0.40064406812253\t0.99727968716504\t0.30650582998706\t1.82568154541772\t-0.41737003120446\t0.44026752537403\t-0.28046691405830\t0.29390729185835\t-0.25861302105802\t1.61354083357410\t-0.21018097777042\t0.73272699046602\t0.33128542535218\t0.28400681429313\t-1.08781339197842\t-1.56515214507716\t0.11108254244934\t-1.05834110708324\t2.71590566117543\t-0.46709306413711\t-0.34890072684346\t-1.25513636804015\t-0.38706157159995\t-2.08983065701298\t-0.05398563142234\t-1.69582718701414\t0.11871279626400\t0.11536367037547\t0.14893574125345\t-0.75025315028281\t2.96755797814605\t0.14570961888674\t-1.16629293291132\t-1.11326773952565\t0.31364953071627\t0.10971268259129\t-1.08261212881083\t1.51674154694999\t1.74111073387411\t1.65143588667220\t0.59294661121932\t1.83067100732278\t-1.17600259748250\t0.50010668566359\t-0.65702939966286\t-0.00009313425995\t0.06338028324231\t2.21679138485467\t-0.04565557453581\t0.95729262004143\t1.62993492561400\t0.37185201934035\t-0.25222024644962\t0.23738912982157\t0.81546373244439\t-0.85286175333815\t0.96037198372300\t-0.30907239676257\t-0.56066669259864\t-6.00832134693808\n+-0.71424406804035\t0.28458137387342\t-0.30625448987067\t-0.17448841397393\t1.12578361592423\t-1.80584080194791\t-1.06785276227400\t0.81398817572329\t0.73661869553748\t-1.49629927138158\t-1.56717360361501\t-1.12018456782121\t0.10177233182574\t-2.45504661423104\t-0.40554207157953\t-1.05963908925750\t-0.37210757142254\t0.40749776579757\t0.68553648625535\t-0.39884590002055\t-0.94459829604073\t-2.10119710498413\t0.38679160339170\t-1.41816962334346\t-0.51923835176096\t0.97898426074191\t0.40508582774259\t-0.77652811271980\t1.10175760640748\t-0.79228035470404\t0.61001162860313\t-0.33062637671512\t-0.32042678881724\t-0.72672493847467\t-0.18435061102909\t-2.64629329629355\t0.23852982942963\t-1.26888176101983\t1.45228797948679\t-1.44631600120499\t-0.03944246509191\t0.83664527833708\t-0.32080614910167\t1.73265246953955\t-0.43674374808587\t0.00064259510634\t-0.54908314046260\t0.44138872930676\t-0.43306138863878\t-0.50788915323440\t-0.71562529742484\t0.24730882154570\t2.34264998959277\t1.39731257913356\t0.18452040005385\t1.28537324525823\t1.97667702755659\t-1.00696330920959\t1.11581898903754\t-0.49351437757812\t1.03520399433437\t2.01005968546991\t-0.07145737231421\t-0.05824150571174\t-0.05500426148539\t-0.18496077328512\t0.63825358857687\t-0.79762195021188\t1.90659647973074\t-2.18232577234497\t-1.22200333720390\t0.59956850953643\t0.53073647163920\t0.92313325091088\t0.54634108574228\t1.23753050621481\t-0.80531409504059\t1.40053754921282\t-0.82885164729651\t-1.41231683902822\t-0.77506619672441\t0.78710407214462\t-0.11413232110539\t-1.58966521342893\t1.82079148764931\t0.88747900665656\t-1.14489712094299\t-0.67489966013144\t-0.40151386976975\t1.26230720670704\t-1.04186780413216\t1.44434627688843\t-1.39500110713296\t-0.96634203108665\t-0.02576081685939\t0.42214550402037\t0.02827639221332\t0.67481973806360\t-0.06302357453907\t-0.90665121506621\t-119.53727328767538\n+0.10887198989791\t0.23784462192362\t1.54160517451341\t-0.18949583082318\t1.02973268513335\t-0.54443916167246\t-1.44321699522534\t0.50780959049232\t-0'..b'317523741\t0.24107892253465\t0.24350121915887\t-0.27274824801804\t0.54381104462477\t0.51820246808255\t-0.86009434942919\t-1.21423044904284\t0.36792051934856\t1.94082103916430\t2.11497218011132\t-0.43432765000649\t0.84999093815312\t1.83997148290589\t-2.18970055774918\t0.83007009623657\t-0.36828110384226\t0.32488842221473\t-0.40800572079705\t1.32393049920405\t0.32899969445643\t-0.28744255330986\t-0.60348124002864\t-2.04249975403047\t-0.12214358859249\t-1.61254032348568\t334.59256835042021\n+0.59156531213735\t-0.11033751258127\t-0.51236076329509\t-0.02454130061915\t0.27734607491290\t0.58725946809788\t-0.70971120747053\t-0.60061928108883\t-0.45186439475169\t0.36767347630475\t-0.28352190645161\t2.22550996123369\t-1.19436828147964\t1.89224039000434\t1.01762849591326\t1.00772158295772\t1.64615065381323\t-1.52145268077060\t-0.03805465490844\t0.64006527712100\t1.11018655266838\t1.72123119765181\t-0.96688703561691\t0.50951459531196\t-0.62580619481323\t1.65406935887170\t-0.27590718483285\t-0.59168211787820\t1.04792553943564\t-1.44913283833913\t-1.71554047709632\t0.92937971799566\t0.45187539696618\t1.56973338225729\t0.09924302883050\t-1.43045835132095\t-1.77900521980859\t0.97878159675935\t0.45962084160257\t0.00203998931280\t0.67057138105928\t0.13284630812698\t0.47422403034583\t-0.35687701161565\t0.90670081209711\t-1.35109741007581\t1.35258835724488\t0.72577510861552\t-0.09572608603917\t1.02184266769816\t-0.88361389539080\t-0.94127337729540\t1.59477698865504\t1.02092398022724\t0.09230308711426\t-0.04862094515233\t0.21076381406530\t1.64185343672488\t-0.24434612500460\t0.35034932531788\t0.75172685734187\t0.41889930681095\t-1.19270821234849\t0.56363994003780\t1.05623566225127\t1.09453422287246\t-1.03407151900200\t-0.04100745586156\t-1.49164829714866\t-0.58664552154587\t0.42604107028870\t-1.86180235120416\t-0.49850298818036\t0.14073031758719\t-1.18336380112792\t-0.71721011226228\t-0.01462447874399\t-2.21756850024936\t0.68942651065361\t1.51410447510684\t-1.25650641629701\t0.67624979937259\t1.64272679099395\t-0.59274406249763\t2.66282719183090\t-1.58227678600233\t-0.05242307406752\t0.96243709558340\t-0.33997777557902\t0.57406693541952\t-1.36830195639258\t0.11957236699383\t0.90590645568978\t1.21752159269684\t1.02860799311460\t0.89057952995516\t0.02075411792998\t1.76027271828188\t0.98122091065469\t0.03053194235190\t-58.56926535911965\n+0.11442909702019\t-0.60013542716991\t-1.17498506051978\t0.37789812105231\t0.80426397769103\t-0.25412543454522\t0.19100846967688\t0.05793637913866\t-0.57265676903169\t0.67137704493643\t1.00486767335942\t1.08035585383206\t-0.58595322636766\t0.31773863810775\t-1.48177365409568\t0.86636864807494\t-0.68610025158762\t0.98118972532235\t0.01499274526023\t-0.96048079613058\t-1.42376242684708\t-1.41447921097575\t-1.07641241372230\t-0.53471921590327\t0.63968104716280\t0.00003821688661\t-1.64789645160895\t-0.47946793783441\t-0.58027590555339\t-0.35626565190656\t-0.35395058607792\t1.22971874563225\t-1.11134507414587\t-1.94996110855379\t-0.18462590495313\t-1.08253549941625\t0.28175986241297\t1.43139435246322\t-0.21681273301629\t2.03318107641510\t-0.85554039248279\t0.80865738804815\t-0.81274796855477\t0.96225703674330\t0.83971775809643\t0.16367264651409\t0.37612382180038\t-1.20540534803405\t-0.39646871176150\t0.50440678609316\t-2.12269357911018\t-1.73337919698402\t0.66146222578848\t-1.25318872693810\t-1.73345228013854\t-0.63842960648510\t-0.52108483212612\t-1.07578377352847\t-0.17170592241337\t-1.58621109170536\t0.90224730254889\t0.10062624722110\t0.73537091959573\t-0.47506469682613\t-0.64652941101725\t0.95479548044025\t-2.06126245571583\t-0.89892744374809\t-0.64543661765593\t1.56589257557317\t0.05620965608259\t0.18979697580970\t0.21927974168967\t1.08315275138023\t1.43153004847297\t-0.27009563032084\t-1.13690656369851\t1.80239042546146\t-0.76721517469843\t-1.13280035299273\t0.20345737220567\t1.40956378493415\t-0.31306670625260\t0.01704629098668\t1.72791506643712\t-1.12339337581082\t-2.57092069804582\t-0.82500883083613\t1.87542985267408\t0.31904409765191\t-0.74511306613439\t0.73266290512627\t1.27807444106703\t0.97324132419371\t0.97757166179023\t0.33609045136699\t-0.42708309660138\t0.82163782590776\t-0.64757790004240\t0.73025258429468\t-40.12207652891863\n'
b
diff -r 000000000000 -r eaddff553324 test-data/regression_X.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_X.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,262 @@\n+year\tmonth\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Thurs\tweek_Tues\tweek_Wed\n+2016\t9\t19\t68\t69\t69.7\t65\t74\t71\t88\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t14\t60\t59\t58.1\t57\t63\t58\t66\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t30\t85\t88\t77.3\t75\t79\t77\t70\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t15\t82\t65\t64.7\t63\t69\t64\t58\t0\t0\t0\t1\t0\t0\t0\n+2016\t1\t18\t54\t50\t47.5\t44\t48\t49\t58\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t25\t48\t51\t48.2\t45\t51\t49\t63\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t25\t49\t52\t48.6\t45\t52\t47\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t20\t73\t78\t76.7\t75\t78\t77\t66\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t17\t39\t35\t45.2\t43\t47\t46\t38\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t8\t42\t40\t46.1\t45\t51\t47\t36\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t28\t42\t47\t45.3\t41\t49\t44\t58\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t17\t76\t72\t76.3\t76\t78\t77\t88\t0\t0\t0\t1\t0\t0\t0\n+2016\t7\t7\t69\t76\t74.4\t73\t77\t74\t72\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t15\t40\t39\t45.3\t45\t49\t47\t46\t0\t0\t0\t0\t1\t0\t0\n+2016\t6\t27\t71\t78\t72.2\t70\t74\t72\t84\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t31\t64\t71\t67.3\t63\t72\t68\t85\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t20\t54\t48\t47.7\t44\t52\t49\t61\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t10\t73\t72\t77.0\t77\t78\t77\t68\t0\t0\t0\t0\t0\t0\t1\n+2016\t3\t23\t56\t57\t54.7\t50\t58\t55\t70\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t24\t45\t40\t45.1\t44\t47\t46\t39\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t19\t50\t54\t47.6\t47\t49\t48\t53\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t6\t65\t58\t53.2\t52\t57\t55\t71\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t17\t60\t68\t58.6\t58\t62\t59\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t29\t60\t65\t55.3\t55\t59\t55\t65\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t1\t48\t47\t48.8\t46\t49\t49\t51\t0\t1\t0\t0\t0\t0\t0\n+2016\t12\t12\t44\t44\t45.6\t43\t50\t45\t42\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t30\t64\t64\t67.1\t64\t70\t66\t69\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t23\t59\t62\t57.1\t57\t58\t59\t67\t0\t0\t0\t1\t0\t0\t0\n+2016\t9\t30\t68\t66\t65.7\t64\t67\t65\t74\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t12\t77\t70\t71.8\t67\t73\t73\t90\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t2\t59\t57\t54.2\t54\t58\t55\t70\t0\t0\t0\t0\t0\t0\t1\n+2016\t11\t17\t55\t50\t50.5\t46\t51\t50\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t3\t58\t55\t51.8\t49\t54\t50\t71\t0\t0\t0\t0\t1\t0\t0\n+2016\t11\t21\t57\t55\t49.5\t46\t51\t49\t67\t0\t1\t0\t0\t0\t0\t0\n+2016\t12\t27\t42\t42\t45.2\t41\t50\t47\t47\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t24\t64\t65\t60.1\t57\t61\t60\t41\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t20\t64\t63\t65.6\t63\t70\t64\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t1\t16\t49\t48\t47.3\t45\t52\t46\t28\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t7\t40\t42\t46.3\t44\t51\t46\t62\t0\t0\t0\t0\t0\t0\t1\n+2016\t1\t7\t44\t51\t46.2\t45\t49\t46\t38\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t24\t67\t64\t68.0\t65\t71\t66\t64\t0\t0\t1\t0\t0\t0\t0\n+2016\t8\t30\t79\t75\t74.6\t74\t76\t75\t63\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t11\t50\t52\t46.7\t42\t48\t48\t39\t0\t1\t0\t0\t0\t0\t0\n+2016\t6\t9\t85\t67\t68.6\t66\t73\t69\t80\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t22\t67\t68\t68.7\t65\t70\t69\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t25\t53\t54\t55.0\t53\t57\t57\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t24\t62\t62\t56.8\t52\t61\t57\t70\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t16\t77\t76\t76.1\t76\t78\t75\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t1\t74\t73\t73.1\t71\t75\t72\t93\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t18\t50\t52\t50.3\t50\t53\t50\t35\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t3\t75\t70\t73.9\t71\t75\t73\t68\t0\t0\t1\t0\t0\t0\t0\n+2016\t8\t2\t73\t77\t77.4\t75\t80\t79\t62\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t5\t69\t60\t56.6\t52\t58\t56\t72\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t13\t55\t52\t53.3\t50\t55\t53\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t8\t28\t81\t79\t75.0\t71\t77\t76\t85\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t9\t77\t76\t57.2\t53\t61\t57\t74\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t26\t66\t66\t66.5\t64\t70\t65\t85\t0\t0\t0\t0\t1\t0\t0\n+2016\t10\t10\t68\t57\t61.8\t58\t64\t61\t62\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t10\t76\t66\t57.4\t57\t60\t57\t60\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t19\t60\t61\t58.4\t58\t60\t57\t41\t0\t0\t0\t0\t0\t0\t1\n+2016\t3\t12\t56\t55\t53.1\t52\t58\t53\t65\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t24\t57\t48\t48.1\t46\t50\t48\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t2\t7\t53\t49\t49.2\t46\t51\t48\t63\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t27\t66\t65\t66.7\t64\t67\t68\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t5\t74\t60\t62.5\t58\t66\t62\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t11\t55\t56\t53.0\t53\t53\t51\t36\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t22\t62\t59\t57.4\t56\t59\t58\t44\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t11\t36\t44\t45.7\t41\t46\t47\t35\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t8\t77\t82\t63.2\t62\t65\t63\t83\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t29\t64\t64\t67.0\t65\t71\t65\t76\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t13\t44\t43\t45.5\t41\t47\t46\t46\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t30\t56\t64\t55.7\t51\t57\t56\t57\t0\t0\t0\t0\t0\t0\t1\n+2016\t11\t8\t61\t63\t52.7\t49\t57\t52\t49\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t20\t65\t70\t70.6\t67\t71\t70\t79\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t9\t63\t71\t52.4\t48\t56\t52\t42\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t3\t76\t76\t73.5\t69\t76\t75\t85\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t9\t64\t68\t62.1\t58\t65\t63\t55\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t16\t39\t39\t45.3\t44\t49\t44\t39\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t16\t79\t71\t70.7\t70\t74\t71\t52\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t25\t68\t69\t71.7\t68\t73\t73\t'..b'85\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t11\t65\t64\t51.9\t50\t53\t52\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t21\t63\t66\t65.7\t62\t67\t65\t49\t0\t0\t1\t0\t0\t0\t0\n+2016\t3\t6\t57\t64\t52.2\t52\t53\t51\t49\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t18\t60\t71\t65.2\t61\t68\t65\t56\t0\t0\t0\t0\t0\t0\t1\n+2016\t5\t11\t67\t75\t63.8\t62\t68\t63\t60\t0\t0\t0\t0\t0\t0\t1\n+2016\t1\t9\t45\t48\t46.4\t46\t50\t45\t47\t0\t0\t1\t0\t0\t0\t0\n+2016\t3\t8\t60\t53\t52.5\t48\t56\t51\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t15\t55\t49\t47.1\t46\t51\t46\t65\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t8\t86\t85\t68.5\t67\t70\t69\t81\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t10\t57\t62\t49.4\t48\t50\t49\t30\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t3\t46\t50\t47.0\t42\t52\t47\t58\t0\t0\t1\t0\t0\t0\t0\n+2016\t10\t27\t65\t58\t55.9\t51\t60\t55\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t8\t7\t79\t72\t77.2\t74\t78\t77\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t11\t16\t57\t55\t50.7\t50\t51\t49\t34\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t10\t72\t74\t72.3\t70\t77\t74\t91\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t29\t83\t85\t77.3\t77\t80\t79\t77\t1\t0\t0\t0\t0\t0\t0\n+2016\t8\t3\t77\t73\t77.3\t77\t81\t77\t93\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t1\t52\t52\t47.4\t44\t48\t49\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t25\t64\t67\t67.6\t64\t72\t67\t62\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t23\t49\t45\t45.1\t45\t49\t44\t35\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t2\t52\t46\t47.2\t46\t51\t49\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t13\t62\t66\t60.6\t60\t62\t60\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t23\t81\t71\t77.0\t75\t81\t76\t86\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t13\t65\t70\t69.3\t66\t72\t69\t79\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t15\t55\t58\t49.9\t46\t52\t49\t53\t0\t1\t0\t0\t0\t0\t0\n+2016\t8\t8\t72\t72\t77.1\t76\t78\t77\t65\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t12\t74\t74\t75.4\t74\t77\t77\t71\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t3\t63\t65\t64.5\t63\t68\t65\t49\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t18\t68\t77\t58.8\t55\t59\t57\t39\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t25\t60\t59\t50.9\t49\t51\t49\t35\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t2\t44\t45\t45.7\t41\t50\t44\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t21\t51\t53\t50.5\t49\t54\t52\t46\t0\t0\t0\t1\t0\t0\t0\n+2016\t3\t24\t57\t53\t54.9\t54\t56\t56\t72\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t27\t85\t79\t77.3\t73\t78\t79\t79\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t4\t51\t49\t49.0\t44\t54\t51\t44\t0\t0\t0\t0\t1\t0\t0\n+2016\t10\t7\t66\t63\t62.9\t62\t67\t64\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t4\t4\t63\t69\t56.5\t54\t59\t56\t45\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t24\t51\t60\t50.8\t47\t53\t50\t46\t0\t0\t0\t0\t0\t0\t1\n+2016\t10\t8\t63\t64\t62.5\t60\t65\t61\t73\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t15\t75\t79\t71.0\t66\t76\t69\t64\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t14\t49\t55\t47.0\t43\t47\t46\t58\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t1\t68\t73\t56.0\t54\t59\t55\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t17\t62\t60\t59.1\t57\t63\t59\t62\t0\t1\t0\t0\t0\t0\t0\n+2016\t6\t18\t71\t67\t70.2\t67\t75\t69\t77\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t26\t41\t42\t45.2\t45\t48\t46\t58\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t17\t57\t60\t65.0\t62\t65\t65\t55\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t20\t55\t57\t49.8\t47\t54\t48\t30\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t18\t35\t35\t45.2\t44\t46\t46\t36\t0\t0\t0\t1\t0\t0\t0\n+2016\t9\t17\t71\t75\t70.3\t66\t73\t70\t84\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t26\t59\t61\t51.1\t48\t56\t53\t65\t1\t0\t0\t0\t0\t0\t0\n+2016\t2\t22\t53\t51\t50.6\t46\t51\t50\t59\t0\t1\t0\t0\t0\t0\t0\n+2016\t6\t26\t69\t71\t71.9\t67\t74\t72\t70\t0\t0\t0\t1\t0\t0\t0\n+2016\t7\t11\t71\t74\t75.3\t74\t79\t75\t71\t0\t1\t0\t0\t0\t0\t0\n+2016\t12\t30\t48\t48\t45.4\t44\t46\t44\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t9\t68\t74\t74.9\t70\t79\t76\t60\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t21\t70\t76\t70.8\t68\t75\t71\t57\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t2\t54\t58\t51.6\t47\t54\t52\t37\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t20\t53\t51\t50.4\t48\t55\t51\t43\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t9\t67\t72\t72.6\t68\t77\t71\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t26\t67\t76\t67.2\t64\t69\t69\t74\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t22\t52\t52\t47.9\t47\t48\t48\t60\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t27\t52\t53\t48.2\t48\t49\t49\t53\t0\t0\t0\t1\t0\t0\t0\n+2016\t6\t12\t67\t65\t69.1\t65\t73\t70\t83\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t20\t61\t58\t58.1\t58\t59\t58\t43\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t13\t74\t77\t75.6\t74\t78\t76\t56\t0\t0\t0\t0\t0\t0\t1\n+2016\t11\t7\t58\t61\t52.9\t51\t56\t51\t35\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t1\t66\t67\t65.3\t64\t70\t64\t54\t0\t0\t1\t0\t0\t0\t0\n+2016\t11\t22\t55\t54\t49.3\t46\t54\t49\t58\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t1\t71\t79\t67.4\t65\t69\t66\t58\t0\t0\t0\t0\t0\t0\t1\n+2016\t5\t13\t81\t77\t64.3\t63\t67\t66\t67\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t3\t75\t71\t67.7\t64\t71\t66\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t4\t12\t59\t58\t57.7\t54\t59\t57\t61\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t31\t64\t68\t55.9\t55\t59\t56\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t14\t43\t40\t45.4\t45\t48\t45\t49\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t5\t75\t80\t77.3\t75\t81\t78\t71\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t4\t87\t74\t62.3\t59\t65\t64\t61\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t31\t48\t57\t45.5\t42\t48\t47\t57\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t21\t48\t52\t47.8\t43\t51\t46\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t10\t74\t71\t75.1\t71\t77\t76\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t3\t15\t54\t49\t53.6\t49\t58\t52\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t19\t77\t89\t59.0\t59\t63\t59\t61\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t14\t66\t60\t60.2\t56\t64\t60\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t4\t15\t59\t59\t58.3\t58\t61\t60\t40\t1\t0\t0\t0\t0\t0\t0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/regression_groups.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_groups.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+groups
+train
+train
+train
+train
+test
+test
+train
+train
+validation
+train
+train
+train
+train
+train
+validation
+validation
+train
+train
+train
+test
+test
+validation
+train
+validation
+test
+validation
+train
+train
+train
+test
+test
+test
+train
+test
+train
+train
+train
+test
+train
+train
+train
+train
+test
+train
+train
+train
+train
+train
+train
+train
+train
+train
+test
+test
+validation
+train
+validation
+train
+train
+train
+train
+test
+train
+train
+validation
+validation
+train
+train
+train
+train
+validation
+test
+test
+train
+train
+train
+train
+train
+train
+train
+validation
+train
+train
+train
+train
+test
+train
+validation
+train
+test
+test
+test
+train
+train
+train
+test
+train
+train
+train
+train
+train
+train
+train
+train
+train
+train
+validation
+train
+train
+train
+train
+validation
+train
+validation
+train
+validation
+validation
+train
+validation
+train
+test
+train
+train
+train
+train
+test
+validation
+test
+train
+train
+train
+train
+test
+train
+train
+train
+test
+validation
+train
+train
+train
+train
+train
+validation
+test
+train
+train
+test
+train
+train
+validation
+train
+train
+train
+train
+train
+test
+test
+validation
+train
+test
+train
+validation
+train
+train
+train
+test
+train
+train
+train
+train
+train
+train
+validation
+train
+train
+train
+train
+validation
+test
+train
+train
+train
+validation
+train
+test
+test
+validation
+train
+validation
+validation
+test
+test
+test
+train
+train
+test
+train
+train
+validation
+test
+test
+train
+train
+train
+test
+test
+train
+train
+train
+train
+train
+test
+train
+train
+test
+validation
+test
+train
+train
+test
+train
+train
+train
+validation
+train
+validation
+train
+validation
+train
+train
+train
+validation
+validation
+test
+validation
+train
+test
+train
+validation
+train
+train
+test
+train
+train
+test
+test
+train
+validation
+train
+train
+train
+train
+train
+train
+train
+train
+validation
+train
+test
+train
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+explained_variance_score : 
+0.8260
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result02
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result02 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+mean_absolute_error : 
+3.8706
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result03
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result03 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+mean_squared_error : 
+26.0153
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result04
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result04 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+mean_squared_log_error : 
+0.0061
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result05
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result05 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+median_absolute_error : 
+3.0090
b
diff -r 000000000000 -r eaddff553324 test-data/regression_metrics_result06
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_metrics_result06 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+r2_score : 
+0.8129
b
diff -r 000000000000 -r eaddff553324 test-data/regression_test.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_test.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+86.9702122735 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331
+91.2021798817 -0.621522971207 1.11914889596 0.390012184498 1.28956938152
+-47.4101632272 -0.638416457964 -0.732777468453 -0.864026104978 -1.06109770116
+61.7128046302 -1.09994800577 -0.739679672932 0.585657963012 1.48906827536
+-206.998295124 0.130238853011 0.70574123041 1.33206565264 -1.33220923738
b
diff -r 000000000000 -r eaddff553324 test-data/regression_test_X.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_test_X.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,88 @@
+year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed
+2016 9 29 69 68 66.1 63 71 68 57 0 0 0 0 1 0 0
+2016 4 27 59 60 60.7 59 65 60 50 0 0 0 0 0 0 1
+2016 11 28 53 48 48.0 46 48 49 44 0 1 0 0 0 0 0
+2016 10 12 60 62 61.0 60 63 63 52 0 0 0 0 0 0 1
+2016 6 19 67 65 70.4 69 73 70 58 0 0 0 1 0 0 0
+2016 5 7 68 77 63.0 61 65 63 83 0 0 1 0 0 0 0
+2016 7 25 75 80 77.1 75 82 76 81 0 1 0 0 0 0 0
+2016 8 15 90 83 76.6 76 79 75 70 0 1 0 0 0 0 0
+2016 10 28 58 60 55.6 52 56 55 52 1 0 0 0 0 0 0
+2016 6 5 80 81 68.0 64 70 66 54 0 0 0 1 0 0 0
+2016 3 19 58 63 54.2 54 59 54 62 0 0 1 0 0 0 0
+2016 6 7 92 86 68.3 67 69 70 58 0 0 0 0 0 1 0
+2016 12 10 41 36 45.9 44 48 44 65 0 0 1 0 0 0 0
+2016 4 23 73 64 59.9 56 63 59 57 0 0 1 0 0 0 0
+2016 6 24 75 68 71.5 67 73 73 65 1 0 0 0 0 0 0
+2016 2 9 51 57 49.4 45 52 49 57 0 0 0 0 0 1 0
+2016 11 10 71 65 52.2 52 54 51 38 0 0 0 0 1 0 0
+2016 3 21 61 55 54.5 52 56 55 52 0 1 0 0 0 0 0
+2016 2 28 60 57 51.3 48 56 53 66 0 0 0 1 0 0 0
+2016 6 28 78 85 72.4 72 76 74 67 0 0 0 0 0 1 0
+2016 10 6 63 66 63.3 62 67 63 55 0 0 0 0 1 0 0
+2016 2 17 55 56 50.0 45 51 49 46 0 0 0 0 0 0 1
+2016 6 15 66 60 69.7 65 73 71 69 0 0 0 0 0 0 1
+2016 10 15 60 60 59.9 59 62 59 46 0 0 1 0 0 0 0
+2016 3 26 54 57 55.2 53 57 55 54 0 0 1 0 0 0 0
+2016 1 26 51 54 48.3 44 53 50 61 0 0 0 0 0 1 0
+2016 5 23 59 66 66.1 63 68 68 66 0 1 0 0 0 0 0
+2016 1 10 48 50 46.5 45 48 48 49 0 0 0 1 0 0 0
+2016 5 22 66 59 65.9 62 66 65 80 0 0 0 1 0 0 0
+2016 7 15 75 77 76.0 74 80 78 75 1 0 0 0 0 0 0
+2016 4 22 81 73 59.7 59 64 60 59 1 0 0 0 0 0 0
+2016 4 29 61 64 61.2 61 65 61 49 1 0 0 0 0 0 0
+2016 1 23 52 57 48.0 45 49 50 37 0 0 1 0 0 0 0
+2016 8 16 83 84 76.5 72 78 78 90 0 0 0 0 0 1 0
+2016 8 1 76 73 77.4 76 78 79 65 0 1 0 0 0 0 0
+2016 2 27 61 60 51.2 51 53 53 61 0 0 1 0 0 0 0
+2016 2 12 56 55 49.6 49 52 48 33 1 0 0 0 0 0 0
+2016 1 31 52 48 48.7 47 52 49 61 0 0 0 1 0 0 0
+2016 9 5 67 68 73.5 71 75 73 54 0 1 0 0 0 0 0
+2016 12 20 39 46 45.1 45 49 45 62 0 0 0 0 0 1 0
+2016 5 1 61 68 61.6 60 65 60 75 0 0 0 1 0 0 0
+2016 3 28 59 51 55.5 55 57 55 47 0 1 0 0 0 0 0
+2016 4 21 81 81 59.4 55 61 59 55 0 0 0 0 1 0 0
+2016 1 6 40 44 46.1 43 49 48 40 0 0 0 0 0 0 1
+2016 10 21 58 62 57.8 56 60 59 44 1 0 0 0 0 0 0
+2016 5 2 68 77 61.9 60 66 61 59 0 1 0 0 0 0 0
+2016 3 1 53 54 51.5 48 56 50 53 0 0 0 0 0 1 0
+2016 7 21 78 82 76.8 73 81 78 84 0 0 0 0 1 0 0
+2016 3 17 51 53 53.9 49 58 52 62 0 0 0 0 1 0 0
+2016 12 6 46 40 46.4 44 50 45 56 0 0 0 0 0 1 0
+2016 12 21 46 51 45.1 44 50 46 39 0 0 0 0 0 0 1
+2016 1 4 44 41 45.9 44 48 46 53 0 1 0 0 0 0 0
+2016 10 2 67 63 64.9 62 69 66 82 0 0 0 1 0 0 0
+2016 5 28 65 64 66.8 64 69 65 64 0 0 1 0 0 0 0
+2016 9 11 74 77 72.1 69 75 71 70 0 0 0 1 0 0 0
+2016 10 25 62 61 56.5 53 60 55 70 0 0 0 0 0 1 0
+2016 2 18 56 57 50.1 47 55 49 34 0 0 0 0 1 0 0
+2016 11 1 117 59 54.5 51 59 55 61 0 0 0 0 0 1 0
+2016 3 16 49 51 53.7 52 54 55 65 0 0 0 0 0 0 1
+2016 4 26 55 59 60.5 56 61 62 75 0 0 0 0 0 1 0
+2016 6 10 67 65 68.8 67 71 67 73 1 0 0 0 0 0 0
+2016 2 3 46 51 48.9 48 49 50 40 0 0 0 0 0 0 1
+2016 3 7 64 60 52.4 49 57 53 71 0 1 0 0 0 0 0
+2016 9 18 75 68 70.0 66 73 71 90 0 0 0 1 0 0 0
+2016 3 20 63 61 54.3 51 56 55 50 0 0 0 1 0 0 0
+2016 4 6 60 57 56.8 53 59 57 64 0 0 0 0 0 0 1
+2016 7 2 73 76 73.3 70 77 73 84 0 0 1 0 0 0 0
+2016 7 5 71 68 74.0 72 77 74 62 0 0 0 0 0 1 0
+2016 7 19 80 73 76.6 76 78 77 90 0 0 0 0 0 1 0
+2016 12 9 40 41 46.0 43 51 44 54 1 0 0 0 0 0 0
+2016 6 29 85 79 72.6 68 76 74 81 0 0 0 0 0 0 1
+2016 3 22 55 56 54.6 51 55 54 64 0 0 0 0 0 1 0
+2016 4 3 71 63 56.3 54 61 56 64 0 0 0 1 0 0 0
+2016 1 17 48 54 47.4 45 51 46 47 0 0 0 1 0 0 0
+2016 3 10 54 55 52.8 49 55 53 50 0 0 0 0 1 0 0
+2016 5 9 82 63 63.4 59 66 62 64 0 1 0 0 0 0 0
+2016 1 8 51 45 46.3 43 47 46 34 1 0 0 0 0 0 0
+2016 8 11 72 76 76.9 74 81 75 80 0 0 0 0 1 0 0
+2016 12 29 47 48 45.3 43 50 45 65 0 0 0 0 1 0 0
+2016 11 23 54 54 49.1 48 52 49 38 0 0 0 0 0 0 1
+2016 11 19 52 55 50.0 50 54 49 56 0 0 1 0 0 0 0
+2016 4 7 57 68 56.9 52 61 55 38 0 0 0 0 1 0 0
+2016 6 4 71 80 67.9 63 72 66 76 0 0 1 0 0 0 0
+2016 6 17 67 71 70.0 66 74 69 54 1 0 0 0 0 0 0
+2016 10 5 61 63 63.7 61 66 65 48 0 0 0 0 0 0 1
+2016 3 4 55 59 51.9 47 56 53 45 1 0 0 0 0 0 0
+2016 12 22 51 49 45.1 42 47 46 38 0 0 0 0 1 0 0
b
diff -r 000000000000 -r eaddff553324 test-data/regression_test_y.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_test_y.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,88 @@
+actual prediction
+66 69.857
+61 61.319
+52 51.891
+66 61.321
+70 66.463
+82 70.162
+85 78.848
+84 75.786
+65 62.121
+92 74.078
+61 63.647
+85 72.176
+44 38.458
+65 62.433
+69 71.594
+62 56.013
+64 60.943
+56 56.995
+53 56.748
+79 76.113
+63 63.758
+57 54.401
+67 66.493
+62 62.465
+59 58.786
+56 53.032
+65 66.769
+52 46.448
+66 62.122
+76 80.176
+64 73.833
+61 64.313
+48 55.188
+81 81.972
+77 74.178
+57 61.695
+58 53.636
+47 51.424
+68 68.929
+51 42.452
+77 70.385
+56 57.373
+73 76.172
+51 42.396
+59 61.098
+87 74.08
+58 52.745
+81 81.381
+58 53.324
+42 42.471
+49 46.507
+40 42.106
+65 64.17
+64 65.703
+70 74.13
+65 61.339
+53 55.177
+57 59.945
+53 54.651
+60 59.664
+67 65.474
+49 50.061
+53 60.849
+69 70.188
+55 60.062
+68 59.236
+76 71.868
+69 69.796
+78 76.83
+36 41.32
+74 76.868
+57 56.783
+69 60.378
+50 50.468
+56 54.426
+67 63.991
+48 43.711
+80 74.354
+48 47.306
+49 52.326
+57 53.526
+77 68.21
+81 73.607
+67 72.658
+66 63.243
+57 57.126
+45 46.04
b
diff -r 000000000000 -r eaddff553324 test-data/regression_train.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_train.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,10 @@
+143.762620712 -0.330941870584 -1.17964571928 0.47944415578 -0.0486946279099 1.57951239219
+-88.5787166225 1.08055532812 -2.57109184022 -0.92512305494 0.317511276982 -1.202358944
+-82.8452345578 0.272541389247 -0.168636324107 0.923988150154 -0.467750945768 -0.719169535969
+72.4951388149 -0.268686605278 0.991068834926 0.731619322189 1.17038734294 0.323842059244
+11.805182128 1.03604670966 -0.709685560786 -1.54916691211 -0.614757954242 0.24176665894
+-63.9354970901 -0.101485840571 0.984112210822 -2.01704822953 0.282058758309 -0.776448499847
+126.325840796 -0.359998340179 0.353534448839 -1.23256828198 0.563632964937 1.15031170568
+23.0341392692 0.518540465136 1.03188231893 -2.53173026594 -0.0419267228327 0.193734455015
+67.6714937696 -0.115688051547 -0.821437865172 -0.368962397052 -0.526743874023 0.94315222831
+47.3927584881 -0.785096541368 -0.0942409319417 0.224267378731 -1.63317786831 1.26458811586
b
diff -r 000000000000 -r eaddff553324 test-data/regression_y.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_y.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,262 @@
+actual
+71
+59
+76
+57
+54
+54
+52
+82
+35
+41
+48
+80
+68
+39
+85
+79
+52
+76
+53
+41
+48
+61
+77
+68
+46
+43
+71
+62
+67
+74
+57
+52
+59
+54
+47
+55
+66
+54
+40
+45
+67
+70
+45
+65
+67
+57
+61
+72
+76
+55
+67
+73
+57
+54
+75
+66
+65
+60
+59
+58
+52
+51
+51
+64
+68
+55
+62
+44
+63
+64
+40
+68
+71
+76
+65
+71
+57
+35
+75
+71
+75
+77
+57
+49
+90
+68
+59
+87
+68
+68
+40
+46
+64
+52
+71
+79
+68
+86
+72
+41
+64
+58
+67
+74
+59
+73
+55
+75
+63
+58
+48
+51
+65
+81
+80
+73
+60
+76
+69
+56
+46
+55
+57
+64
+74
+49
+65
+55
+53
+52
+75
+66
+68
+65
+83
+60
+76
+62
+73
+79
+77
+55
+63
+60
+85
+63
+57
+42
+66
+65
+44
+45
+53
+59
+52
+59
+79
+77
+55
+72
+80
+68
+68
+58
+49
+72
+64
+71
+67
+51
+51
+71
+52
+56
+61
+68
+63
+60
+63
+59
+60
+64
+81
+50
+54
+48
+67
+56
+49
+60
+72
+50
+77
+88
+75
+46
+76
+40
+50
+60
+75
+66
+55
+73
+77
+61
+89
+61
+44
+51
+54
+83
+49
+64
+60
+59
+68
+71
+49
+71
+60
+65
+42
+71
+55
+39
+68
+60
+51
+78
+74
+57
+71
+73
+55
+53
+74
+77
+57
+48
+70
+62
+75
+63
+63
+54
+75
+82
+80
+60
+73
+39
+79
+60
+40
+52
+74
+51
+81
+60
+60
b
diff -r 000000000000 -r eaddff553324 test-data/regression_y_split_test01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/regression_y_split_test01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,67 @@
+actual
+57
+71
+75
+49
+66
+59
+68
+48
+46
+45
+67
+75
+79
+74
+60
+48
+77
+71
+85
+41
+75
+61
+76
+52
+46
+77
+88
+60
+68
+40
+89
+46
+49
+68
+57
+50
+68
+55
+64
+51
+77
+79
+42
+76
+54
+54
+59
+80
+55
+54
+54
+54
+54
+71
+56
+66
+61
+40
+71
+63
+78
+53
+75
+50
+72
+68
b
diff -r 000000000000 -r eaddff553324 test-data/rfc_model01
b
Binary file test-data/rfc_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/rfc_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/rfc_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 predicted
+3.68258022948 2.82110345641 -3.9901407239999998 -1.9523364774 1
+0.015942057224 -0.7119585943469999 0.125502976978 -0.972218263337 0
+2.0869076882499997 0.929399321468 -2.1292408448400004 -1.9971402218799998 1
+1.4132105208399999 0.523750660422 -1.4210539291 -1.49298569451 1
+0.7683140439399999 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/rfc_result02
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/rfc_result02 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 0
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774 1
+0.015942057224 -0.711958594347 0.125502976978 -0.972218263337 0
+2.08690768825 0.929399321468 -2.12924084484 -1.99714022188 1
+1.41321052084 0.523750660422 -1.4210539291 -1.49298569451 1
+0.76831404394 1.38267855169 -0.989045048734 0.649504257894 1
b
diff -r 000000000000 -r eaddff553324 test-data/rfr_model01
b
Binary file test-data/rfr_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/rfr_result01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/rfr_result01 Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,6 @@
+0 1 2 3 4 predicted
+86.97021227350001 1.00532111569 -1.01739601979 -0.613139481654 0.641846874331 0.6686209127804698
+91.2021798817 -0.6215229712070001 1.11914889596 0.390012184498 1.28956938152 1.0374491367850487
+-47.4101632272 -0.638416457964 -0.7327774684530001 -0.8640261049779999 -1.06109770116 -0.16198314840411981
+61.712804630200004 -1.0999480057700002 -0.739679672932 0.585657963012 1.4890682753600002 1.1603837128651284
+-206.998295124 0.130238853011 0.70574123041 1.3320656526399999 -1.3322092373799999 -0.6710618307873705
b
diff -r 000000000000 -r eaddff553324 test-data/roc_auc_score.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/roc_auc_score.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+roc_auc_score : 
+1.0
b
diff -r 000000000000 -r eaddff553324 test-data/roc_curve.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/roc_curve.txt Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,2 @@
+roc_curve : 
+(array([0., 0., 1.]), array([0., 1., 1.]), array([2, 1, 0]))
b
diff -r 000000000000 -r eaddff553324 test-data/scurve.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/scurve.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 2 0
+0.39776718705997 1.55657843089970 -0.08251361596022 0.40908193877997
+-0.86879981115888 1.55919679722150 1.49516349636287 -2.08881933479976
+-0.65289858569518 1.22065630641879 0.24255466415243 -0.71140494713335
+-0.10763690701725 0.61800069704880 -1.99419027165214 3.24943849328794
+0.99901118702158 1.39546981502591 1.04445951198273 -4.66791480855597
+0.41235208162789 1.71923659145813 1.91102456650583 -3.56662701011788
+0.99925989449517 1.25064751551362 -1.03846639122004 1.60927221055449
+0.07044439596581 1.96481565921910 -1.99751570768435 3.07108986477003
+0.27862976083519 1.95300025403171 1.96039859244843 -3.42395972683000
+0.65011665703012 0.33338826239772 -0.24016558892613 0.70773795618674
+-0.51972572286454 0.04635627295681 -1.85433317446587 3.68812253056743
+-0.39023537550648 0.32148909701416 1.92071513059323 -2.74070543050842
+-0.17497560644179 1.84699365051817 1.98457276884460 -2.96571166126051
+0.52214849802422 1.90709969975907 1.85285458667410 -3.69096085168046
+-0.47925331233802 0.42195683743689 1.87767662758731 -2.64178889385637
+-0.97977425898513 0.72105050162922 -1.20010597549835 4.51092289761005
+0.20263517733109 1.09875052325534 -1.97925430042865 2.93754447428025
+-0.04968907072476 0.54366169835394 1.99876473518567 -3.09188311303017
+0.16054679698371 0.92120324214970 -1.98702822957516 2.98034804244113
+-0.84804646283126 1.39232312964677 1.52992187809091 -2.12930476964060
+-0.60013742781021 1.00071179334973 0.20010308930378 -0.64367290462456
+-0.84447848269654 1.43214198112867 -1.53558948109774 4.14718334605828
+0.14728007148812 1.05191187245956 -1.98909482889279 2.99377486434698
+-0.99965711795058 0.00279804623809 0.97381514692169 -1.54460848053403
+-0.08231500933733 0.78940057337967 1.99660636122684 -3.05918440186536
+-0.93150531410199 0.98433393980230 0.63627228618133 -1.19852972744287
+0.99856317168399 0.80576066275828 1.05358723874584 -4.65877606165848
+-0.72309049986373 0.70859660021264 1.69075330546210 -2.33332664772038
+0.34762708311665 1.00122863888591 -1.93763287649474 2.78655349368483
+0.98968220719363 0.89035325766228 1.14327989658126 -4.56861426359002
+0.80256165657373 0.18086557639287 -0.40343081926936 0.93157688044368
+0.82956862745286 0.54712584005488 -0.44159522535532 0.97833473179891
+0.54785892441872 1.88695419548545 1.83657073755587 -3.72139539228723
+-0.89687690788692 0.05308928266788 0.55771975841194 -1.11265681822453
+0.94148777871374 0.07999737928130 1.33704712212488 -4.36861024611527
+-0.51237630504464 0.56628071943964 -1.85876103895601 3.67954229875839
+-0.98387649482367 1.16468834043354 -1.17884921843132 4.53257229404396
+0.84462075857746 1.98178560584965 1.53536508494674 -4.14744904524777
+-0.51346352650877 1.98528447480594 -1.85811141872439 3.68080881254506
+0.66297042486611 1.98623474496209 -0.25135441245350 0.72477955669555
+0.75540725891007 0.22009666193313 -1.65525557852335 2.28531722974483
+0.94146657753588 1.32896289192788 -0.66289366160977 1.22695469533933
+0.69709983371402 1.04797366897663 -0.28302592666409 0.77134449118105
+0.98150332100560 0.34629981961746 1.19144511185972 -4.51975469932009
+-0.39737776530432 1.88592048983005 1.91765511584786 -2.73293511995769
+0.40880572260440 0.48372017195250 -0.08737856634534 0.42114505503778
+0.56896103935759 1.99786453768642 -1.82236447861829 2.53635073354523
+-0.71172480125230 1.16538763029980 1.70245840252814 -2.34964210993111
+-0.90170936131617 0.36655800126115 1.43234272020560 -2.01788557835913
+-0.17868797583124 0.77369084383558 -1.98390579187915 3.32124545737013
+-0.97238420561973 0.37934705782430 -1.23338585360148 4.47683073216571
+-0.46670740559088 0.82154134605062 -1.88441178054492 3.62715683862448
+-0.96972627581563 1.18936013780341 0.75580550785746 -1.32410737612446
+0.80264918483869 1.43317218625668 -0.40354858866980 0.93172361431463
+-0.97961162574302 0.97378296473825 0.79909937105844 -1.36851911905928
+-0.99791255777848 0.61917963553341 0.93542038225568 -1.50617173609004
+-0.10737008100010 1.15488274565569 1.99421912358697 -3.03401519525838
+-0.62053033447500 0.88341563913749 1.78418244305541 -2.47217384154222
+0.91193663680462 0.71935620520107 1.41033104982866 -4.28957192937856
+0.05116766471514 0.64266386401763 -0.00130992290521 0.05119001832686
+-0.91929803801872 0.41641448039205 0.60643791176621 -1.16629314143751
+0.76733212242118 0.90251724812367 -0.35875011586699 0.87467029775790
+0.94069506387414 0.98368582052811 -0.66074670701256 1.22467332521808
+0.22488014225528 1.79815262958742 1.97438643341297 -3.36841267959257
+-0.81182171546475 1.45872092205888 -1.58390538814081 4.08885791768265
+-0.87500135199695 1.54017954583939 -1.48412047467908 4.20703126278048
+0.82154938436974 0.75087849512398 -0.42986264019825 0.96412328524223
+-0.87126700078957 0.68747907047077 0.50919065480052 -1.05777788763274
+-0.96067491767947 1.31007041199864 0.72232446535292 -1.28942268363907
+-0.34769588110474 1.42207598642100 1.93760736679209 -2.78648011856577
+-0.86121371561088 0.22707515043735 1.50824298917320 -2.10393972942553
+-0.68364804192970 0.26605737874715 1.72981186258219 -2.38884304067862
+-0.06537388681621 0.91207811521225 1.99786083945736 -3.07617211177039
+-0.95089045248252 0.31947246031702 -1.30952761973303 4.39769276488546
+-0.91904458599080 1.92328380754929 -1.39415358549809 4.30724228359896
+0.79764487680537 1.67523148972362 -0.39687260839343 0.92338022079859
+0.82012784273065 1.04032137407585 -1.57218032260641 2.17995823974852
+-0.99779218141586 0.43654451545631 0.93358642679862 -1.50433383401485
+0.64665631513320 0.26983744506480 1.76278149564495 -3.84478535850956
+-0.33727714800813 1.95814069096774 0.05859460091228 -0.34402306664559
+0.08189332342924 1.41408699137829 -0.00335889931344 0.08198513727442
+0.67212785139840 1.71995111389133 1.74043510949615 -3.87867149146120
+0.26116197153766 0.77434525565728 -0.03470500642417 0.26422575485318
+-0.99726999031677 0.50166803966345 -1.07384149520151 4.63848021571996
+-0.83562138750324 0.59887603788940 0.45069416829314 -0.98926303703773
+-0.99977253923164 1.71379105681003 0.97867232318507 -1.54946703276290
+0.25977496592172 0.94596798113644 -1.96566918097264 2.87880349232616
+0.67753788404984 1.32655409403226 -1.73548787595532 2.39718279848362
+-0.98181280555323 1.61145721487357 1.18985156004547 -1.76180728144481
+0.95308405257346 0.50596100929945 -0.69729422085108 1.26326597551748
+0.37166713582053 0.15914687794065 -0.07163394065112 0.38080415080844
+-0.94128581409549 1.46552121003143 1.33761074654488 -1.91517377819665
+0.50263574695009 1.92279495500721 1.86449829721517 -3.66823761100048
+-0.98104238623297 1.90760946833533 1.19379328268628 -1.76582359131701
+-0.39444347866163 0.98099810376780 0.08107979555278 -0.40546214696481
+0.99734968930361 1.26438412886551 -0.92724288869125 1.49797487095100
+-0.73490346461986 1.46599003967598 1.67817173170940 -2.31606833009633
+0.97111212627401 1.80481900649593 -0.76137636704726 1.32984803323919
+-0.31012473730097 0.32449383749640 1.95069587530083 -2.82626841764302
+0.99637118283100 0.81176264473512 -0.91488557100025 1.48557879322013
b
diff -r 000000000000 -r eaddff553324 test-data/searchCV01
b
Binary file test-data/searchCV01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/searchCV02
b
Binary file test-data/searchCV02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/sparse.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/sparse.mtx Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,8741 @@\n+%%MatrixMarket matrix coordinate real general\n+%\n+4 1048577 8738\n+1 271 0.02083333333333341\n+1 1038 0.02461995616119806\n+1 1665 0.01253924656438802\n+1 2794 0.0250470072492813\n+1 2897 0.02083333333333341\n+1 3377 0.02083333333333341\n+1 4053 0.05769913639656241\n+1 4959 0.007693218186208322\n+1 5733 0.01641330410746537\n+1 5985 0.01294450932696249\n+1 6146 0.02461995616119806\n+1 6551 0.02083333333333341\n+1 6812 0.01252350362464065\n+1 7663 0.01252350362464065\n+1 8132 0.01941676399044373\n+1 8260 0.01294450932696249\n+1 8398 0.02083333333333341\n+1 8495 0.01253924656438802\n+1 8846 0.02083333333333341\n+1 8955 0.01641330410746537\n+1 9442 0.01941676399044373\n+1 9811 0.02461995616119806\n+1 10010 0.01252350362464065\n+1 10205 0.0194183909345155\n+1 10495 0.03816237987288836\n+1 12091 0.0980885318741561\n+1 12255 0.01641330410746537\n+1 12330 0.01294450932696249\n+1 12841 0.01941676399044373\n+1 13130 0.00970919546725775\n+1 13234 0.00763247597457767\n+1 13369 0.01252350362464065\n+1 13424 0.02461995616119806\n+1 13929 0.01252350362464065\n+1 14370 0.01252350362464065\n+1 14667 0.01641330410746537\n+1 15146 0.01253924656438802\n+1 15784 0.009940534656094338\n+1 15880 0.02083333333333341\n+1 17369 0.01252350362464065\n+1 17674 0.03236127331740622\n+1 18464 0.009940534656094338\n+1 19202 0.00970919546725775\n+1 19526 0.01252350362464065\n+1 19723 0.01253924656438802\n+1 19745 0.02083333333333341\n+1 20407 0.01641330410746537\n+1 20582 0.01252350362464065\n+1 20843 0.00970919546725775\n+1 20975 0.0692389636758749\n+1 21671 0.0152711805445382\n+1 21829 0.0250470072492813\n+1 22178 0.01538643637241664\n+1 22277 0.02083333333333341\n+1 22856 0.01641330410746537\n+1 23053 0.01641330410746537\n+1 23225 0.01294450932696249\n+1 23728 0.02083333333333341\n+1 24382 0.01294450932696249\n+1 24672 0.00970919546725775\n+1 25245 0.01252350362464065\n+1 26569 0.03054236108907641\n+1 27748 0.01252350362464065\n+1 27941 0.01252350362464065\n+1 28962 0.01252350362464065\n+1 29320 0.01252350362464065\n+1 29735 0.07635590272269102\n+1 29839 0.00970919546725775\n+1 30063 0.02083333333333341\n+1 30646 0.0250470072492813\n+1 31588 0.03130875906160163\n+1 32319 0.01294450932696249\n+1 32433 0.01294450932696249\n+1 32797 0.009940534656094338\n+1 32800 0.00970919546725775\n+1 32837 0.02083333333333341\n+1 33008 0.00970919546725775\n+1 33979 0.01880886984658204\n+1 35441 0.0194183909345155\n+1 36189 0.01641330410746537\n+1 37457 0.0152711805445382\n+1 38049 0.01294450932696249\n+1 38464 0.00970919546725775\n+1 39762 0.0194183909345155\n+1 40007 0.01514765184153846\n+1 40018 0.02461995616119806\n+1 40091 0.01294450932696249\n+1 40157 0.01880886984658204\n+1 40920 0.007693218186208322\n+1 41305 0.02083333333333341\n+1 41617 0.01294450932696249\n+1 41628 0.0250470072492813\n+1 41645 0.0152711805445382\n+1 41800 0.03713053286162541\n+1 41970 0.01294450932696249\n+1 42308 0.02083333333333341\n+1 43264 0.02083333333333341\n+1 43550 0.01252350362464065\n+1 43781 0.01526495194915534\n+1 43902 0.0250470072492813\n+1 44084 0.00970919546725775\n+1 44116 0.0250470072492813\n+1 44133 0.01294450932696249\n+1 44135 0.01641330410746537\n+1 44195 0.01294450932696249\n+1 44513 0.02083333333333341\n+1 44990 0.009940534656094338\n+1 45201 0.02083333333333341\n+1 45447 0.01880886984658204\n+1 45548 0.0152711805445382\n+1 46543 0.01252350362464065\n+1 46563 0.0152711805445382\n+1 46627 0.01009843456102564\n+1 46930 0.009940534656094338\n+1 47084 0.01253924656438802\n+1 48208 0.01252350362464065\n+1 48783 0.0152711805445382\n+1 48993 0.01641330410746537\n+1 50742 0.02500295910517705\n+1 52051 0.01880886984658204\n+1 52833 0.002524608640256409\n+1 53918 0.01294450932696249\n+1 54190 0.01252350362464065\n+1 54267 0.00970919546725775\n+1 54837 0.009940534656094338\n+1 55562 0.02588901865392498\n+1 55759 0.02083333333333341\n+1 55865 0.009940534656094338\n+1 56669 0.01294450932696249\n+1 57379 0.00970919546725775\n+1 57633 0.0194183909345155\n+1 58567 0.01641330410746537\n+1 58964 0.007693218186208322\n+1 59338 0.01641330410746537\n+1 60239 0.02083333333333341\n+1 60904 0.0152711805445382\n+'..b'4 983313 0.01343038273375637\n+4 983688 0.02083333333333338\n+4 983770 0.01362848167001797\n+4 984175 0.01662975263094352\n+4 984900 0.02686076546751275\n+4 985526 0.01343038273375637\n+4 985593 0.02531848417709173\n+4 985753 0.01343038273375637\n+4 985859 0.01641330410746536\n+4 986055 0.02083333333333338\n+4 986185 0.01253136767792717\n+4 987191 0.01056442818410648\n+4 987694 0.0221186977601905\n+4 989433 0.04423739552038099\n+4 989840 0.01253136767792717\n+4 990517 0.01641330410746536\n+4 990522 0.01362848167001797\n+4 991282 0.01253136767792717\n+4 991559 0.01265924208854587\n+4 991935 0.01641330410746536\n+4 992416 0.01327797629320365\n+4 993308 0.02506273535585434\n+4 993319 0.02054987341316971\n+4 994759 0.01641330410746536\n+4 995303 0.01679782851708494\n+4 996150 0.01343038273375637\n+4 996559 0.01343038273375637\n+4 997115 0.02083333333333338\n+4 997142 0.01056442818410648\n+4 997713 0.02083333333333338\n+4 999660 0.01662975263094352\n+4 1000382 0.02054987341316971\n+4 1000967 0.03132841919481793\n+4 1001151 0.01679782851708494\n+4 1001447 0.02014557410063456\n+4 1002865 0.01265924208854587\n+4 1002928 0.02054987341316971\n+4 1003223 0.03027609162416319\n+4 1003297 0.02054987341316971\n+4 1003745 0.01679782851708494\n+4 1004821 0.02519674277562741\n+4 1004897 0.02083333333333338\n+4 1005440 0.02054987341316971\n+4 1006479 0.01343038273375637\n+4 1007088 0.02506273535585434\n+4 1008466 0.01327797629320365\n+4 1008887 0.01056442818410648\n+4 1009081 0.01343038273375637\n+4 1009095 0.01679782851708494\n+4 1009375 0.01662975263094352\n+4 1009826 0.01679782851708494\n+4 1009939 0.01105934888009525\n+4 1011571 0.01343038273375637\n+4 1011599 0.01362848167001797\n+4 1011879 0.01327797629320365\n+4 1012444 0.02044272250502696\n+4 1012825 0.02054987341316971\n+4 1012961 0.01641330410746536\n+4 1014776 0.01056442818410648\n+4 1014805 0.01679782851708494\n+4 1015053 0.02083333333333338\n+4 1015289 0.02054987341316971\n+4 1015354 0.02494462894641529\n+4 1017199 0.02054987341316971\n+4 1017321 0.01253136767792717\n+4 1017519 0.02083333333333338\n+4 1019441 0.01253136767792717\n+4 1020330 0.01253136767792717\n+4 1020740 0.05068391965620721\n+4 1021555 0.01105934888009525\n+4 1021677 0.01362848167001797\n+4 1021933 0.01056442818410648\n+4 1021999 0.01265924208854587\n+4 1022039 0.04109974682633943\n+4 1022303 0.01105934888009525\n+4 1022561 0.01362848167001797\n+4 1022916 0.01879705151689075\n+4 1023951 0.01343038273375637\n+4 1024145 0.02083333333333338\n+4 1024308 0.01343038273375637\n+4 1024517 0.01343038273375637\n+4 1024933 0.01641330410746536\n+4 1025625 0.02083333333333338\n+4 1026107 0.03759410303378151\n+4 1026881 0.01327797629320365\n+4 1027598 0.01679782851708494\n+4 1027994 0.02083333333333338\n+4 1028315 0.01641330410746536\n+4 1028744 0.01662975263094352\n+4 1029411 0.01679782851708494\n+4 1029532 0.01343038273375637\n+4 1031669 0.01327797629320365\n+4 1032010 0.02686076546751275\n+4 1032743 0.01056442818410648\n+4 1033350 0.01343038273375637\n+4 1033833 0.01056442818410648\n+4 1034007 0.02083333333333338\n+4 1034211 0.01641330410746536\n+4 1035601 0.01327797629320365\n+4 1036032 0.01265924208854587\n+4 1036554 0.02494462894641529\n+4 1037044 0.01662975263094352\n+4 1037251 0.01641330410746536\n+4 1037360 0.005433498852303906\n+4 1037802 0.02014557410063456\n+4 1038132 0.01641330410746536\n+4 1038217 0.01362848167001797\n+4 1038423 0.01679782851708494\n+4 1038643 0.01327797629320365\n+4 1038911 0.01343038273375637\n+4 1040201 0.004223659971350601\n+4 1040407 0.01253136767792717\n+4 1040538 0.01056442818410648\n+4 1040866 0.01265924208854587\n+4 1041961 0.01327797629320365\n+4 1042120 0.01105934888009525\n+4 1042128 0.01327797629320365\n+4 1042396 0.02083333333333338\n+4 1042483 0.01991696443980548\n+4 1042647 0.01362848167001797\n+4 1043095 0.03319494073300912\n+4 1044911 0.01105934888009525\n+4 1045283 0.02494462894641529\n+4 1045305 0.01056442818410648\n+4 1045987 0.01265924208854587\n+4 1046201 0.01105934888009525\n+4 1046367 0.02686076546751275\n+4 1046859 0.01679782851708494\n+4 1047379 0.02519674277562741\n+4 1047477 0.01105934888009525\n'
b
diff -r 000000000000 -r eaddff553324 test-data/sparse_u.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/sparse_u.txt Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,101 @@\n+0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t0\n+-1.74976547305470\t0.34268040332750\t1.15303580256364\t-0.25243603652139\t0.98132078695123\t0.51421884139438\t0.22117966922140\t-1.07004333056829\t-0.18949583082318\t0.25500144427338\t-3.20268957071762\n+-0.45802698550262\t0.43516348812289\t-0.58359505032266\t0.81684707168578\t0.67272080570966\t-0.10441114339063\t-0.53128037685191\t1.02973268513335\t-0.43813562270442\t-1.11831824625544\t-0.32269568196899\n+1.61898166067526\t1.54160517451341\t-0.25187913921321\t-0.84243573825130\t0.18451869056394\t0.93708220110895\t0.73100034383481\t1.36155612514533\t-0.32623805920230\t0.05567601485478\t6.60472167175290\n+0.22239960855530\t-1.44321699522534\t-0.75635230559444\t0.81645401101929\t0.75044476153418\t-0.45594692746800\t1.18962226802913\t-1.69061682638360\t-1.35639904886131\t-1.23243451391493\t-2.54026382137261\n+-0.54443916167246\t-0.66817173681343\t0.00731456322890\t-0.61293873547816\t1.29974807475531\t-1.73309562365328\t-0.98331009912963\t0.35750775316737\t-1.61357850282218\t1.47071386661213\t0.12371686928073\n+-1.18801759731772\t-0.54974619353549\t-0.94004616154477\t-0.82793236436587\t0.10886346783368\t0.50780959049232\t-0.86222734651048\t1.24946974272698\t-0.07961124591740\t-0.88973148126503\t0.24874422979447\n+-0.88179838948302\t0.01863894948806\t0.23784462192362\t0.01354854862861\t-1.63552939938082\t-1.04420987770932\t0.61303888168755\t0.73620521332382\t1.02692143939979\t-1.43219061105893\t-0.30787880264154\n+-1.84118830018672\t0.36609322616730\t-0.33177713505281\t-0.68921797808975\t2.03460756150493\t-0.55071441191459\t0.75045333032684\t-1.30699233908082\t0.58057333579427\t-1.10452309266229\t-0.19844513286689\n+0.69012147022471\t0.68689006613840\t-1.56668752957839\t0.90497412146668\t0.77882239932307\t0.42823287059674\t0.10887198989791\t0.02828363482307\t-0.57882582479099\t-1.19945119919393\t5.45755744088132\n+-1.70595200573817\t0.36916395710701\t1.87657342696217\t-0.37690335016897\t1.83193608182554\t0.00301743403121\t-0.07602346572462\t0.00395759398760\t-0.18501411089711\t-2.48715153522277\t-2.38855416852243\n+-1.70465120576096\t-1.13626100682736\t-2.97331547405089\t0.03331727813886\t-0.24888866705811\t-0.45017643501165\t0.13242780114877\t0.02221392803939\t0.31736797594107\t-0.75241417772504\t1.94619608927940\n+-1.29639180715015\t0.09513944356545\t-0.42371509994342\t-1.18598356492917\t-0.36546199267663\t-1.27102304084666\t1.58617093842324\t0.69339065851659\t-1.95808123420787\t-0.13480131198999\t0.82641742518663\n+-1.54061602455261\t2.04671396848214\t-1.39699934495328\t-1.09717198463982\t-0.23871286931468\t-1.42906689844829\t0.94900477650526\t-0.01939758596247\t0.89459770576001\t0.75969311985021\t8.96789675053551\n+-1.49772038108317\t-1.19388597679194\t1.29626258639906\t0.95227562608189\t-1.21725413064101\t-0.15726516737514\t-1.50758516026439\t0.10788413080661\t0.74705565509915\t0.42967643586261\t-9.12681793825348\n+-1.41504292085253\t-0.64075992301057\t0.77962630366370\t-0.43812091634884\t2.07479316794657\t-0.34329768218247\t-0.61662937168319\t0.76318364605999\t0.19291719182331\t-0.34845893065237\t-4.73013238453105\n+2.29865394071368\t-0.16520955264073\t0.46629936835719\t0.26998723863109\t-0.31983104711809\t-1.14774159987659\t1.70362398812070\t-0.72215077005575\t1.09368664965872\t-0.22951775323996\t3.15772616155389\n+-0.00889866329211\t-0.54319800840717\t0.75306218769198\t-1.60943889617295\t1.94326226343400\t-1.44743611231959\t0.13024845535270\t0.94936086466099\t-2.01518871712253\t-0.07954058693411\t-0.92407555288350\n+0.30104946378807\t-1.68489996168518\t0.22239080944545\t-0.68492173524723\t-0.12620118371358\t1.99027364975409\t0.52299780452075\t-0.01634540275749\t-0.41581633584065\t-1.35850293675980\t-2.23623579455562\n+-0.51442989136879\t-0.21606012000326\t0.42238022042198\t-1.09404293103224\t1.23690788519023\t-0.23028467842711\t-0.70441819973502\t-0.59137512108517\t0.73699516901821\t0.43586725251491\t-0.55744774763256\n+1.77599358550677\t0.51307437883965\t1.17052698294814\t2.07771223225020\t-0.45592201921402\t0.64917292725468\t-0.17478155445150\t1.01726434325117\t-0.59998304484887\t1.57616672431921\t-3.18381332274444\n+0.60442353858920\t-0.90703041748070\t0.59202326936038\t-0.43706441565157\t0.1017757'..b'194420\t-1.08125857121519\t-0.06307879670507\t-0.50356048600791\t-2.05090576304937\t0.08725798075221\t-1.32944561779624\t-1.65101496770809\n+0.75637688792742\t0.82428920150463\t0.37967322200031\t0.52422365195372\t-0.45271329511708\t0.68759278675132\t0.91674695152792\t1.11971610167859\t1.26354483633054\t-1.45610559752933\t0.32205421816296\n+0.32128693891874\t-2.43702669941400\t0.97337371093006\t-0.64248112674987\t0.29283256357178\t-0.46398126201592\t0.38673364020325\t0.67249644253334\t-1.09097595301491\t-0.52700342019866\t-6.40574884617228\n+-0.30440284592937\t0.77081843337639\t-0.23575096986828\t-0.17778292517384\t2.28863529133324\t-2.52894751088469\t0.56775355409626\t0.07355255089438\t0.74832418672378\t0.91465664311128\t2.18526983290342\n+1.25223156262730\t-0.88472860123867\t1.17560948074634\t0.47969620845726\t-0.58996743406612\t0.86216891849810\t-1.47265712624577\t0.65231019836457\t-0.15168996527867\t1.34323688312126\t-4.23943249822781\n+-0.65948406246294\t-0.40906579310461\t-0.33858048238969\t-0.39661868538565\t-1.45824184628667\t-0.01090659216795\t-0.76657297567464\t0.84217249032250\t0.79187920141782\t-1.31762772533865\t0.55888844122735\n+0.01315303655787\t0.15323002771334\t-0.78639503041184\t1.36810521913452\t0.00400879553357\t0.45319420435997\t-0.40637868993132\t0.68411948932681\t2.88396925177584\t-0.58818877513993\t-1.21925440704826\n+0.36522540717597\t0.32310950138879\t0.58240426467360\t-0.00845748620002\t-1.72365143380736\t-1.02553725476702\t0.53492759374879\t-1.65002519482436\t0.66894730906415\t0.28032230350373\t-0.37071369664525\n+0.40271751266444\t0.59519151467352\t-0.04489492214522\t0.64534644308214\t-1.12745914989289\t0.22451442073277\t0.10571095020939\t-1.00134678404358\t-0.18618164454287\t1.99795151776873\t2.59957677613228\n+0.57255675159723\t-1.36871620107071\t-1.15772004612616\t1.06582622979255\t-1.65499679923647\t1.47713538228764\t-0.93286094213424\t0.13042091725382\t-0.03102869757093\t-0.08768373982573\t-1.99798668296313\n+0.61775947077628\t2.88575179539228\t1.75982110036090\t1.09133090752907\t-2.21346060739119\t-0.02398076189861\t1.23725351268738\t-0.45619206614093\t2.12474539951312\t0.24074228458820\t1.48332247916783\n+-0.05864391264017\t-0.87399991994747\t-0.12278570026443\t0.91179656231331\t-0.10746411474279\t-0.72747083460478\t1.59576290128042\t0.98774702734042\t-0.48811101691646\t0.62969480563024\t-2.66581892706104\n+-0.45339969843110\t0.60909959142993\t-0.85224895065849\t-0.05454962931514\t1.09079462734148\t-1.84634161455384\t-0.41243382161399\t-0.41546602951165\t-1.30175658921974\t-1.13609897454000\t2.95605090229365\n+-1.79763757816820\t-0.66155694349019\t2.54928569877370\t-1.63767562413715\t0.00631766181730\t0.54171265127420\t-0.13210003839032\t-0.37873629845671\t1.94062280466786\t-1.04187437109117\t-7.36529395665408\n+-0.28559377932837\t-0.59892262579212\t-0.38234037804602\t-0.98598081157493\t-1.36447657201091\t-0.82353342400180\t-1.68138681554986\t-0.91621993917044\t0.54362793226983\t1.52486260054826\t0.69972992752598\n+1.19741734779592\t-1.22250529739662\t-2.02376353002073\t0.05371174766609\t-0.53629036242314\t0.10714253527293\t0.61515218539276\t0.90506544040104\t1.65258564139881\t-0.84281968759992\t2.02183560039596\n+-0.06340532135398\t0.48905360189012\t0.70453542780530\t-1.07173556758791\t0.41375864841338\t-0.34502527403732\t1.24018981821212\t0.10342901781619\t-2.14185161440355\t-0.68365014168151\t1.26361248319262\n+-1.18079802759063\t1.18100216181730\t-1.06605525816211\t-0.74304592231484\t-0.88592524951272\t-0.49581833514280\t0.52738768762870\t-0.30175139488690\t0.35564438892659\t1.32813211314365\t4.35007881758459\n+0.23807425695170\t0.17185882517031\t1.11676824680888\t-0.01368885520815\t1.28290975661447\t-1.12997104581712\t0.75872144408905\t-1.09860423557013\t-0.30290404839246\t1.49961056170431\t-1.50599861767127\n+0.14614254213308\t1.90341641619205\t-0.30620639436988\t-0.45706533906365\t-2.38861407368411\t-0.86179917990581\t-0.53439383530306\t-1.26260428547622\t-1.02319884121943\t0.53846601124160\t4.25252010016803\n+1.71650277423513\t0.17912390469971\t-0.45596835004497\t0.32669169909967\t0.68196488401329\t-0.73798870708179\t1.32634484032934\t0.92700352399697\t0.21309224825039\t1.32833309213812\t2.24067452098234\n'
b
diff -r 000000000000 -r eaddff553324 test-data/svc_model01
b
Binary file test-data/svc_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/svc_model02
b
Binary file test-data/svc_model02 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/svc_model03
b
Binary file test-data/svc_model03 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/svc_prediction_result01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/svc_prediction_result01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/svc_prediction_result02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/svc_prediction_result02.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/svc_prediction_result03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/svc_prediction_result03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 2
+2 -94 20 -96 1
+2 -85 26 -88 2
+2 -90 33 -114 0
+2 -63 9 -106 0
+2 -79 9 -93 3
+2 -99 26 -108 1
+2 -81 19 -110 0
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 3
+2 -88 15 -103 3
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/swiss_r.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/swiss_r.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,101 @@
+0 1 2 0
+-9.02243256039137 16.34407352444682 -3.91158679018559 9.83385989954935
+3.63249892240844 16.37156637082574 6.37347946891175 7.33595862596962
+-6.59990374867870 12.81689121739727 5.68894891723748 8.71337301363603
+12.60058269943729 6.48900731901245 1.36421345798185 12.67421645405731
+0.21148781431603 14.65243305777208 -4.75215950419191 4.75686315221341
+5.33691943034302 18.05198421031037 -2.41562073899157 5.85815095065150
+0.42444009063172 13.13179891289296 -11.02588381005155 11.03405017132387
+12.46482443712306 20.63056442180054 -0.88026386103874 12.49586782553941
+5.76317738541424 20.50650266733296 -1.67200654933799 6.00081823393938
+-7.69903426445702 3.50057675517602 -6.58731737523598 10.13251591695612
+11.20278590321885 0.48674086604648 6.81511168671079 13.11290049133681
+6.15412671259387 3.37563551864871 2.60836155375894 6.68407253026096
+6.35942079065830 19.39343333044084 1.13017904280432 6.45906629950887
+4.89011222063691 20.02454684747021 -2.99390399145637 5.73381710908892
+5.95327096920981 4.43054679308737 3.25076997787065 6.78298906691301
+2.78861701451918 7.57103026710677 13.65384098195710 13.93570085837942
+12.10585740780788 11.53688049418112 -2.50504139885041 12.36232243504963
+6.32507204556097 5.70844783271641 0.31467565998178 6.33289484773921
+12.24420955660564 9.67263404257185 -1.99160324599471 12.40512600321051
+3.86603085500482 14.61939286129109 6.18690023441702 7.29547319112878
+-7.02397880690916 10.50747383017216 5.26986980172594 8.78110505614482
+7.26899971380247 15.03749080185106 11.46122929160598 13.57196130682766
+12.28312638165453 11.04507466082536 -1.82900534786211 12.41855282511636
+-0.20634108007217 0.02937948549992 7.87746751157422 7.88016948023535
+6.34399103378833 8.28870602048655 0.52398389323880 6.36559355890402
+-2.99211446321268 10.33550636792415 7.66279394446575 8.22624823332651
+0.25539688163080 8.46048695896198 -4.75915397262811 4.76600189911090
+4.89844343501214 7.44026430223273 5.12776107471194 7.09145131304900
+11.44974583747064 10.51290070830202 -4.24498953448257 12.21133145445421
+0.69579063231352 9.34870920545390 -4.80605880631806 4.85616369717936
+-6.17828212297832 1.89908855212515 -8.31161329742931 10.35635484121306
+-5.80914779869685 5.74482132057625 -8.63009591761129 10.40311269256829
+4.77128296187839 19.81301905259727 -3.12464903951709 5.70338256848215
+-3.67628694703398 0.55743746801278 7.45494950830712 8.31212114254485
+1.70416677720490 0.83997248245367 -4.76032011047383 5.05616771465411
+11.25347968088436 5.94594755411621 6.71434319469841 13.10432025952777
+2.49626118444553 12.22922757455215 13.73230884573197 13.95735025481333
+2.82529764315011 20.80874886142137 -4.45734155189065 5.27732891552161
+11.24605365926439 20.84548698546233 6.72924080159274 13.10558677331444
+-7.59842145099956 20.85546482210194 -6.72885645955675 10.14955751746493
+7.67310519862389 2.31101495029782 -8.84589090944236 11.71009519051421
+-3.59076659321246 13.95411036524274 -10.02825028857387 10.65173265610870
+-7.31035544660664 11.00372352425457 -7.10771526578241 10.19612245195043
+0.93904272696270 3.63614810598335 -4.81429662072219 4.90502326144929
+6.14080381732072 19.80216514321554 2.65918955384942 6.69184284081168
+-8.98560037833939 5.07906180550130 -4.02506967318433 9.84592301580716
+9.83640736238632 20.97757764570745 -6.80541621380709 11.96112869431461
+4.96998862744940 12.23657011814787 5.03554965727086 7.07513585083827
+3.20231600088142 3.84885901324209 6.67886419948077 7.40689238241025
+12.54088626453474 8.12375386027360 2.27756112448486 12.74602341813951
+3.24443881123445 3.98314410715514 13.51770472571597 13.90160869293509
+11.54328489548810 8.62618413353151 6.09143462816640 13.05193479939386
+-1.97813913943140 12.48828144693581 7.85543311765692 8.10067058464492
+-6.17714998090234 15.04830795569514 -8.31263754702176 10.35650157508401
+-1.61850746821552 10.22472112975159 7.89200482133423 8.05625884171010
+-0.51138056305762 6.50138617310080 7.90207659171039 7.91860622467934
+6.35381855577856 12.12626882938480 0.68617671578531 6.39076276551100
+5.45211008381264 9.27586421094360 4.31430175957628 6.95260411922716
+2.10713448194703 7.55324015461126 -4.68298251756532 5.13520603139082
+-9.46355519159139 6.74797057218509 -0.48486315240582 9.47596797909624
+-3.25022653114329 4.37235204411648 7.59200889141913 8.25848481933186
+-6.60452000241460 9.47643110529852 -7.90309749198288 10.29944825852728
+-3.61286141728060 10.32870111554513 -10.01788625769654 10.64945128598746
+5.90124016577200 18.88060261066794 -1.36195628598096 6.05636528117681
+7.89068480280119 15.31656968161827 10.97066306101087 13.51363587845203
+6.59943795203969 16.17188523131361 11.92785150077068 13.63180922354986
+-5.92310072764215 7.88422419880175 -8.53499542293883 10.38890124601161
+-4.10660182718020 7.21853023994307 7.28989105932790 8.36700007313664
+-2.25898912612109 13.75573932598577 7.81543176115041 8.13535527713031
+6.22411695981015 14.93179785742045 2.30810881728065 6.63829784220360
+3.72076470595161 2.38428907959220 6.30480629460181 7.32083823134385
+5.13490876903855 2.79360247684508 4.81010313126482 7.03593492009076
+6.33502516186602 9.57682020972860 0.41503304021319 6.34860584899899
+4.27843646254146 3.35446083332871 13.14365544274426 13.82247072565484
+5.41252501545014 20.19447997926756 12.62033886030277 13.73202024436834
+-6.24125765198132 17.58993064209800 -8.25415535789923 10.34815818156797
+6.64000170297454 10.92337442779639 -9.51736726558904 11.60473620051790
+-0.52602499579966 4.58371741229124 7.90295722301686 7.92044412675453
+4.25631510283951 2.83329317318037 -3.60833745464785 5.57999260225982
+-8.54867168512033 20.56047725516125 3.06273111245095 9.08075489412379
+-9.47483083800073 14.84791340947201 -0.77854042515321 9.50676309804379
+4.10653195087950 18.05948669585893 -3.72769262484286 5.54610646930818
+-9.35274677942807 8.13062518440142 -2.53039931260771 9.68900371562256
+1.03845201115681 5.26751441646622 14.02486534548972 14.06325817648934
+-4.63367754105607 6.28819839783875 7.04889668487289 8.43551492373165
+-0.16796208628964 17.99480609650533 7.87351960373171 7.87531092800648
+11.88118942484094 9.93266380193264 -3.19616245269299 12.30358145309554
+8.69490880845012 13.92881798733869 -8.00982627814450 11.82196075925300
+1.45482693805244 16.92030075617249 7.52360274153979 7.66297067932457
+-3.23533266731161 5.31259059764421 -10.18660422887945 10.68804393628686
+-9.10316962454735 1.67104221837682 -3.64441261846314 9.80558211157782
+2.53532307433492 15.38797270533002 7.06868388652787 7.50960418257273
+4.97651933022564 20.18934702757571 -2.89344295855440 5.75654034976890
+1.48425390920063 20.02989941752092 7.51375887065696 7.65895436945237
+-8.28803153159531 10.30048008956189 3.55761030474492 9.01931581380457
+-0.79470794357540 13.27603335308786 -10.89380414305644 10.92275283172038
+4.82092592045283 15.39289541659784 5.22421533655818 7.10870963067305
+-2.56630792573832 18.95059956820729 -10.44394771632344 10.75462599400857
+6.27317580578337 3.40718529371220 2.04636103864001 6.59850954312636
+-0.92862878529940 8.52350776971879 -10.87076506408071 10.91035675398950
b
diff -r 000000000000 -r eaddff553324 test-data/test.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,5 @@
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774
+0.015942057224 -0.711958594347 0.125502976978 -0.972218263337
+2.08690768825 0.929399321468 -2.12924084484 -1.99714022188
+1.41321052084 0.523750660422 -1.4210539291 -1.49298569451
+0.76831404394 1.38267855169 -0.989045048734 0.649504257894
b
diff -r 000000000000 -r eaddff553324 test-data/test2.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test2.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,9 @@
+0 1 2 3
+3.68258022948 2.82110345641 -3.990140724 -1.9523364774
+0.015942057224 -0.711958594347 0.125502976978 -0.972218263337
+2.08690768825 0.929399321468 -2.12924084484 -1.99714022188
+1.41321052084 0.523750660422 -1.4210539291 -1.49298569451
+0.76831404394 1.38267855169 -0.989045048734 0.649504257894
+0.76831404394 1.38267855169 -0.989045048734 0.649504257894
+0 1 -0.9 0.6
+1 2 2 5
b
diff -r 000000000000 -r eaddff553324 test-data/test3.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test3.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,51 @@
+Age Race AIDS Total target
+0 4 2555.0 14443382.0 1
+1 4 55300.0 14704293.0 1
+2 4 82334.0 16641977.0 1
+3 4 38006.0 13888285.0 1
+4 4 16068.0 21845911.0 1
+0 2 2489.0 2367256.0 1
+1 2 34204.0 2410019.0 1
+2 2 51776.0 2727604.0 1
+3 2 23896.0 2276276.0 1
+4 2 10169.0 3580523.0 1
+0 3 1363.0 1542563.0 1
+1 3 20712.0 1570428.0 1
+2 3 27200.0 1777374.0 1
+3 3 11251.0 1483278.0 1
+4 3 4674.0 2333158.0 1
+0 1 38.0 699627.0 1
+1 1 731.0 712265.0 1
+2 1 1162.0 806125.0 1
+3 1 560.0 672738.0 1
+4 1 258.0 1058200.0 1
+0 0 26.0 169115.0 1
+1 0 390.0 172170.0 1
+2 0 417.0 194858.0 1
+3 0 140.0 162616.0 1
+4 0 48.0 255790.0 1
+0 4 490.0 14999423.0 0
+1 4 4788.0 15270378.0 0
+2 4 5377.0 17282659.0 0
+3 4 2152.0 14422956.0 0
+4 4 1790.0 22686934.0 0
+0 2 1490.0 2458391.0 0
+1 2 12280.0 2502800.0 0
+2 2 15713.0 2832611.0 0
+3 2 5788.0 2363908.0 0
+4 2 2534.0 3718366.0 0
+0 3 493.0 1601948.0 0
+1 3 4660.0 1630887.0 0
+2 3 5153.0 1845800.0 0
+3 3 1944.0 1540381.0 0
+4 3 910.0 2422980.0 0
+0 1 6.0 726561.0 0
+1 1 83.0 739686.0 0
+2 1 106.0 837159.0 0
+3 1 69.0 698637.0 0
+4 1 55.0 1098938.0 0
+0 0 3.0 175626.0 0
+1 0 78.0 178798.0 0
+2 0 77.0 202360.0 0
+3 0 31.0 168876.0 0
+4 0 14.0 265637.0 0
b
diff -r 000000000000 -r eaddff553324 test-data/test_set.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test_set.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67
+0 44 64 -76
+0 51 48 -73
+0 58 65 -49
+0 43 61 -49
+0 45 43 -79
+0 42 60 -98
+0 50 55 -59
+0 53 53 -56
+0 45 44 -61
+0 43 65 -84
+0 35 52 -75
+0 56 56 -70
+1 -61 86 43
+1 -67 93 15
+1 -59 94 36
+1 -50 92 62
+1 -78 91 70
+1 -35 87 47
+1 -56 91 52
+1 -61 81 46
+1 -83 78 34
+1 -50 87 45
+1 -67 73 50
+1 -50 97 45
+1 -61 111 45
+2 -109 23 -92
+2 -94 20 -96
+2 -85 26 -88
+2 -90 33 -114
+2 -63 9 -106
+2 -79 9 -93
+2 -99 26 -108
+2 -81 19 -110
+2 -108 21 -108
+2 -92 27 -106
+2 -88 2 -106
+2 -88 15 -103
+3 54 -74 4
+3 42 -92 31
+3 39 -99 -7
+3 48 -115 -5
+3 39 -96 2
+3 31 -109 9
+3 33 -96 -8
+3 23 -102 4
+3 38 -90 21
+3 34 -107 1
+3 35 -78 18
b
diff -r 000000000000 -r eaddff553324 test-data/train.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,15 @@
+-0.409899987374 -0.649450145317 0.510268556953 -0.229110484125 0
+-1.10383560019 0.0611191480175 1.01725565283 1.79193066057 0
+-0.41009731911 0.731046118333 0.238276079462 1.60843479815 1
+1.48390157074 2.30714564103 -1.83858336229 0.770904924566 1
+0.74006063964 1.38952620136 -0.96404935579 0.702401167325 1
+0.331307031883 1.10808437795 -0.527405721679 0.961279646112 1
+-1.4627878344 -0.343655746393 1.43177660405 1.80949467985 0
+-1.33544682955 -2.24827087098 1.6885444678 -0.922608257112 0
+-0.0417384245742 0.906486336146 -0.13980113811 1.27108242642 1
+-2.73189476502 -1.46239633785 2.83576394706 2.28732123255 0
+-0.300256196558 -0.305034204892 0.340123288396 0.0593443810367 0
+-0.523654501136 -0.426496596688 0.572385315213 0.243891110892 0
+-0.00757221265553 -0.254805682403 0.0572980350837 -0.327374762308 0
+-1.87242461384 -0.413385894664 1.82750303608 2.35149919802 1
+-0.168117705611 -0.811895938369 0.316838713275 -0.819986910541 0
b
diff -r 000000000000 -r eaddff553324 test-data/train_set.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_set.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,49 @@
+0 58 56 -67 0
+0 44 64 -76 0
+0 51 48 -73 0
+0 58 65 -49 0
+0 43 61 -49 0
+0 45 43 -79 0
+0 42 60 -98 0
+0 50 55 -59 0
+0 53 53 -56 0
+0 45 44 -61 0
+0 43 65 -84 0
+0 35 52 -75 0
+0 56 56 -70 0
+1 -61 86 43 2
+1 -67 93 15 2
+1 -59 94 36 2
+1 -50 92 62 2
+1 -78 91 70 2
+1 -35 87 47 2
+1 -56 91 52 2
+1 -61 81 46 2
+1 -83 78 34 2
+1 -50 87 45 2
+1 -67 73 50 2
+1 -50 97 45 2
+1 -61 111 45 2
+2 -109 23 -92 1
+2 -94 20 -96 1
+2 -85 26 -88 1
+2 -90 33 -114 1
+2 -63 9 -106 1
+2 -79 9 -93 1
+2 -99 26 -108 1
+2 -81 19 -110 1
+2 -108 21 -108 1
+2 -92 27 -106 1
+2 -88 2 -106 1
+2 -88 15 -103 1
+3 54 -74 4 3
+3 42 -92 31 3
+3 39 -99 -7 3
+3 48 -115 -5 3
+3 39 -96 2 3
+3 31 -109 9 3
+3 33 -96 -8 3
+3 23 -102 4 3
+3 38 -90 21 3
+3 34 -107 1 3
+3 35 -78 18 3
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_eval01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_eval01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+neg_mean_absolute_error r2
+-5.29904520286704 0.6841931628349759
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_eval03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_eval03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+neg_mean_absolute_error r2
+-4.811320754716981 0.7343422874316201
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_eval_model01
b
Binary file test-data/train_test_eval_model01 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_eval_weights01.h5
b
Binary file test-data/train_test_eval_weights01.h5 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_eval_weights02.h5
b
Binary file test-data/train_test_eval_weights02.h5 has changed
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_test01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_test01.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,67 @@
+year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed
+2016 11 2 59 57 54.2 54 58 55 70 0 0 0 0 0 0 1
+2016 11 8 61 63 52.7 49 57 52 49 0 0 0 0 0 1 0
+2016 7 13 74 77 75.6 74 78 76 56 0 0 0 0 0 0 1
+2016 3 14 52 54 53.4 49 58 55 44 0 1 0 0 0 0 0
+2016 6 13 65 70 69.3 66 72 69 79 0 1 0 0 0 0 0
+2016 5 21 63 66 65.7 62 67 65 49 0 0 1 0 0 0 0
+2016 7 4 76 71 73.8 71 76 73 86 0 1 0 0 0 0 0
+2016 1 15 55 49 47.1 46 51 46 65 1 0 0 0 0 0 0
+2016 2 1 48 47 48.8 46 49 49 51 0 1 0 0 0 0 0
+2016 1 11 50 52 46.7 42 48 48 39 0 1 0 0 0 0 0
+2016 6 8 86 85 68.5 67 70 69 81 0 0 0 0 0 0 1
+2016 7 23 81 71 77.0 75 81 76 86 0 0 1 0 0 0 0
+2016 9 14 74 75 71.2 67 75 73 77 0 0 0 0 0 0 1
+2016 9 12 77 70 71.8 67 73 73 90 0 1 0 0 0 0 0
+2016 10 17 62 60 59.1 57 63 59 62 0 1 0 0 0 0 0
+2016 1 19 50 54 47.6 47 49 48 53 0 0 0 0 0 1 0
+2016 9 26 67 76 67.2 64 69 69 74 0 1 0 0 0 0 0
+2016 9 15 75 79 71.0 66 76 69 64 0 0 0 0 1 0 0
+2016 7 28 79 83 77.3 76 80 78 76 0 0 0 0 1 0 0
+2016 12 24 45 40 45.1 44 47 46 39 0 0 1 0 0 0 0
+2016 6 1 71 79 67.4 65 69 66 58 0 0 0 0 0 0 1
+2016 10 3 63 65 64.5 63 68 65 49 0 1 0 0 0 0 0
+2016 4 8 68 77 57.1 57 61 57 41 1 0 0 0 0 0 0
+2016 11 17 55 50 50.5 46 51 50 57 0 0 0 0 1 0 0
+2016 12 4 50 49 46.8 45 47 47 53 0 0 0 1 0 0 0
+2016 9 10 72 74 72.3 70 77 74 91 0 0 1 0 0 0 0
+2016 7 29 83 85 77.3 77 80 79 77 1 0 0 0 0 0 0
+2016 10 14 66 60 60.2 56 64 60 78 1 0 0 0 0 0 0
+2016 3 30 56 64 55.7 51 57 56 57 0 0 0 0 0 0 1
+2016 12 5 49 46 46.6 43 50 45 65 0 1 0 0 0 0 0
+2016 4 18 68 77 58.8 55 59 57 39 0 1 0 0 0 0 0
+2016 12 19 35 39 45.1 42 46 45 51 0 1 0 0 0 0 0
+2016 2 4 51 49 49.0 44 54 51 44 0 0 0 0 1 0 0
+2016 4 30 64 61 61.4 60 65 62 78 0 0 1 0 0 0 0
+2016 4 5 69 60 56.6 52 58 56 72 0 0 0 0 0 1 0
+2016 11 16 57 55 50.7 50 51 49 34 0 0 0 0 0 0 1
+2016 9 28 77 69 66.5 66 68 66 62 0 0 0 0 0 0 1
+2016 1 13 45 49 46.9 45 51 46 33 0 0 0 0 0 0 1
+2016 3 5 59 57 52.1 49 53 51 46 0 0 1 0 0 0 0
+2016 1 24 57 48 48.1 46 50 48 54 0 0 0 1 0 0 0
+2016 7 14 77 75 75.8 74 76 77 77 0 0 0 0 1 0 0
+2016 8 23 84 81 75.7 73 78 77 89 0 0 0 0 0 1 0
+2016 12 25 40 41 45.1 42 49 44 31 0 0 0 1 0 0 0
+2016 9 25 64 67 67.6 64 72 67 62 0 0 0 1 0 0 0
+2016 11 21 57 55 49.5 46 51 49 67 0 1 0 0 0 0 0
+2016 1 16 49 48 47.3 45 52 46 28 0 0 1 0 0 0 0
+2016 2 24 51 60 50.8 47 53 50 46 0 0 0 0 0 0 1
+2016 8 4 73 75 77.3 73 79 78 66 0 0 0 0 1 0 0
+2016 3 2 54 58 51.6 47 54 52 37 0 0 0 0 0 0 1
+2016 1 25 48 51 48.2 45 51 49 63 0 1 0 0 0 0 0
+2016 1 18 54 50 47.5 44 48 49 58 0 1 0 0 0 0 0
+2016 11 22 55 54 49.3 46 54 49 58 0 0 0 0 0 1 0
+2016 3 13 55 52 53.3 50 55 53 54 0 0 0 1 0 0 0
+2016 5 17 57 60 65.0 62 65 65 55 0 0 0 0 0 1 0
+2016 1 28 56 57 48.4 44 52 48 34 0 0 0 0 1 0 0
+2016 5 24 66 65 66.2 66 71 66 67 0 0 0 0 0 1 0
+2016 11 6 65 58 53.2 52 57 55 71 0 0 0 1 0 0 0
+2016 12 23 49 45 45.1 45 49 44 35 1 0 0 0 0 0 0
+2016 6 25 68 69 71.7 68 73 73 89 0 0 1 0 0 0 0
+2016 4 2 73 71 56.2 55 58 58 45 0 0 1 0 0 0 0
+2016 6 26 69 71 71.9 67 74 72 70 0 0 0 1 0 0 0
+2016 11 26 52 52 48.4 48 50 47 58 0 0 1 0 0 0 0
+2016 9 13 70 74 71.5 71 75 70 82 0 0 0 0 0 1 0
+2016 12 2 52 46 47.2 46 51 49 41 1 0 0 0 0 0 0
+2016 8 6 80 79 77.2 76 81 79 60 0 0 1 0 0 0 0
+2016 10 29 60 65 55.3 55 59 55 65 0 0 1 0 0 0 0
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_test02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_test02.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,201 @@\n+-1.3022497239876525\t0.41162245619920174\t0.3850631031897158\t-1.065301842496646\t-0.6940008550138481\t2.2608403458600925\t3.622204434814536\t-0.3183465181327487\t-1.410027169684386\t-0.6307904628990526\t2.809174035044597\t0.7840390953413314\t-0.032913359309272236\t0.1269040356918228\t-0.7038487276500461\t-1.5433857418796189\t-0.2658388398378144\t-1.204125138751038\t-0.4106305941465671\t-2.1530032168711024\n+-0.4107989913365759\t0.9675376475353166\t0.09374211379388764\t1.7143886101095047\t-0.11156554775507473\t1.6257337330303492\t5.671063244915109\t-0.3775968070412295\t0.8772742813833009\t-0.2249373445476654\t3.541130040089443\t0.7064690478674034\t0.3274452454361061\t0.4095309780710557\t-0.04020259217468653\t0.3999351212624621\t-0.4789427070381956\t-0.8383398308678357\t-0.7084990898469742\t-3.5921789270343747\n+-1.0046430489468259\t-0.2475198782602121\t1.8722558073924007\t-2.050734120852677\t0.223218415351888\t0.9972967022037826\t0.21687494749301134\t0.6815453371376522\t-1.2369792180109709\t-1.7937590177703913\t-0.595814082168741\t-0.3714655242486308\t0.8054558366241785\t0.707291290265989\t0.0026761403473940892\t0.6858925338135025\t1.0460915051165451\t-1.05529607831364\t-0.8524278739013349\t-1.0937845388370384\n+-0.6601752137721719\t-0.11000001206134824\t-2.1153815467792265\t0.7939530261454807\t0.14074473863377998\t3.3552079891275923\t-0.8369407002892686\t-0.5714820686564377\t-0.37412481389886265\t0.16669033299410288\t-3.6319951227966674\t-0.6639361788987586\t0.5554669721932757\t0.7479717178718552\t-0.016560794142802523\t0.19859811525823087\t-1.9152321429437595\t-0.4582315336475037\t-2.2285961423670955\t-3.4228140259065998\n+0.7866152217561416\t-0.2291058850235269\t-0.3527520240499313\t0.6723966958156411\t-1.6682659534205586\t2.7789914613781272\t1.906164582945605\t1.0761421124464927\t0.09690167407822936\t1.6513613104097675\t2.2258330065926084\t-0.8734144600762542\t-1.0066865968249934\t-0.13471591695058407\t0.015184991621273526\t0.41810514195584253\t-0.3760878884398714\t2.2903405971801156\t1.0522116184673187\t-0.9159796436696128\n+0.2814798326149793\t0.5875101493421397\t0.21729777590682087\t-1.485801637332555\t-0.7259055545195056\t2.3934625979413915\t2.795967841759341\t0.1748287231468569\t0.7064308999942802\t0.3497777551584115\t2.225996647861514\t1.6301969056059509\t0.07651250932855069\t-2.0342494286984243\t-0.8883453790706329\t-0.7345168234009436\t1.5287683026280032\t-0.4421021715011357\t-0.5779836284098872\t-1.8023368901730872\n+0.023561266296767996\t0.01327469130218088\t0.9878045214079304\t0.5750648387066529\t0.4047426855593061\t2.730429552257033\t1.0141221327309589\t-0.0010397698579166187\t1.2950034987670118\t-1.805850216908488\t1.6388229124609937\t0.9286520099757948\t-0.34109406603463605\t-0.02757550682732839\t-1.2286674947471106\t0.8011744540858317\t0.8424403652177841\t-0.14115310456128674\t-0.44894002007093775\t-0.4406268508179094\n+0.2456307272179787\t0.5943091746736674\t-1.273655669405128\t0.16873404654912996\t0.005752441478044986\t0.5666353702678641\t4.842127705182824\t0.698622620435285\t1.2592032824188062\t-1.3867865971369038\t2.0103146282963\t0.25453278665231965\t1.037764245051936\t-0.14900969999222113\t-1.3508991449570242\t-0.6347960472728013\t0.01478239489509124\t0.1237920700532843\t-0.8008367439748938\t-3.7595616099202216\n+-1.4928016688154506\t0.6922526483668314\t0.7340706436196134\t0.3473096338667893\t-0.2626210985357605\t3.4791405788113354\t1.805377038112414\t1.3002542896922045\t-0.9818090439589664\t-1.983507863053584\t3.1109989936861995\t-1.5167130756726412\t2.115406032275567\t-0.06319774436121431\t0.31045881394126296\t1.5773205208380376\t0.11953451934790252\t-0.3678585275873511\t-0.6436336614328086\t-0.1923418873135878\n+-1.1092740315883938\t-0.9086267440397304\t-0.9317250076628589\t0.10305857018240576\t0.569614735498199\t3.3180899169801226\t-0.12789255109919928\t-0.225656531827112\t-0.6679424977863244\t0.4743665910531477\t-1.90983381933296\t-0.015442113772508715\t0.7947216167107651\t0.8564724155111614\t0.7221596369993102\t-0.9866727547841551\t0.8360620842096383\t0.6950101534147096\t0.04441865129686528\t-2.6156995904444718\n+1.0098923348657989\t-0.3404395572391499\t0.28768679961742755\t-'..b'394916943092\t-0.08986731773440884\t1.227196153928395\t0.9070135114981376\t-0.4301867214198333\t-1.4492302926076932\n+-0.06615816960203896\t2.009979529130306\t0.3713735532042358\t-0.5487484003197485\t2.3544159434087883\t1.8572881651916524\t3.3230022631402014\t0.3735478888166094\t-0.8598539493190498\t0.7274541656791573\t2.205532939957485\t0.29758553036688457\t0.8972227445878997\t-0.5747601621532991\t-0.2127621916795853\t0.040064364498694015\t0.5849058397345099\t0.8758434197897889\t0.4663260930810838\t-2.254363887228946\n+0.18543498213986814\t3.0513112038934844\t-2.6424015306921946\t0.8764021246988886\t-0.3953153229944255\t1.9075565797529936\t1.4218322330290696\t-0.5195408321168391\t0.5455073292906822\t0.6246218548016428\t0.9584355772452136\t-2.2635771383414567\t-0.6561863207944872\t0.8486496057693781\t-0.5966266151068456\t-0.6006020054228821\t2.0603605160777265\t0.11602230574467433\t0.4886550176001555\t-1.2835462572257614\n+-0.1582698552315506\t-0.08048346990253155\t-2.148011786893936\t2.047644705860473\t0.7947162744855929\t3.242804563537072\t3.1537786543701785\t0.5402497023814611\t0.4272506159045248\t-0.6354699283615589\t3.262065129084129\t-0.22929604213545826\t0.7154856008886161\t-0.2042624800307618\t-0.2578743486811804\t0.13661938345994426\t0.4553653167841669\t-0.6670519044995711\t-2.0893270217727435\t-1.499879266505479\n+-0.8484574739703497\t1.3067865576457078\t0.25715573889589005\t-0.5778920236798556\t1.2522052635779308\t2.5540397800380448\t3.62109581483752\t-0.32782688264878435\t0.7393667994651832\t-0.28375737263272044\t3.182336120597001\t0.6388288113204441\t0.6913878844603908\t-0.42013735166981375\t0.1445696954158848\t1.7972784288866317\t-1.3269163979305345\t-0.5374183207933991\t-1.1487633221563704\t-1.8939359370372515\n+-2.130317782257829\t0.6944206556053942\t-0.5187934367784872\t0.4910182874266096\t0.9821391691462148\t1.5947125814644691\t4.651398959285967\t-0.4079668226972564\t-0.7617607267021139\t0.37200223540319977\t2.9925378597902497\t0.3213832180477288\t-1.8009468379200382\t0.022873767566392908\t-0.5948190671258752\t-0.18142573586761535\t1.0527453107966451\t-0.7914376218356579\t-1.2023900300673969\t-2.9428283401869946\n+0.6749106319022494\t-0.14100011324901496\t0.9696745674485816\t-0.6012318064205764\t0.9706395894078412\t2.0205295534128647\t-0.5705109230704828\t1.107471162440306\t-0.2333200858753319\t0.5489383517969392\t-2.331823083983417\t0.5241875376117929\t-1.607427755534678\t1.2124152543792104\t0.25644841454138195\t0.5333111287645858\t-1.7715901663386604\t0.7643998152072085\t-1.088005122340949\t-2.120248490613845\n+1.0784246103336974\t0.6750275474270194\t0.883320881578071\t0.6851873084466028\t0.2463794964155742\t1.6240981608723588\t3.9093035073408418\t0.2591824998427575\t-1.6014038225855325\t1.1801464748015662\t2.4755532139585203\t0.7995931657601443\t1.6483349264511815\t-1.269517021279204\t0.7198065388081868\t-0.3671739224800498\t-0.7364785132472684\t-0.6205826123141913\t1.708837288406762\t-2.5947560181445284\n+0.010035987199388642\t0.2446441667110395\t1.245919130033156\t0.8854157890056191\t-1.573923287330914\t2.8875386799155955\t-0.513386992362383\t0.40135785761620013\t0.5076563896403061\t-0.20239357501585714\t-2.560644060182517\t-0.1450215571363124\t0.5199643185069369\t0.6728828829265034\t1.5303075053292063\t-0.9794419968244896\t0.3655133608469972\t-1.327131896650437\t-1.904372466358065\t-2.6555099509371605\n+-0.2984991804837332\t-1.6426421983629622\t-1.0099344497295062\t-0.20683063259480788\t1.7371391385934103\t1.9175803121382835\t2.5305082449767884\t0.6198917597202278\t-0.5024984291905042\t0.6767881974129001\t1.569111670968616\t-0.8206492678463314\t-0.35119699167786794\t1.0578552660085534\t-1.0111524265487517\t1.5038720931452612\t-0.7474037040854009\t0.6582529782133406\t0.7064620422956671\t-1.969356801153876\n+-0.6512454621212219\t-1.37373475613224\t0.30085906666200124\t0.0797497766512836\t-2.195376961647302\t1.132356514093129\t5.6861294740324535\t-0.1068624210733533\t0.4255497794528917\t-0.14106687226428918\t2.6052434613346884\t-0.01934725939162056\t1.0454590995696535\t-0.8660690232570448\t-1.29000104081957\t0.10819900014776096\t0.7755088867812867\t0.6015079687881466\t0.955602538442458\t-4.328064444458374\n'
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_test03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_test03.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,54 @@
+year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed
+2016 9 19 68 69 69.7 65 74 71 88 0 1 0 0 0 0 0
+2016 1 25 48 51 48.2 45 51 49 63 0 1 0 0 0 0 0
+2016 12 17 39 35 45.2 43 47 46 38 0 0 1 0 0 0 0
+2016 7 17 76 72 76.3 76 78 77 88 0 0 0 1 0 0 0
+2016 6 27 71 78 72.2 70 74 72 84 0 1 0 0 0 0 0
+2016 4 17 60 68 58.6 58 62 59 54 0 0 0 1 0 0 0
+2016 11 2 59 57 54.2 54 58 55 70 0 0 0 0 0 0 1
+2016 12 27 42 42 45.2 41 50 47 47 0 0 0 0 0 1 0
+2016 1 16 49 48 47.3 45 52 46 28 0 0 1 0 0 0 0
+2016 12 7 40 42 46.3 44 51 46 62 0 0 0 0 0 0 1
+2016 8 28 81 79 75.0 71 77 76 85 0 0 0 1 0 0 0
+2016 10 19 60 61 58.4 58 60 57 41 0 0 0 0 0 0 1
+2016 5 5 74 60 62.5 58 66 62 56 0 0 0 0 1 0 0
+2016 12 11 36 44 45.7 41 46 47 35 0 0 0 1 0 0 0
+2016 3 30 56 64 55.7 51 57 56 57 0 0 0 0 0 0 1
+2016 10 9 64 68 62.1 58 65 63 55 0 0 0 1 0 0 0
+2016 1 12 52 45 46.8 44 50 45 61 0 0 0 0 0 1 0
+2016 8 13 80 87 76.8 73 79 78 73 0 0 1 0 0 0 0
+2016 9 23 68 67 68.3 67 69 67 61 1 0 0 0 0 0 0
+2016 6 16 60 67 69.8 68 72 71 87 0 0 0 0 1 0 0
+2016 9 8 68 67 72.8 69 77 73 56 0 0 0 0 1 0 0
+2016 12 4 50 49 46.8 45 47 47 53 0 0 0 1 0 0 0
+2016 1 13 45 49 46.9 45 51 46 33 0 0 0 0 0 0 1
+2016 2 5 49 49 49.1 47 50 49 45 1 0 0 0 0 0 0
+2016 6 22 76 73 71.0 66 71 72 78 0 0 0 0 0 0 1
+2016 5 25 65 66 66.4 65 67 66 60 0 0 0 0 0 0 1
+2016 4 8 68 77 57.1 57 61 57 41 1 0 0 0 0 0 0
+2016 10 11 57 60 61.4 58 66 61 58 0 0 0 0 0 1 0
+2016 11 4 57 65 53.7 49 55 54 38 1 0 0 0 0 0 0
+2016 11 30 52 52 47.6 47 52 49 44 0 0 0 0 0 0 1
+2016 8 4 73 75 77.3 73 79 78 66 0 0 0 0 1 0 0
+2016 9 20 69 71 69.4 67 73 69 81 0 0 0 0 0 1 0
+2016 2 19 57 53 50.2 50 52 51 42 1 0 0 0 0 0 0
+2016 9 4 70 67 73.7 72 77 75 64 0 0 0 1 0 0 0
+2016 10 4 65 61 64.1 62 69 65 60 0 0 0 0 0 1 0
+2016 5 21 63 66 65.7 62 67 65 49 0 0 1 0 0 0 0
+2016 1 9 45 48 46.4 46 50 45 47 0 0 1 0 0 0 0
+2016 8 3 77 73 77.3 77 81 77 93 0 0 0 0 0 0 1
+2016 10 7 66 63 62.9 62 67 64 78 1 0 0 0 0 0 0
+2016 10 17 62 60 59.1 57 63 59 62 0 1 0 0 0 0 0
+2016 6 18 71 67 70.2 67 75 69 77 0 0 1 0 0 0 0
+2016 12 26 41 42 45.2 45 48 46 58 0 1 0 0 0 0 0
+2016 11 20 55 57 49.8 47 54 48 30 0 0 0 1 0 0 0
+2016 2 22 53 51 50.6 46 51 50 59 0 1 0 0 0 0 0
+2016 6 26 69 71 71.9 67 74 72 70 0 0 0 1 0 0 0
+2016 7 11 71 74 75.3 74 79 75 71 0 1 0 0 0 0 0
+2016 6 21 70 76 70.8 68 75 71 57 0 0 0 0 0 1 0
+2016 3 2 54 58 51.6 47 54 52 37 0 0 0 0 0 0 1
+2016 6 12 67 65 69.1 65 73 70 83 0 0 0 1 0 0 0
+2016 5 13 81 77 64.3 63 67 66 67 1 0 0 0 0 0 0
+2016 4 12 59 58 57.7 54 59 57 61 0 0 0 0 0 1 0
+2016 10 14 66 60 60.2 56 64 60 78 1 0 0 0 0 0 0
+2016 4 15 59 59 58.3 58 61 60 40 1 0 0 0 0 0 0
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_train01.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_train01.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,196 @@\n+year\tmonth\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Thurs\tweek_Tues\tweek_Wed\n+2016\t4\t11\t66\t59\t57.6\t56\t60\t58\t40\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t7\t58\t61\t52.9\t51\t56\t51\t35\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t12\t75\t81\t64.1\t62\t67\t63\t81\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t31\t64\t68\t55.9\t55\t59\t56\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t28\t42\t47\t45.3\t41\t49\t44\t58\t0\t0\t0\t0\t0\t0\t1\n+2016\t5\t30\t64\t64\t67.1\t64\t70\t66\t69\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t17\t76\t72\t76.3\t76\t78\t77\t88\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t1\t66\t67\t65.3\t64\t70\t64\t54\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t7\t53\t49\t49.2\t46\t51\t48\t63\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t13\t81\t77\t64.3\t63\t67\t66\t67\t1\t0\t0\t0\t0\t0\t0\n+2016\t8\t28\t81\t79\t75.0\t71\t77\t76\t85\t0\t0\t0\t1\t0\t0\t0\n+2016\t2\t8\t49\t51\t49.3\t49\t52\t50\t34\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t20\t61\t58\t58.1\t58\t59\t58\t43\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t24\t64\t65\t60.1\t57\t61\t60\t41\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t31\t48\t57\t45.5\t42\t48\t47\t57\t0\t0\t1\t0\t0\t0\t0\n+2016\t10\t11\t57\t60\t61.4\t58\t66\t61\t58\t0\t0\t0\t0\t0\t1\t0\n+2016\t2\t11\t62\t56\t49.5\t46\t53\t50\t37\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t3\t46\t50\t47.0\t42\t52\t47\t58\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t9\t68\t74\t74.9\t70\t79\t76\t60\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t3\t75\t70\t73.9\t71\t75\t73\t68\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t25\t60\t59\t50.9\t49\t51\t49\t35\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t19\t77\t89\t59.0\t59\t63\t59\t61\t0\t0\t0\t0\t0\t1\t0\n+2016\t7\t12\t74\t74\t75.4\t74\t77\t77\t71\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t22\t76\t73\t71.0\t66\t71\t72\t78\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t9\t72\t73\t77.1\t77\t80\t79\t94\t0\t0\t0\t0\t0\t1\t0\n+2016\t9\t4\t70\t67\t73.7\t72\t77\t75\t64\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t10\t63\t67\t63.6\t61\t66\t64\t68\t0\t0\t0\t0\t0\t1\t0\n+2016\t8\t30\t79\t75\t74.6\t74\t76\t75\t63\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t14\t70\t66\t69.5\t66\t71\t69\t85\t0\t0\t0\t0\t0\t1\t0\n+2016\t2\t5\t49\t49\t49.1\t47\t50\t49\t45\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t14\t59\t55\t51.2\t49\t53\t53\t42\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t12\t59\t58\t57.7\t54\t59\t57\t61\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t8\t60\t53\t52.5\t48\t56\t51\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t28\t60\t61\t61.0\t56\t65\t62\t73\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t27\t85\t79\t77.3\t73\t78\t79\t79\t0\t0\t0\t0\t0\t0\t1\n+2016\t1\t1\t45\t45\t45.6\t43\t50\t44\t29\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t24\t71\t75\t77.1\t76\t78\t78\t75\t0\t0\t0\t1\t0\t0\t0\n+2016\t1\t21\t48\t52\t47.8\t43\t51\t46\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t5\t4\t87\t74\t62.3\t59\t65\t64\t61\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t21\t51\t53\t50.5\t49\t54\t52\t46\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t16\t59\t60\t58.5\t56\t60\t59\t59\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t12\t67\t65\t69.1\t65\t73\t70\t83\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t17\t39\t35\t45.2\t43\t47\t46\t38\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t16\t39\t39\t45.3\t44\t49\t44\t39\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t16\t60\t62\t59.5\t57\t60\t59\t40\t0\t0\t0\t1\t0\t0\t0\n+2016\t8\t8\t72\t72\t77.1\t76\t78\t77\t65\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t16\t58\t55\t49.9\t47\t54\t51\t55\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t18\t71\t67\t70.2\t67\t75\t69\t77\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t15\t55\t58\t49.9\t46\t52\t49\t53\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t22\t52\t52\t47.9\t47\t48\t48\t60\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t3\t57\t57\t53.9\t53\t54\t54\t35\t0\t0\t0\t0\t1\t0\t0\n+2016\t5\t20\t64\t63\t65.6\t63\t70\t64\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t2\t22\t53\t51\t50.6\t46\t51\t50\t59\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t27\t66\t65\t66.7\t64\t67\t68\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t18\t53\t58\t54.0\t51\t57\t54\t56\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t30\t68\t66\t65.7\t64\t67\t65\t74\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t15\t40\t39\t45.3\t45\t49\t47\t46\t0\t0\t0\t0\t1\t0\t0\n+2016\t6\t21\t70\t76\t70.8\t68\t75\t71\t57\t0\t0\t0\t0\t0\t1\t0\n+2016\t9\t21\t71\t67\t69.0\t65\t70\t70\t76\t0\t0\t0\t0\t0\t0\t1\n+2016\t1\t14\t49\t55\t47.0\t43\t47\t46\t58\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t20\t73\t78\t76.7\t75\t78\t77\t66\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t5\t75\t80\t77.3\t75\t81\t78\t71\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t22\t67\t68\t68.7\t65\t70\t69\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t2\t19\t57\t53\t50.2\t50\t52\t51\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t2\t79\t75\t67.6\t64\t71\t67\t77\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t11\t55\t56\t53.0\t53\t53\t51\t36\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t12\t56\t55\t53.1\t52\t58\t53\t65\t0\t0\t1\t0\t0\t0\t0\n+2016\t11\t29\t48\t52\t47.8\t43\t48\t47\t50\t0\t0\t0\t0\t0\t1\t0\n+2016\t9\t9\t67\t72\t72.6\t68\t77\t71\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t2\t10\t57\t62\t49.4\t48\t50\t49\t30\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t19\t68\t69\t69.7\t65\t74\t71\t88\t0\t1\t0\t0\t0\t0\t0\n+2016\t3\t25\t53\t54\t55.0\t53\t57\t57\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t24\t67\t64\t68.0\t65\t71\t66\t64\t0\t0\t1\t0\t0\t0\t0\n+2016\t10\t19\t60\t61\t58.4\t58\t60\t57\t41\t0\t0\t0\t0\t0\t0\t1\n+2016\t10\t13\t62\t66\t60.6\t60\t62\t60\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t10\t24\t62\t62\t56.8\t52\t61\t57\t70\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t22\t82\t81\t76.9\t72\t77\t76\t70\t1\t0\t0\t0\t0\t0\t0\n+2016\t8\t3\t77\t73\t77.3\t77\t81\t77\t93\t0\t0\t0\t0\t0\t0\t1\n+2016\t10\t31\t65\t117\t54.8\t51\t59\t56\t62\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t14\t77\t82\t64.5\t64\t66\t66\t65\t0\t'..b'8\t66\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t23\t56\t57\t54.7\t50\t58\t55\t70\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t7\t69\t76\t74.4\t73\t77\t74\t72\t0\t0\t0\t0\t1\t0\t0\n+2016\t2\t20\t53\t51\t50.4\t48\t55\t51\t43\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t26\t66\t66\t66.5\t64\t70\t65\t85\t0\t0\t0\t0\t1\t0\t0\n+2016\t11\t11\t65\t64\t51.9\t50\t53\t52\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t12\t44\t44\t45.6\t43\t50\t45\t42\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t9\t45\t48\t46.4\t46\t50\t45\t47\t0\t0\t1\t0\t0\t0\t0\n+2016\t11\t5\t65\t65\t53.4\t49\t58\t52\t41\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t9\t85\t67\t68.6\t66\t73\t69\t80\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t29\t57\t56\t48.5\t48\t52\t47\t49\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t11\t67\t75\t63.8\t62\t68\t63\t60\t0\t0\t0\t0\t0\t0\t1\n+2016\t5\t3\t77\t87\t62.1\t62\t66\t64\t69\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t27\t71\t78\t72.2\t70\t74\t72\t84\t0\t1\t0\t0\t0\t0\t0\n+2016\t8\t14\t87\t90\t76.7\t75\t78\t78\t65\t0\t0\t0\t1\t0\t0\t0\n+2016\t11\t30\t52\t52\t47.6\t47\t52\t49\t44\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t31\t88\t76\t77.4\t76\t78\t79\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t26\t61\t65\t56.2\t53\t57\t57\t41\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t13\t44\t43\t45.5\t41\t47\t46\t46\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t1\t68\t73\t56.0\t54\t59\t55\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t13\t63\t59\t51.4\t48\t56\t50\t64\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t8\t63\t64\t62.5\t60\t65\t61\t73\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t31\t64\t71\t67.3\t63\t72\t68\t85\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t27\t54\t56\t48.4\t45\t51\t49\t54\t0\t0\t0\t0\t0\t0\t1\n+2016\t4\t17\t60\t68\t58.6\t58\t62\t59\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t6\t30\t79\t74\t72.8\t71\t76\t72\t87\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t10\t76\t66\t57.4\t57\t60\t57\t60\t0\t0\t0\t1\t0\t0\t0\n+2016\t6\t23\t73\t75\t71.3\t68\t72\t71\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t3\t76\t76\t73.5\t69\t76\t75\t85\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t5\t74\t60\t62.5\t58\t66\t62\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t5\t29\t64\t64\t67.0\t65\t71\t65\t76\t0\t0\t0\t1\t0\t0\t0\n+2016\t7\t10\t74\t71\t75.1\t71\t77\t76\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t25\t65\t66\t66.4\t65\t67\t66\t60\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t20\t69\t71\t69.4\t67\t73\t69\t81\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t9\t64\t68\t62.1\t58\t65\t63\t55\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t27\t42\t42\t45.2\t41\t50\t47\t47\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t13\t58\t60\t57.9\t55\t62\t56\t77\t0\t0\t0\t0\t0\t0\t1\n+2016\t6\t16\t60\t67\t69.8\t68\t72\t71\t87\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t27\t76\t77\t66.8\t66\t67\t68\t64\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t7\t66\t63\t62.9\t62\t67\t64\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t6\t81\t92\t68.2\t65\t70\t67\t71\t0\t1\t0\t0\t0\t0\t0\n+2016\t9\t7\t68\t68\t73.0\t72\t78\t71\t70\t0\t0\t0\t0\t0\t0\t1\n+2016\t3\t6\t57\t64\t52.2\t52\t53\t51\t49\t0\t0\t0\t1\t0\t0\t0\n+2016\t9\t23\t68\t67\t68.3\t67\t69\t67\t61\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t8\t76\t68\t74.6\t72\t79\t75\t77\t1\t0\t0\t0\t0\t0\t0\n+2016\t1\t3\t45\t44\t45.8\t43\t46\t47\t56\t0\t0\t0\t1\t0\t0\t0\n+2016\t7\t18\t72\t80\t76.4\t75\t77\t75\t66\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t23\t51\t51\t50.7\t49\t53\t51\t43\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t4\t65\t61\t64.1\t62\t69\t65\t60\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t27\t65\t58\t55.9\t51\t60\t55\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t6\t3\t75\t71\t67.7\t64\t71\t66\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t30\t48\t48\t45.4\t44\t46\t44\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t22\t62\t59\t57.4\t56\t59\t58\t44\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t7\t44\t51\t46.2\t45\t49\t46\t38\t0\t0\t0\t0\t1\t0\t0\n+2016\t8\t13\t80\t87\t76.8\t73\t79\t78\t73\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t30\t85\t88\t77.3\t75\t79\t77\t70\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t1\t52\t52\t47.4\t44\t48\t49\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t9\t77\t76\t57.2\t53\t61\t57\t74\t0\t0\t1\t0\t0\t0\t0\n+2016\t11\t18\t50\t52\t50.3\t50\t53\t50\t35\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t8\t77\t82\t63.2\t62\t65\t63\t83\t0\t0\t0\t1\t0\t0\t0\n+2016\t1\t2\t44\t45\t45.7\t41\t50\t44\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t14\t43\t40\t45.4\t45\t48\t45\t49\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t6\t49\t53\t49.1\t47\t53\t49\t56\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t16\t79\t71\t70.7\t70\t74\t71\t52\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t15\t54\t49\t53.6\t49\t58\t52\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t12\t64\t63\t51.7\t50\t52\t52\t63\t0\t0\t1\t0\t0\t0\t0\n+2016\t3\t27\t57\t59\t55.3\t52\t58\t55\t39\t0\t0\t0\t1\t0\t0\t0\n+2016\t11\t20\t55\t57\t49.8\t47\t54\t48\t30\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t18\t60\t60\t58.8\t54\t60\t57\t53\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t3\t58\t55\t51.8\t49\t54\t50\t71\t0\t0\t0\t0\t1\t0\t0\n+2016\t6\t20\t65\t70\t70.6\t67\t71\t70\t79\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t16\t77\t76\t76.1\t76\t78\t75\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t11\t65\t67\t69.0\t69\t72\t71\t87\t0\t0\t1\t0\t0\t0\t0\n+2016\t4\t20\t89\t81\t59.2\t56\t63\t61\t66\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t6\t68\t68\t73.3\t73\t76\t75\t79\t0\t0\t0\t0\t0\t1\t0\n+2016\t12\t18\t35\t35\t45.2\t44\t46\t46\t36\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t4\t63\t69\t56.5\t54\t59\t56\t45\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t10\t68\t57\t61.8\t58\t64\t61\t62\t0\t1\t0\t0\t0\t0\t0\n+2016\t3\t29\t51\t56\t55.6\t53\t59\t54\t45\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t15\t55\t57\t51.0\t47\t54\t51\t46\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t12\t52\t45\t46.8\t44\t50\t45\t61\t0\t0\t0\t0\t0\t1\t0\n+2016\t8\t10\t73\t72\t77.0\t77\t78\t77\t68\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t11\t71\t74\t75.3\t74\t79\t75\t71\t0\t1\t0\t0\t0\t0\t0\n+2016\t9\t8\t68\t67\t72.8\t69\t77\t73\t56\t0\t0\t0\t0\t1\t0\t0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_train02.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_train02.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,800 @@\n+0.13074624395513548\t-0.469611133626014\t-0.5710665790468505\t0.03279113352421141\t2.003536501469461\t2.3320994929619165\t2.5655773908930333\t-1.8172726174227096\t0.31252740842018656\t0.4183877613375451\t2.3746178626049312\t-0.6930727012865296\t-0.013183556173275029\t1.1098774440423256\t1.4603607557778286\t0.5412632236853618\t0.6061667777690624\t0.4212995019384291\t0.14980350057199987\t-1.3870421561971842\n+0.1025284847407583\t-2.6554352025337806\t-0.71518541502396\t-1.1404916299860086\t1.1910205067228126\t2.113153625179661\t2.9349032443668133\t-1.2362775613386645\t-0.05861748263617049\t-0.12932403608468454\t2.217536166240706\t-1.19338504289619\t0.08517274490563755\t0.8749991601378865\t0.03823939811250166\t0.7007347847223218\t0.6221756436475849\t-1.9582697041316883\t0.1486878915218063\t-1.8828047461722932\n+-0.3579496672192898\t0.5691405803600221\t-0.3135941251222193\t0.6099240993754877\t-0.21623755767016947\t1.2273086492959706\t1.6963625000374265\t0.4917445652599018\t1.51820010664321\t-0.6179648499957521\t0.4424061323382702\t0.37607271963750777\t0.0955642147899332\t1.1428211235733463\t1.3792380662910433\t0.8392247210016273\t-1.3784520073608069\t0.6806565402268875\t-0.4079706906458002\t-1.8670081757072128\n+-0.4813193986666376\t-0.1886485401626124\t0.048734923506973636\t-0.20004930206569047\t-1.0585699644909594\t2.7625383995667336\t1.8863896126660609\t0.8214112065844242\t-0.4384103073465777\t-0.3211449191911812\t2.19052189921114\t-1.59109564541547\t1.3097995624508914\t1.5592201449464334\t-0.3552421947179116\t-0.4128075508328489\t0.5596595170526524\t-1.176294355286121\t0.16888633455190946\t-0.9214884435605952\n+-0.2572336609353247\t0.29438982269850145\t-0.06531975450102831\t1.5097968126742924\t-0.7755962651137243\t2.4354435421606127\t0.38216873050665007\t1.1239051747279731\t-0.2442436451866952\t0.12718619074952095\t0.9026611100653392\t-1.803720014048137\t1.2266258763633622\t0.22899043555447016\t-0.6493009189318991\t0.21750122466449906\t-0.4382663216525586\t-0.2972087114804226\t-1.5229655091814298\t-0.3225053056087868\n+1.4069915349949509\t0.3654232815183534\t-1.097052189453232\t-0.5389149543134537\t-1.5728963747716522\t1.6783401449848374\t0.9288455507296128\t-0.4925716601774063\t1.0392596016586455\t-0.2847157775591438\t0.5210189577500189\t-2.65782453257402\t-1.67318496169606\t0.4719725602155527\t-1.0949050649335628\t0.08630539086516381\t1.016831070562736\t-0.9944516912574556\t-0.6752082767957616\t-1.0649707211089758\n+-0.1186989836246748\t1.7836421698313514\t-0.7750775352454679\t-1.6293416755674714\t-0.6843986506548367\t1.6772721667636452\t5.61626113564464\t0.2921048965669931\t-0.03311146686259204\t-0.20216240643483607\t3.174632106697607\t1.3260918422916352\t-1.4169867073972098\t1.1177286442516994\t1.1442261013773558\t2.2927637054906245\t-1.1696635334539611\t0.9572219962948342\t-0.99260262548243\t-3.88516570201557\n+-1.6188277521439098\t-0.6049258835366146\t-2.1216868938554883\t0.6816156489035747\t-0.3909183237429715\t1.8546492624641897\t3.5484612828339506\t0.8719065415632481\t2.758577973437618\t1.6571275711005302\t2.2964938011707874\t-1.3015552984330785\t0.6517060330634804\t0.5957551049011494\t1.7890274248449136\t-0.7415803218575354\t-0.005766275627966389\t-0.15804411491961362\t0.13620848005420536\t-2.4231894996131182\n+-0.8844255979781576\t-1.067022557954717\t0.4268970268412451\t-0.4792374662006493\t0.8774697010725497\t2.031228226698857\t4.956071644421575\t0.3213541753652649\t-0.8329849287815198\t-2.9127670891791504\t3.303547980533676\t0.6551018446390298\t0.5601240239650124\t1.9378083839436648\t0.6510057852005603\t0.5434997376470951\t-0.16431466813504966\t-1.2255895916041704\t-0.6701271433847471\t-3.1283762290921477\n+-0.30746702969320694\t-0.8391679152764611\t-0.1179283406215597\t-0.426295494661604\t-1.691982298012858\t2.8901125627044437\t2.0602489643699675\t0.9458180233686614\t0.793907788630693\t-1.364580463112297\t2.4726804852199185\t0.8429876604473175\t0.2306659754164001\t2.228388534591572\t0.3261200509781369\t0.23298923486173995\t-1.5934373922813216\t0.3574092709432904\t-1.8018244078785832\t-0.8941426836775552\n+-0.03042402302151745\t0.5533032756826644\t-0.4112837804349074\t-0.8355476515317032\t-0.262'..b'250746598924\t0.18458094061494845\t0.2312626005625568\t0.5086324430299911\t-1.2655949713688883\n+2.4366892748151594\t-0.5693156806025699\t-1.7218141143792118\t-0.7636370379358908\t1.3812428414296332\t0.8734261792585589\t3.6993297964062575\t-0.2510229748899681\t-0.2572996499581653\t1.0939573204735948\t1.4250691293913331\t-0.6234909491978371\t0.8946129186610708\t0.11348850342063865\t-0.8171226347069339\t0.4036243685718015\t1.2492832667321032\t-0.16559924725384395\t0.05010698769682866\t-3.1064820228464267\n+-0.6496553421679686\t-1.4224279723935236\t2.3012734316107286\t-1.6307384651011865\t0.7899921830677415\t1.5784780783388637\t1.5937350935854364\t0.2033287108801172\t0.03485866731366751\t0.6478279768265606\t0.5072168351442272\t-1.6486585166575147\t-0.3823982996033502\t2.3256408720316006\t-0.9273509613624984\t0.6528468905997087\t0.8314107815153837\t1.2344031799078437\t-0.2712026087680339\t-1.7964285078767936\n+1.556971762459764\t-1.2439952121813922\t-0.42294148920420016\t1.2509123545030678\t-0.04525686050637002\t1.8102334072756012\t4.330921368106597\t0.4369341397955197\t1.7090276790490326\t-1.3105903617385728\t2.6507931144960315\t0.9560232948982376\t0.9264898048764156\t1.27342213352265\t-0.1775463778209161\t-0.5020139494158932\t1.0777715747655348\t-1.5004727301982392\t-0.8712982816000493\t-2.9628149579187566\n+0.9217291089973372\t-1.3885863242255478\t0.25423533911482016\t0.1168834752581415\t0.3075246148086876\t2.583752655948304\t1.868779214202141\t-1.5598686552244263\t-0.43742348357135097\t-2.0674552381167857\t2.1004247677315293\t0.592164188729302\t-0.4145039221243959\t0.8609838368049071\t-0.7423945821145248\t1.546996722395656\t0.4044604320792881\t-1.3908367691435546\t-0.19382679005878886\t-0.9316346070105346\n+-0.5219973387100996\t0.9905632425118324\t-1.2688367548190436\t-1.3062113291308677\t1.2638138110709067\t1.8660691408757044\t0.5445787221442651\t1.4116584346018954\t-0.5641770654580077\t-0.3012039021140541\t0.2268327388683611\t-0.8279588610356573\t-0.6522929057307618\t-0.20603677850657687\t-0.135516011514525\t1.0275029807709108\t-0.19718057119851085\t-0.9413847947787156\t0.19608217733319547\t-0.9608113047816084\n+0.4424052465929388\t0.943928936525626\t1.738397490506961\t-0.12161122641383293\t0.15475728725187682\t1.8624246245418483\t3.2762488723359144\t-0.4270106111994435\t0.1528975135659882\t0.4771953229726215\t2.3155774125395427\t1.3689173890211586\t0.7770702960925243\t-1.4296307560984765\t0.7923063752623205\t0.2514409708101872\t1.1840866916876511\t0.8951950393049203\t-0.5737280626680346\t-2.1013927221698583\n+0.7693680917931209\t0.042252199267129815\t0.920578733178434\t1.2609933412881686\t-0.9009957896033098\t3.4649606386186127\t-0.09641604038965236\t-1.4408423082558597\t-1.3370985919131873\t-2.909342960508076\t1.3996034179270973\t1.1071348345938952\t0.6373319894768134\t-0.20576308333152926\t0.5627232979887723\t1.2446890017440848\t0.14542476550535846\t-0.27293462018189524\t-0.08718378360133876\t0.3686229650559225\n+0.7427620511228765\t-1.5580462215214408\t1.4680352994852566\t-0.7508175656670606\t0.6363631862918148\t3.1644775950816646\t1.8594024439897647\t-0.4499136700983101\t0.6875433245937749\t0.4124013786469116\t2.179503463347244\t0.8484523669327337\t-0.546863836293962\t0.17441446341147884\t0.24045384074599194\t-1.228725137426046\t0.7554095521777582\t-0.030134646614598738\t-0.4835932968055189\t-1.021435051734048\n+2.0468935191072437\t-0.7226970302245961\t-0.4839561868483981\t-2.222915078471478\t0.3459880131172701\t1.1324497189504088\t1.4912587172048224\t0.3411839598264167\t0.6715382471375413\t-0.3651029407087692\t0.03233087935168455\t-0.5081627405589572\t0.002075317851864144\t-0.07944497974608919\t-0.13805622601618786\t0.4878193412223996\t-0.3974492638991908\t0.3347669895977678\t0.9512754223441522\t-1.987373538202905\n+-1.785494148707842\t1.3285224891343512\t-0.5279590208716799\t2.675167568819385\t1.5490279490427394\t1.9850254692433156\t-0.4538705494124088\t0.2596309736678987\t0.1769080847916054\t0.2504311940060068\t-0.03754622317067513\t-2.2382627787119773\t0.3799303209778132\t1.027127616405047\t-0.8246136050829563\t0.4127647478763152\t-0.34515534022029715\t0.8158793586435744\t-0.06121611794895705\t-0.11706301505657656\n'
b
diff -r 000000000000 -r eaddff553324 test-data/train_test_split_train03.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/train_test_split_train03.tabular Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,209 @@\n+year\tmonth\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Thurs\tweek_Tues\tweek_Wed\n+2016\t4\t14\t60\t59\t58.1\t57\t63\t58\t66\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t30\t85\t88\t77.3\t75\t79\t77\t70\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t15\t82\t65\t64.7\t63\t69\t64\t58\t0\t0\t0\t1\t0\t0\t0\n+2016\t1\t18\t54\t50\t47.5\t44\t48\t49\t58\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t25\t49\t52\t48.6\t45\t52\t47\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t20\t73\t78\t76.7\t75\t78\t77\t66\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t8\t42\t40\t46.1\t45\t51\t47\t36\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t28\t42\t47\t45.3\t41\t49\t44\t58\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t7\t69\t76\t74.4\t73\t77\t74\t72\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t15\t40\t39\t45.3\t45\t49\t47\t46\t0\t0\t0\t0\t1\t0\t0\n+2016\t5\t31\t64\t71\t67.3\t63\t72\t68\t85\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t20\t54\t48\t47.7\t44\t52\t49\t61\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t10\t73\t72\t77.0\t77\t78\t77\t68\t0\t0\t0\t0\t0\t0\t1\n+2016\t3\t23\t56\t57\t54.7\t50\t58\t55\t70\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t24\t45\t40\t45.1\t44\t47\t46\t39\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t19\t50\t54\t47.6\t47\t49\t48\t53\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t6\t65\t58\t53.2\t52\t57\t55\t71\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t29\t60\t65\t55.3\t55\t59\t55\t65\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t1\t48\t47\t48.8\t46\t49\t49\t51\t0\t1\t0\t0\t0\t0\t0\n+2016\t12\t12\t44\t44\t45.6\t43\t50\t45\t42\t0\t1\t0\t0\t0\t0\t0\n+2016\t5\t30\t64\t64\t67.1\t64\t70\t66\t69\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t23\t59\t62\t57.1\t57\t58\t59\t67\t0\t0\t0\t1\t0\t0\t0\n+2016\t9\t30\t68\t66\t65.7\t64\t67\t65\t74\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t12\t77\t70\t71.8\t67\t73\t73\t90\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t17\t55\t50\t50.5\t46\t51\t50\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t3\t58\t55\t51.8\t49\t54\t50\t71\t0\t0\t0\t0\t1\t0\t0\n+2016\t11\t21\t57\t55\t49.5\t46\t51\t49\t67\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t24\t64\t65\t60.1\t57\t61\t60\t41\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t20\t64\t63\t65.6\t63\t70\t64\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t1\t7\t44\t51\t46.2\t45\t49\t46\t38\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t24\t67\t64\t68.0\t65\t71\t66\t64\t0\t0\t1\t0\t0\t0\t0\n+2016\t8\t30\t79\t75\t74.6\t74\t76\t75\t63\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t11\t50\t52\t46.7\t42\t48\t48\t39\t0\t1\t0\t0\t0\t0\t0\n+2016\t6\t9\t85\t67\t68.6\t66\t73\t69\t80\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t22\t67\t68\t68.7\t65\t70\t69\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t3\t25\t53\t54\t55.0\t53\t57\t57\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t24\t62\t62\t56.8\t52\t61\t57\t70\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t16\t77\t76\t76.1\t76\t78\t75\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t1\t74\t73\t73.1\t71\t75\t72\t93\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t18\t50\t52\t50.3\t50\t53\t50\t35\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t3\t75\t70\t73.9\t71\t75\t73\t68\t0\t0\t1\t0\t0\t0\t0\n+2016\t8\t2\t73\t77\t77.4\t75\t80\t79\t62\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t5\t69\t60\t56.6\t52\t58\t56\t72\t0\t0\t0\t0\t0\t1\t0\n+2016\t3\t13\t55\t52\t53.3\t50\t55\t53\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t9\t77\t76\t57.2\t53\t61\t57\t74\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t26\t66\t66\t66.5\t64\t70\t65\t85\t0\t0\t0\t0\t1\t0\t0\n+2016\t10\t10\t68\t57\t61.8\t58\t64\t61\t62\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t10\t76\t66\t57.4\t57\t60\t57\t60\t0\t0\t0\t1\t0\t0\t0\n+2016\t3\t12\t56\t55\t53.1\t52\t58\t53\t65\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t24\t57\t48\t48.1\t46\t50\t48\t54\t0\t0\t0\t1\t0\t0\t0\n+2016\t2\t7\t53\t49\t49.2\t46\t51\t48\t63\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t27\t66\t65\t66.7\t64\t67\t68\t73\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t11\t55\t56\t53.0\t53\t53\t51\t36\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t22\t62\t59\t57.4\t56\t59\t58\t44\t0\t0\t1\t0\t0\t0\t0\n+2016\t5\t8\t77\t82\t63.2\t62\t65\t63\t83\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t29\t64\t64\t67.0\t65\t71\t65\t76\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t13\t44\t43\t45.5\t41\t47\t46\t46\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t8\t61\t63\t52.7\t49\t57\t52\t49\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t20\t65\t70\t70.6\t67\t71\t70\t79\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t9\t63\t71\t52.4\t48\t56\t52\t42\t0\t0\t0\t0\t0\t0\t1\n+2016\t7\t3\t76\t76\t73.5\t69\t76\t75\t85\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t16\t39\t39\t45.3\t44\t49\t44\t39\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t16\t79\t71\t70.7\t70\t74\t71\t52\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t25\t68\t69\t71.7\t68\t73\t73\t89\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t13\t70\t74\t71.5\t71\t75\t70\t82\t0\t0\t0\t0\t0\t1\t0\n+2016\t5\t12\t75\t81\t64.1\t62\t67\t63\t81\t0\t0\t0\t0\t1\t0\t0\n+2016\t2\t8\t49\t51\t49.3\t49\t52\t50\t34\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t4\t76\t71\t73.8\t71\t76\t73\t86\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t25\t65\t55\t60.3\t56\t64\t61\t77\t0\t1\t0\t0\t0\t0\t0\n+2016\t8\t12\t76\t80\t76.9\t72\t79\t77\t81\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t21\t71\t67\t69.0\t65\t70\t70\t76\t0\t0\t0\t0\t0\t0\t1\n+2016\t4\t30\t64\t61\t61.4\t60\t65\t62\t78\t0\t0\t1\t0\t0\t0\t0\n+2016\t12\t5\t49\t46\t46.6\t43\t50\t45\t65\t0\t1\t0\t0\t0\t0\t0\n+2016\t12\t19\t35\t39\t45.1\t42\t46\t45\t51\t0\t1\t0\t0\t0\t0\t0\n+2016\t11\t29\t48\t52\t47.8\t43\t48\t47\t50\t0\t0\t0\t0\t0\t1\t0\n+2016\t9\t14\t74\t75\t71.2\t67\t75\t73\t77\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t6\t68\t68\t73.3\t73\t76\t75\t79\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t6\t81\t92\t68.2\t65\t70\t67\t71\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t3\t45\t44\t45.8\t43\t46\t47\t56\t0\t0\t0\t1\t0\t0\t0\n+2016\t4\t28\t60\t61\t61.0\t56\t65\t62\t73\t0\t0'..b'\t52\t63\t0\t0\t1\t0\t0\t0\t0\n+2016\t4\t13\t58\t60\t57.9\t55\t62\t56\t77\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t23\t84\t81\t75.7\t73\t78\t77\t89\t0\t0\t0\t0\t0\t1\t0\n+2016\t7\t14\t77\t75\t75.8\t74\t76\t77\t77\t0\t0\t0\t0\t1\t0\t0\n+2016\t11\t13\t63\t59\t51.4\t48\t56\t50\t64\t0\t0\t0\t1\t0\t0\t0\n+2016\t8\t9\t72\t73\t77.1\t77\t80\t79\t94\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t16\t59\t60\t58.5\t56\t60\t59\t59\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t23\t73\t75\t71.3\t68\t72\t71\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t11\t66\t59\t57.6\t56\t60\t58\t40\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t6\t49\t53\t49.1\t47\t53\t49\t56\t0\t0\t1\t0\t0\t0\t0\n+2016\t8\t6\t80\t79\t77.2\t76\t81\t79\t60\t0\t0\t1\t0\t0\t0\t0\n+2016\t3\t5\t59\t57\t52.1\t49\t53\t51\t46\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t2\t79\t75\t67.6\t64\t71\t67\t77\t0\t0\t0\t0\t1\t0\t0\n+2016\t2\t2\t47\t46\t48.8\t48\t50\t50\t56\t0\t0\t0\t0\t0\t1\t0\n+2016\t7\t22\t82\t81\t76.9\t72\t77\t76\t70\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t24\t54\t49\t48.9\t47\t53\t48\t29\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t28\t56\t57\t48.4\t44\t52\t48\t34\t0\t0\t0\t0\t1\t0\t0\n+2016\t10\t18\t60\t60\t58.8\t54\t60\t57\t53\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t14\t70\t66\t69.5\t66\t71\t69\t85\t0\t0\t0\t0\t0\t1\t0\n+2016\t11\t11\t65\t64\t51.9\t50\t53\t52\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t6\t57\t64\t52.2\t52\t53\t51\t49\t0\t0\t0\t1\t0\t0\t0\n+2016\t5\t18\t60\t71\t65.2\t61\t68\t65\t56\t0\t0\t0\t0\t0\t0\t1\n+2016\t5\t11\t67\t75\t63.8\t62\t68\t63\t60\t0\t0\t0\t0\t0\t0\t1\n+2016\t3\t8\t60\t53\t52.5\t48\t56\t51\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t1\t15\t55\t49\t47.1\t46\t51\t46\t65\t1\t0\t0\t0\t0\t0\t0\n+2016\t6\t8\t86\t85\t68.5\t67\t70\t69\t81\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t10\t57\t62\t49.4\t48\t50\t49\t30\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t3\t46\t50\t47.0\t42\t52\t47\t58\t0\t0\t1\t0\t0\t0\t0\n+2016\t10\t27\t65\t58\t55.9\t51\t60\t55\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t8\t7\t79\t72\t77.2\t74\t78\t77\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t11\t16\t57\t55\t50.7\t50\t51\t49\t34\t0\t0\t0\t0\t0\t0\t1\n+2016\t9\t10\t72\t74\t72.3\t70\t77\t74\t91\t0\t0\t1\t0\t0\t0\t0\n+2016\t7\t29\t83\t85\t77.3\t77\t80\t79\t77\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t1\t52\t52\t47.4\t44\t48\t49\t39\t0\t0\t0\t0\t1\t0\t0\n+2016\t9\t25\t64\t67\t67.6\t64\t72\t67\t62\t0\t0\t0\t1\t0\t0\t0\n+2016\t12\t23\t49\t45\t45.1\t45\t49\t44\t35\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t2\t52\t46\t47.2\t46\t51\t49\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t10\t13\t62\t66\t60.6\t60\t62\t60\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t23\t81\t71\t77.0\t75\t81\t76\t86\t0\t0\t1\t0\t0\t0\t0\n+2016\t6\t13\t65\t70\t69.3\t66\t72\t69\t79\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t15\t55\t58\t49.9\t46\t52\t49\t53\t0\t1\t0\t0\t0\t0\t0\n+2016\t8\t8\t72\t72\t77.1\t76\t78\t77\t65\t0\t1\t0\t0\t0\t0\t0\n+2016\t7\t12\t74\t74\t75.4\t74\t77\t77\t71\t0\t0\t0\t0\t0\t1\t0\n+2016\t10\t3\t63\t65\t64.5\t63\t68\t65\t49\t0\t1\t0\t0\t0\t0\t0\n+2016\t4\t18\t68\t77\t58.8\t55\t59\t57\t39\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t25\t60\t59\t50.9\t49\t51\t49\t35\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t2\t44\t45\t45.7\t41\t50\t44\t61\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t21\t51\t53\t50.5\t49\t54\t52\t46\t0\t0\t0\t1\t0\t0\t0\n+2016\t3\t24\t57\t53\t54.9\t54\t56\t56\t72\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t27\t85\t79\t77.3\t73\t78\t79\t79\t0\t0\t0\t0\t0\t0\t1\n+2016\t2\t4\t51\t49\t49.0\t44\t54\t51\t44\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t4\t63\t69\t56.5\t54\t59\t56\t45\t0\t1\t0\t0\t0\t0\t0\n+2016\t2\t24\t51\t60\t50.8\t47\t53\t50\t46\t0\t0\t0\t0\t0\t0\t1\n+2016\t10\t8\t63\t64\t62.5\t60\t65\t61\t73\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t15\t75\t79\t71.0\t66\t76\t69\t64\t0\t0\t0\t0\t1\t0\t0\n+2016\t1\t14\t49\t55\t47.0\t43\t47\t46\t58\t0\t0\t0\t0\t1\t0\t0\n+2016\t4\t1\t68\t73\t56.0\t54\t59\t55\t41\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t17\t57\t60\t65.0\t62\t65\t65\t55\t0\t0\t0\t0\t0\t1\t0\n+2016\t12\t18\t35\t35\t45.2\t44\t46\t46\t36\t0\t0\t0\t1\t0\t0\t0\n+2016\t9\t17\t71\t75\t70.3\t66\t73\t70\t84\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t26\t59\t61\t51.1\t48\t56\t53\t65\t1\t0\t0\t0\t0\t0\t0\n+2016\t12\t30\t48\t48\t45.4\t44\t46\t44\t42\t1\t0\t0\t0\t0\t0\t0\n+2016\t7\t9\t68\t74\t74.9\t70\t79\t76\t60\t0\t0\t1\t0\t0\t0\t0\n+2016\t2\t20\t53\t51\t50.4\t48\t55\t51\t43\t0\t0\t1\t0\t0\t0\t0\n+2016\t9\t9\t67\t72\t72.6\t68\t77\t71\t78\t1\t0\t0\t0\t0\t0\t0\n+2016\t9\t26\t67\t76\t67.2\t64\t69\t69\t74\t0\t1\t0\t0\t0\t0\t0\n+2016\t1\t22\t52\t52\t47.9\t47\t48\t48\t60\t1\t0\t0\t0\t0\t0\t0\n+2016\t11\t27\t52\t53\t48.2\t48\t49\t49\t53\t0\t0\t0\t1\t0\t0\t0\n+2016\t10\t20\t61\t58\t58.1\t58\t59\t58\t43\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t13\t74\t77\t75.6\t74\t78\t76\t56\t0\t0\t0\t0\t0\t0\t1\n+2016\t11\t7\t58\t61\t52.9\t51\t56\t51\t35\t0\t1\t0\t0\t0\t0\t0\n+2016\t10\t1\t66\t67\t65.3\t64\t70\t64\t54\t0\t0\t1\t0\t0\t0\t0\n+2016\t11\t22\t55\t54\t49.3\t46\t54\t49\t58\t0\t0\t0\t0\t0\t1\t0\n+2016\t6\t1\t71\t79\t67.4\t65\t69\t66\t58\t0\t0\t0\t0\t0\t0\t1\n+2016\t6\t3\t75\t71\t67.7\t64\t71\t66\t55\t1\t0\t0\t0\t0\t0\t0\n+2016\t3\t31\t64\t68\t55.9\t55\t59\t56\t56\t0\t0\t0\t0\t1\t0\t0\n+2016\t12\t14\t43\t40\t45.4\t45\t48\t45\t49\t0\t0\t0\t0\t0\t0\t1\n+2016\t8\t5\t75\t80\t77.3\t75\t81\t78\t71\t1\t0\t0\t0\t0\t0\t0\n+2016\t5\t4\t87\t74\t62.3\t59\t65\t64\t61\t0\t0\t0\t0\t0\t0\t1\n+2016\t12\t31\t48\t57\t45.5\t42\t48\t47\t57\t0\t0\t1\t0\t0\t0\t0\n+2016\t1\t21\t48\t52\t47.8\t43\t51\t46\t57\t0\t0\t0\t0\t1\t0\t0\n+2016\t7\t10\t74\t71\t75.1\t71\t77\t76\t95\t0\t0\t0\t1\t0\t0\t0\n+2016\t3\t15\t54\t49\t53.6\t49\t58\t52\t70\t0\t0\t0\t0\t0\t1\t0\n+2016\t4\t19\t77\t89\t59.0\t59\t63\t59\t61\t0\t0\t0\t0\t0\t1\t0\n'
b
diff -r 000000000000 -r eaddff553324 test-data/vectorizer_result01.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/vectorizer_result01.mtx Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,3788 @@\n+%%MatrixMarket matrix coordinate real general\n+%\n+2 1048577 3785\n+1 1450 0.01431896616372403\n+1 1565 0.01370375121911989\n+1 1889 0.02282816271614068\n+1 1961 0.01205944593190492\n+1 2759 0.01929331884718118\n+1 2860 0.01370375121911989\n+1 4053 0.01894755120823075\n+1 4119 0.01370375121911989\n+1 4727 0.01205944593190492\n+1 6201 0.02791992442867134\n+1 6714 0.02282816271614068\n+1 7170 0.0127117721548238\n+1 8116 0.02282816271614068\n+1 9508 0.01370375121911989\n+1 9758 0.01431896616372403\n+1 9870 0.01431896616372403\n+1 10078 0.05787995654154355\n+1 10492 0.02791992442867134\n+1 10495 0.02852128038707927\n+1 12091 0.05210576582263455\n+1 13013 0.01431896616372403\n+1 13234 0.009507093462359758\n+1 13829 0.0127117721548238\n+1 14120 0.01861328295244756\n+1 14517 0.02282816271614068\n+1 15083 0.01431896616372403\n+1 16177 0.01205944593190492\n+1 16761 0.02282816271614068\n+1 17410 0.01370375121911989\n+1 17436 0.01431896616372403\n+1 18255 0.02282816271614068\n+1 18283 0.01205944593190492\n+1 19133 0.02863793232744806\n+1 19449 0.02282816271614068\n+1 19510 0.01431896616372403\n+1 20975 0.07579020483292298\n+1 21531 0.01370375121911989\n+1 22178 0.004736887802057686\n+1 22283 0.01663440851737127\n+1 22706 0.02740750243823978\n+1 22715 0.01370375121911989\n+1 23698 0.01205944593190492\n+1 24190 0.01861328295244756\n+1 24309 0.02282816271614068\n+1 24541 0.01370375121911989\n+1 25019 0.01205944593190492\n+1 25500 0.01861328295244756\n+1 26513 0.0127117721548238\n+1 26569 0.01929331884718118\n+1 27192 0.01431896616372403\n+1 27389 0.02791992442867134\n+1 27912 0.0127117721548238\n+1 28011 0.02282816271614068\n+1 29313 0.02495161277605691\n+1 29735 0.03858663769436237\n+1 30453 0.03326881703474255\n+1 31110 0.02863793232744806\n+1 31588 0.02740750243823978\n+1 31963 0.01370375121911989\n+1 31975 0.01929331884718118\n+1 32413 0.01370375121911989\n+1 33140 0.02791992442867134\n+1 33433 0.01929331884718118\n+1 33979 0.02495161277605691\n+1 34275 0.01431896616372403\n+1 35828 0.0127117721548238\n+1 35928 0.01663440851737127\n+1 36463 0.01929331884718118\n+1 37218 0.01431896616372403\n+1 37731 0.01929331884718118\n+1 38358 0.01370375121911989\n+1 39516 0.02147844924558604\n+1 39526 0.01370375121911989\n+1 39653 0.02282816271614068\n+1 39705 0.01205944593190492\n+1 39762 0.02542354430964759\n+1 40007 0.006403636341921261\n+1 40920 0.004736887802057686\n+1 40975 0.0127117721548238\n+1 41381 0.01370375121911989\n+1 41399 0.01861328295244756\n+1 41645 0.01929331884718118\n+1 41800 0.02191386749905983\n+1 42763 0.01370375121911989\n+1 42946 0.01370375121911989\n+1 43077 0.02282816271614068\n+1 43474 0.01431896616372403\n+1 43781 0.01901418692471952\n+1 43937 0.02282816271614068\n+1 44721 0.02282816271614068\n+1 45315 0.01431896616372403\n+1 45359 0.02282816271614068\n+1 45447 0.02495161277605691\n+1 45548 0.01929331884718118\n+1 46264 0.01205944593190492\n+1 46627 0.006403636341921261\n+1 47125 0.01861328295244756\n+1 48545 0.0127117721548238\n+1 49094 0.01861328295244756\n+1 49619 0.01370375121911989\n+1 50271 0.01431896616372403\n+1 50742 0.04026354631749034\n+1 51430 0.01370375121911989\n+1 52454 0.03177943038705949\n+1 52548 0.02282816271614068\n+1 52666 0.01370375121911989\n+1 52833 0.003201818170960631\n+1 54362 0.01431896616372403\n+1 54371 0.01861328295244756\n+1 56154 0.02411889186380985\n+1 57027 0.01431896616372403\n+1 57543 0.02282816271614068\n+1 57633 0.02542354430964759\n+1 58575 0.02863793232744806\n+1 58806 0.02282816271614068\n+1 58964 0.009473775604115373\n+1 59388 0.02282816271614068\n+1 59411 0.01370375121911989\n+1 59679 0.0127117721548238\n+1 60697 0.01205944593190492\n+1 61808 0.01861328295244756\n+1 63572 0.02740750243823978\n+1 64006 0.01426064019353964\n+1 64561 0.01205944593190492\n+1 65197 0.01861328295244756\n+1 65817 0.05720297469670708\n+1 66479 0.02740750243823978\n+1 66876 0.01861328295244756\n+1 67128 0.03425937804779972\n+1 68440 0.004736887802057686\n+1 68573 0.004753546731179879\n+1 70299 0.01370375121911989\n+1 70576 0.02791992442867134\n+1 71207 0.01929331884718118\n+1 71899 0.01861328295244756\n+1 72251 0.013'..b'674637\n+2 973333 0.01450010501959994\n+2 974699 0.0224596916827213\n+2 974851 0.01367466109027461\n+2 975218 0.01288938340939221\n+2 975811 0.0224596916827213\n+2 977200 0.0276941383527154\n+2 978046 0.01846275890181026\n+2 978257 0.05469864436109843\n+2 978285 0.02084171182520092\n+2 978287 0.02900021003919988\n+2 978511 0.0224596916827213\n+2 978773 0.02720735217809617\n+2 979446 0.02084171182520092\n+2 979478 0.0224596916827213\n+2 979904 0.01933407511408831\n+2 980261 0.01846275890181026\n+2 980319 0.01360367608904809\n+2 981883 0.01450010501959994\n+2 981921 0.0224596916827213\n+2 982012 0.01360367608904809\n+2 983673 0.01288938340939221\n+2 983781 0.01450010501959994\n+2 984700 0.01846275890181026\n+2 985549 0.02734932218054922\n+2 986324 0.0224596916827213\n+2 986791 0.0224596916827213\n+2 989163 0.02577876681878442\n+2 989433 0.02734932218054922\n+2 990804 0.01288938340939221\n+2 991032 0.01360367608904809\n+2 991475 0.02900021003919988\n+2 992490 0.01450010501959994\n+2 993053 0.03400919022262022\n+2 993292 0.01360367608904809\n+2 993510 0.0224596916827213\n+2 994106 0.02720735217809617\n+2 994950 0.01288938340939221\n+2 995085 0.02175015752939991\n+2 995605 0.01367466109027461\n+2 995653 0.02084171182520092\n+2 996536 0.01288938340939221\n+2 998175 0.01450010501959994\n+2 1000016 0.03222345852348052\n+2 1000099 0.01360367608904809\n+2 1000335 0.01450010501959994\n+2 1001147 0.0224596916827213\n+2 1002097 0.01288938340939221\n+2 1002929 0.0224596916827213\n+2 1003113 0.0224596916827213\n+2 1003223 0.04197132442339169\n+2 1003232 0.03400919022262022\n+2 1003403 0.02084171182520092\n+2 1006311 0.01367466109027461\n+2 1006560 0.01360367608904809\n+2 1007775 0.01450010501959994\n+2 1007893 0.01846275890181026\n+2 1007912 0.01288938340939221\n+2 1008831 0.01288938340939221\n+2 1008899 0.01360367608904809\n+2 1010438 0.01360367608904809\n+2 1010769 0.0224596916827213\n+2 1011301 0.01360367608904809\n+2 1012185 0.0224596916827213\n+2 1013049 0.02084171182520092\n+2 1014052 0.0276941383527154\n+2 1014788 0.02084171182520092\n+2 1014853 0.01450010501959994\n+2 1015155 0.01360367608904809\n+2 1016179 0.01846275890181026\n+2 1016289 0.01846275890181026\n+2 1016640 0.01846275890181026\n+2 1018557 0.01360367608904809\n+2 1018883 0.0224596916827213\n+2 1019025 0.01755361681674637\n+2 1019588 0.0224596916827213\n+2 1019929 0.01288938340939221\n+2 1020006 0.0224596916827213\n+2 1020311 0.0224596916827213\n+2 1020509 0.01755361681674637\n+2 1020555 0.01360367608904809\n+2 1020677 0.01846275890181026\n+2 1020740 0.0574370336070631\n+2 1021884 0.01288938340939221\n+2 1023224 0.01288938340939221\n+2 1024035 0.01846275890181026\n+2 1026711 0.01367466109027461\n+2 1026775 0.01360367608904809\n+2 1027300 0.01450010501959994\n+2 1027631 0.0224596916827213\n+2 1027749 0.02040551413357213\n+2 1027973 0.01360367608904809\n+2 1028155 0.02084171182520092\n+2 1028295 0.01360367608904809\n+2 1028315 0.02084171182520092\n+2 1030226 0.01367466109027461\n+2 1031121 0.01360367608904809\n+2 1032367 0.02900021003919988\n+2 1032791 0.02084171182520092\n+2 1033256 0.01360367608904809\n+2 1033699 0.02084171182520092\n+2 1033833 0.01288938340939221\n+2 1034350 0.02720735217809617\n+2 1035161 0.01367466109027461\n+2 1035177 0.01755361681674637\n+2 1037044 0.02577876681878442\n+2 1037251 0.02084171182520092\n+2 1037326 0.0276941383527154\n+2 1037360 0.02652924105156806\n+2 1037916 0.02900021003919988\n+2 1038132 0.02084171182520092\n+2 1038587 0.01360367608904809\n+2 1039251 0.01846275890181026\n+2 1039896 0.01846275890181026\n+2 1040201 0.004994524661483748\n+2 1040273 0.02175015752939991\n+2 1040325 0.0224596916827213\n+2 1040479 0.02051199163541191\n+2 1040601 0.0224596916827213\n+2 1040913 0.02175015752939991\n+2 1042343 0.0224596916827213\n+2 1042815 0.01450010501959994\n+2 1043231 0.01367466109027461\n+2 1043931 0.0224596916827213\n+2 1044011 0.0224596916827213\n+2 1045048 0.02577876681878442\n+2 1046133 0.01846275890181026\n+2 1046509 0.02084171182520092\n+2 1046561 0.02720735217809617\n+2 1046915 0.01360367608904809\n+2 1047335 0.01360367608904809\n+2 1048455 0.0224596916827213\n'
b
diff -r 000000000000 -r eaddff553324 test-data/vectorizer_result02.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/vectorizer_result02.mtx Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,7346 @@\n+%%MatrixMarket matrix coordinate real general\n+%\n+4 1048577 7343\n+1 1450 0.0152274037172392\n+1 1961 0.01275776096436371\n+1 4053 0.01582710983069052\n+1 4357 0.01446327540314412\n+1 4379 0.02292554618019654\n+1 4727 0.01275776096436371\n+1 6201 0.02859906492378073\n+1 7170 0.01341424712825137\n+1 8116 0.02292554618019654\n+1 10078 0.05679044019028674\n+1 10495 0.03256516109420249\n+1 12091 0.05275703276896841\n+1 12155 0.01906604328252049\n+1 13013 0.01517172746603997\n+1 13181 0.0152274037172392\n+1 13234 0.0108550536980675\n+1 13280 0.0152274037172392\n+1 14120 0.01906604328252049\n+1 14527 0.0152274037172392\n+1 15083 0.0152274037172392\n+1 15241 0.01446327540314412\n+1 15283 0.01895709357182213\n+1 16177 0.01275776096436371\n+1 17436 0.0152274037172392\n+1 19449 0.02255274822664651\n+1 20975 0.05803273604586524\n+1 21531 0.0144155416907593\n+1 22178 0.00527570327689684\n+1 22283 0.01674245171469339\n+1 22706 0.02892655080628824\n+1 22715 0.0144155416907593\n+1 23698 0.01275776096436371\n+1 24309 0.02255274822664651\n+1 24541 0.0144155416907593\n+1 25019 0.01275776096436371\n+1 26513 0.01341424712825137\n+1 26569 0.01893014673009558\n+1 27172 0.01446327540314412\n+1 27389 0.02859906492378073\n+1 29313 0.02511367757204008\n+1 29735 0.03786029346019116\n+1 30445 0.0152274037172392\n+1 30453 0.05022735514408017\n+1 30833 0.01341424712825137\n+1 31588 0.0288310833815186\n+1 31963 0.0144155416907593\n+1 33113 0.01517172746603997\n+1 33433 0.01893014673009558\n+1 33979 0.02511367757204008\n+1 34869 0.01895709357182213\n+1 35828 0.01341424712825137\n+1 35928 0.01674245171469339\n+1 36463 0.01893014673009558\n+1 37731 0.01893014673009558\n+1 37859 0.01275776096436371\n+1 38203 0.0144155416907593\n+1 39526 0.01446327540314412\n+1 39705 0.01275776096436371\n+1 39762 0.02682849425650273\n+1 40007 0.01412754739202977\n+1 40920 0.00527570327689684\n+1 40975 0.01341424712825137\n+1 41385 0.01906604328252049\n+1 41559 0.0288310833815186\n+1 41645 0.01893014673009558\n+1 41800 0.03886244041341189\n+1 43077 0.02255274822664651\n+1 43474 0.0152274037172392\n+1 43781 0.01628258054710124\n+1 43937 0.02292554618019654\n+1 44401 0.01895709357182213\n+1 45359 0.02255274822664651\n+1 45447 0.02511367757204008\n+1 45548 0.01893014673009558\n+1 46264 0.01275776096436371\n+1 46627 0.007063773696014885\n+1 48545 0.01341424712825137\n+1 50045 0.02255274822664651\n+1 50271 0.01517172746603997\n+1 50742 0.05803273604586524\n+1 50871 0.01517172746603997\n+1 51188 0.01446327540314412\n+1 52548 0.02255274822664651\n+1 52666 0.01446327540314412\n+1 52833 0.003531886848007443\n+1 53247 0.01913664144654556\n+1 54371 0.01895709357182213\n+1 55601 0.0144155416907593\n+1 56154 0.02551552192872741\n+1 57027 0.01517172746603997\n+1 57543 0.02292554618019654\n+1 57633 0.02682849425650273\n+1 58055 0.03786029346019116\n+1 58575 0.03045480743447839\n+1 58964 0.02110281310758736\n+1 59388 0.02255274822664651\n+1 59679 0.01341424712825137\n+1 60697 0.01275776096436371\n+1 61808 0.01895709357182213\n+1 63572 0.0288310833815186\n+1 64006 0.01628258054710124\n+1 64516 0.02169491310471618\n+1 65817 0.0402427413847541\n+1 66000 0.02859906492378073\n+1 66876 0.01906604328252049\n+1 68440 0.00527570327689684\n+1 68573 0.005427526849033748\n+1 68652 0.03034345493207994\n+1 69297 0.01893014673009558\n+1 69935 0.01446327540314412\n+1 70576 0.0284356403577332\n+1 70624 0.01446327540314412\n+1 71207 0.01893014673009558\n+1 71899 0.01906604328252049\n+1 72251 0.01446327540314412\n+1 72260 0.0152274037172392\n+1 72351 0.02292554618019654\n+1 73005 0.01275776096436371\n+1 73634 0.0144155416907593\n+1 73778 0.0144155416907593\n+1 75637 0.01906604328252049\n+1 75685 0.01674245171469339\n+1 76187 0.01341424712825137\n+1 76858 0.01446327540314412\n+1 77048 0.0144155416907593\n+1 78707 0.01895709357182213\n+1 79120 0.02255274822664651\n+1 79445 0.01628258054710124\n+1 79790 0.01895709357182213\n+1 80087 0.02110281310758736\n+1 80609 0.01341424712825137\n+1 80905 0.005427526849033748\n+1 82201 0.02292554618019654\n+1 82271 0.0144155416907593\n+1 84117 0.01895709357182213\n+1 84121 0.01893014673009558\n'..b'3096885777\n+4 967164 0.007264789390163445\n+4 967313 0.003055503872267962\n+4 967983 0.02245327618246397\n+4 968163 0.02288809645328665\n+4 968483 0.02876453510426408\n+4 969841 0.02179436817049034\n+4 970265 0.01525873096885777\n+4 971015 0.01917635673617606\n+4 972013 0.01425830829592147\n+4 972178 0.02876453510426408\n+4 972485 0.01695356088516536\n+4 973099 0.01586088310577529\n+4 973333 0.01586088310577529\n+4 974072 0.01525873096885777\n+4 974851 0.01425830829592147\n+4 975811 0.02245327618246397\n+4 976275 0.01525873096885777\n+4 977200 0.02876453510426408\n+4 977905 0.01360986045640215\n+4 978257 0.05703323318368587\n+4 978511 0.02245327618246397\n+4 978773 0.03051746193771554\n+4 979478 0.02245327618246397\n+4 980261 0.01917635673617606\n+4 980319 0.01525873096885777\n+4 981883 0.01586088310577529\n+4 982012 0.01525873096885777\n+4 983673 0.01360986045640215\n+4 984683 0.02245327618246397\n+4 985549 0.02851661659184293\n+4 986791 0.02245327618246397\n+4 989163 0.02721972091280431\n+4 989433 0.02851661659184293\n+4 990804 0.01360986045640215\n+4 991468 0.007629365484428886\n+4 991475 0.03172176621155059\n+4 991935 0.01843238994100031\n+4 992490 0.01586088310577529\n+4 993053 0.03814682742214443\n+4 993510 0.02245327618246397\n+4 994106 0.03051746193771554\n+4 994950 0.01360986045640215\n+4 995605 0.01425830829592147\n+4 995653 0.01843238994100031\n+4 996536 0.01360986045640215\n+4 997796 0.03051746193771554\n+4 997977 0.02245327618246397\n+4 1000099 0.01525873096885777\n+4 1000335 0.01586088310577529\n+4 1001147 0.02245327618246397\n+4 1001734 0.01917635673617606\n+4 1003113 0.02245327618246397\n+4 1003223 0.03666604646721554\n+4 1003403 0.01843238994100031\n+4 1005765 0.01917635673617606\n+4 1006311 0.01425830829592147\n+4 1006560 0.01525873096885777\n+4 1007775 0.01586088310577529\n+4 1007912 0.01360986045640215\n+4 1007977 0.02245327618246397\n+4 1008679 0.01525873096885777\n+4 1008831 0.01360986045640215\n+4 1008899 0.01525873096885777\n+4 1010769 0.02245327618246397\n+4 1010791 0.01586088310577529\n+4 1011301 0.01525873096885777\n+4 1012185 0.02245327618246397\n+4 1012987 0.02245327618246397\n+4 1014667 0.01586088310577529\n+4 1014853 0.01586088310577529\n+4 1016179 0.01917635673617606\n+4 1016289 0.01917635673617606\n+4 1016369 0.007129154147960733\n+4 1018165 0.02245327618246397\n+4 1018883 0.02245327618246397\n+4 1019196 0.01360986045640215\n+4 1019328 0.01525873096885777\n+4 1019929 0.01360986045640215\n+4 1020006 0.02245327618246397\n+4 1020555 0.01525873096885777\n+4 1020677 0.01917635673617606\n+4 1020740 0.04432879980054553\n+4 1021884 0.01360986045640215\n+4 1022182 0.006804930228201077\n+4 1023273 0.01425830829592147\n+4 1026711 0.01425830829592147\n+4 1026790 0.01525873096885777\n+4 1027300 0.01586088310577529\n+4 1027631 0.02245327618246397\n+4 1027652 0.01917635673617606\n+4 1027973 0.01525873096885777\n+4 1028155 0.03686477988200062\n+4 1028295 0.01525873096885777\n+4 1028315 0.05529716982300092\n+4 1028912 0.01525873096885777\n+4 1029870 0.02876453510426408\n+4 1030226 0.01425830829592147\n+4 1031121 0.01525873096885777\n+4 1032791 0.01843238994100031\n+4 1033089 0.01917635673617606\n+4 1033256 0.01525873096885777\n+4 1033699 0.01843238994100031\n+4 1033833 0.01360986045640215\n+4 1034350 0.03051746193771554\n+4 1035161 0.01425830829592147\n+4 1035177 0.03390712177033073\n+4 1037044 0.02721972091280431\n+4 1037251 0.01843238994100031\n+4 1037326 0.02876453510426408\n+4 1037360 0.01452957878032689\n+4 1037916 0.03172176621155059\n+4 1039281 0.02245327618246397\n+4 1039896 0.01917635673617606\n+4 1040201 0.01182101328014547\n+4 1040273 0.02379132465866294\n+4 1040325 0.02245327618246397\n+4 1040891 0.01843238994100031\n+4 1040913 0.02379132465866294\n+4 1042343 0.02245327618246397\n+4 1042547 0.01695356088516536\n+4 1042815 0.01586088310577529\n+4 1043231 0.01425830829592147\n+4 1043781 0.01525873096885777\n+4 1046133 0.01917635673617606\n+4 1046509 0.01843238994100031\n+4 1046561 0.03051746193771554\n+4 1046703 0.01917635673617606\n+4 1047335 0.01525873096885777\n+4 1047547 0.01360986045640215\n+4 1048455 0.02245327618246397\n'
b
diff -r 000000000000 -r eaddff553324 test-data/vectorizer_result03.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/vectorizer_result03.mtx Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,9697 @@\n+%%MatrixMarket matrix coordinate real general\n+%\n+4 1048577 9694\n+1 71 0.01361331290463183\n+1 1450 0.01361331290463183\n+1 1961 0.01140545001599714\n+1 3747 0.01361331290463183\n+1 3795 0.02049545933475693\n+1 4053 0.01414945072069242\n+1 4357 0.01293018149022739\n+1 4379 0.02049545933475693\n+1 4727 0.01140545001599714\n+1 5795 0.01704506020053583\n+1 6201 0.02556759030080374\n+1 7170 0.01199234924928183\n+1 8116 0.02049545933475693\n+1 8523 0.01293018149022739\n+1 8531 0.01704506020053583\n+1 9300 0.02041996935694774\n+1 10078 0.05077070567367346\n+1 10495 0.02911328391873078\n+1 12091 0.0471648357356414\n+1 12155 0.01704506020053583\n+1 13013 0.01356353828493919\n+1 13181 0.01361331290463183\n+1 13234 0.009704427972910257\n+1 13280 0.01361331290463183\n+1 14120 0.01704506020053583\n+1 14527 0.01361331290463183\n+1 14873 0.01293018149022739\n+1 15083 0.01361331290463183\n+1 15241 0.01293018149022739\n+1 15283 0.01694765905913661\n+1 16177 0.01140545001599714\n+1 17436 0.01361331290463183\n+1 19449 0.02016217762198948\n+1 20413 0.01361331290463183\n+1 20975 0.05188131930920554\n+1 21084 0.01293018149022739\n+1 21531 0.01288750750752746\n+1 22178 0.004716483573564139\n+1 22283 0.01496776720543493\n+1 22554 0.01939527223534108\n+1 22570 0.01293018149022739\n+1 22706 0.02586036298045478\n+1 22715 0.01288750750752746\n+1 23188 0.01361331290463183\n+1 23698 0.01140545001599714\n+1 24309 0.02016217762198948\n+1 24510 0.01293018149022739\n+1 24541 0.01288750750752746\n+1 25019 0.01140545001599714\n+1 26513 0.01199234924928183\n+1 26569 0.01692356855789115\n+1 26721 0.01293018149022739\n+1 27172 0.01293018149022739\n+1 27389 0.02556759030080374\n+1 28621 0.01293018149022739\n+1 29313 0.0224516508081524\n+1 29735 0.03384713711578231\n+1 30007 0.02556759030080374\n+1 30445 0.01361331290463183\n+1 30453 0.04490330161630479\n+1 30833 0.01199234924928183\n+1 31159 0.01704506020053583\n+1 31588 0.02577501501505492\n+1 31713 0.01704506020053583\n+1 31931 0.02049545933475693\n+1 31963 0.01288750750752746\n+1 33113 0.01356353828493919\n+1 33433 0.01692356855789115\n+1 33979 0.0224516508081524\n+1 34869 0.01293018149022739\n+1 35056 0.01704506020053583\n+1 35828 0.01199234924928183\n+1 35928 0.01496776720543493\n+1 36463 0.01692356855789115\n+1 36581 0.01361331290463183\n+1 37021 0.01293018149022739\n+1 37256 0.01361331290463183\n+1 37731 0.01692356855789115\n+1 37831 0.01361331290463183\n+1 37859 0.01140545001599714\n+1 38203 0.01288750750752746\n+1 38978 0.02049545933475693\n+1 39526 0.01293018149022739\n+1 39705 0.01140545001599714\n+1 39762 0.02398469849856365\n+1 40007 0.01263004034003412\n+1 40920 0.004716483573564139\n+1 40975 0.01199234924928183\n+1 41367 0.01704506020053583\n+1 41385 0.01704506020053583\n+1 41559 0.02577501501505492\n+1 41645 0.01692356855789115\n+1 41800 0.03474305741210783\n+1 42042 0.02049545933475693\n+1 42057 0.01361331290463183\n+1 42103 0.01293018149022739\n+1 43077 0.02016217762198948\n+1 43474 0.01361331290463183\n+1 43781 0.01455664195936539\n+1 43937 0.02049545933475693\n+1 44401 0.01694765905913661\n+1 45359 0.02016217762198948\n+1 45447 0.0224516508081524\n+1 45548 0.01692356855789115\n+1 45746 0.01704506020053583\n+1 46264 0.01140545001599714\n+1 46627 0.006315020170017061\n+1 48545 0.01199234924928183\n+1 50045 0.02016217762198948\n+1 50271 0.01356353828493919\n+1 50742 0.05188131930920554\n+1 50871 0.01356353828493919\n+1 51188 0.01293018149022739\n+1 51486 0.02049545933475693\n+1 52094 0.01704506020053583\n+1 52548 0.02016217762198948\n+1 52666 0.01293018149022739\n+1 52833 0.003157510085008531\n+1 53247 0.0171081750239957\n+1 53497 0.01293018149022739\n+1 54371 0.01694765905913661\n+1 55601 0.01288750750752746\n+1 55999 0.02049545933475693\n+1 56154 0.02281090003199427\n+1 57027 0.01356353828493919\n+1 57543 0.02049545933475693\n+1 57633 0.02398469849856365\n+1 58055 0.03384713711578231\n+1 58277 0.01704506020053583\n+1 58575 0.02722662580926366\n+1 58845 0.01361331290463183\n+1 58964 0.01886593429425656\n+1 59388 0.02016217762198948\n+1 59679 0.01199234924928183\n+1 60697 0.01140545001599714\n+1 61549 0.013613'..b' 0.02434907336554575\n+4 989433 0.02550919576861992\n+4 990804 0.01217453668277288\n+4 991468 0.006824756966025142\n+4 991475 0.02837632374130612\n+4 991935 0.01648847232539554\n+4 991985 0.01715397885778408\n+4 992490 0.01418816187065306\n+4 993053 0.03412378483012571\n+4 993510 0.02008530766406564\n+4 994106 0.02729902786410057\n+4 994950 0.01217453668277288\n+4 995605 0.01275459788430996\n+4 995653 0.01648847232539554\n+4 995751 0.02008530766406564\n+4 996536 0.01217453668277288\n+4 997796 0.02729902786410057\n+4 997962 0.02008530766406564\n+4 997977 0.02008530766406564\n+4 998855 0.01418816187065306\n+4 999264 0.01364951393205028\n+4 1000099 0.01364951393205028\n+4 1000335 0.01418816187065306\n+4 1000999 0.01715397885778408\n+4 1001147 0.02008530766406564\n+4 1001734 0.01715397885778408\n+4 1002607 0.01715397885778408\n+4 1002835 0.02008530766406564\n+4 1003113 0.02008530766406564\n+4 1003223 0.03279917006918209\n+4 1003403 0.01648847232539554\n+4 1003884 0.02837632374130612\n+4 1005765 0.01715397885778408\n+4 1006311 0.01275459788430996\n+4 1006420 0.02008530766406564\n+4 1006560 0.01364951393205028\n+4 1006793 0.02008530766406564\n+4 1007602 0.01418816187065306\n+4 1007775 0.01418816187065306\n+4 1007912 0.01217453668277288\n+4 1007977 0.02008530766406564\n+4 1008679 0.01364951393205028\n+4 1008831 0.01217453668277288\n+4 1008899 0.01364951393205028\n+4 1009994 0.01715397885778408\n+4 1010769 0.02008530766406564\n+4 1010791 0.01418816187065306\n+4 1011301 0.01364951393205028\n+4 1011321 0.02729902786410057\n+4 1012185 0.02008530766406564\n+4 1012987 0.02008530766406564\n+4 1013009 0.01418816187065306\n+4 1014667 0.01418816187065306\n+4 1014853 0.01418816187065306\n+4 1015484 0.01418816187065306\n+4 1016179 0.01715397885778408\n+4 1016289 0.01715397885778408\n+4 1016369 0.00637729894215498\n+4 1017173 0.01715397885778408\n+4 1017602 0.02128224280597959\n+4 1018165 0.02008530766406564\n+4 1018883 0.02008530766406564\n+4 1019196 0.01217453668277288\n+4 1019328 0.01364951393205028\n+4 1019929 0.01217453668277288\n+4 1020006 0.02008530766406564\n+4 1020555 0.01364951393205028\n+4 1020677 0.01715397885778408\n+4 1020740 0.03965379373314344\n+4 1021827 0.02008530766406564\n+4 1021884 0.01217453668277288\n+4 1022182 0.006087268341386438\n+4 1023273 0.01275459788430996\n+4 1026711 0.01275459788430996\n+4 1026790 0.01364951393205028\n+4 1027300 0.01418816187065306\n+4 1027631 0.02008530766406564\n+4 1027652 0.01715397885778408\n+4 1027973 0.01364951393205028\n+4 1028155 0.03297694465079107\n+4 1028295 0.01364951393205028\n+4 1028315 0.04946541697618662\n+4 1028638 0.01715397885778408\n+4 1028912 0.01364951393205028\n+4 1029870 0.02573096828667612\n+4 1030059 0.01364951393205028\n+4 1030226 0.01275459788430996\n+4 1031121 0.01364951393205028\n+4 1032791 0.01648847232539554\n+4 1033089 0.01715397885778408\n+4 1033256 0.01364951393205028\n+4 1033699 0.01648847232539554\n+4 1033833 0.01217453668277288\n+4 1034350 0.02729902786410057\n+4 1034513 0.02008530766406564\n+4 1035161 0.01275459788430996\n+4 1035177 0.030331207224535\n+4 1036844 0.02573096828667612\n+4 1037044 0.02434907336554575\n+4 1037226 0.02008530766406564\n+4 1037251 0.01648847232539554\n+4 1037326 0.02573096828667612\n+4 1037360 0.01299725962753113\n+4 1037916 0.02837632374130612\n+4 1038731 0.01364951393205028\n+4 1039281 0.02008530766406564\n+4 1039328 0.01715397885778408\n+4 1039896 0.01715397885778408\n+4 1040201 0.01057434499550492\n+4 1040273 0.02128224280597959\n+4 1040325 0.02008530766406564\n+4 1040381 0.02729902786410057\n+4 1040891 0.01648847232539554\n+4 1040913 0.02128224280597959\n+4 1041230 0.01364951393205028\n+4 1042343 0.02008530766406564\n+4 1042547 0.0151656036122675\n+4 1042627 0.01715397885778408\n+4 1042774 0.01715397885778408\n+4 1042815 0.01418816187065306\n+4 1043231 0.01275459788430996\n+4 1043781 0.01364951393205028\n+4 1044112 0.01364951393205028\n+4 1046133 0.01715397885778408\n+4 1046509 0.01648847232539554\n+4 1046561 0.02729902786410057\n+4 1046703 0.01715397885778408\n+4 1047335 0.01364951393205028\n+4 1047547 0.01217453668277288\n+4 1048455 0.02008530766406564\n'
b
diff -r 000000000000 -r eaddff553324 test-data/vectorizer_result04.mtx
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/vectorizer_result04.mtx Fri Nov 01 17:15:22 2019 -0400
b
b'@@ -0,0 +1,9697 @@\n+%%MatrixMarket matrix coordinate real general\n+%\n+4 1048577 9694\n+1 71 0.01361331290463183\n+1 1450 0.01361331290463183\n+1 1961 0.01140545001599714\n+1 3747 0.01361331290463183\n+1 3795 0.02049545933475693\n+1 4053 0.01414945072069242\n+1 4357 0.01293018149022739\n+1 4379 0.02049545933475693\n+1 4727 0.01140545001599714\n+1 5795 0.01704506020053583\n+1 6201 0.02556759030080374\n+1 7170 0.01199234924928183\n+1 8116 0.02049545933475693\n+1 8523 0.01293018149022739\n+1 8531 0.01704506020053583\n+1 9300 0.02041996935694774\n+1 10078 0.05077070567367346\n+1 10495 0.02911328391873078\n+1 12091 0.0471648357356414\n+1 12155 0.01704506020053583\n+1 13013 0.01356353828493919\n+1 13181 0.01361331290463183\n+1 13234 0.009704427972910257\n+1 13280 0.01361331290463183\n+1 14120 0.01704506020053583\n+1 14527 0.01361331290463183\n+1 14873 0.01293018149022739\n+1 15083 0.01361331290463183\n+1 15241 0.01293018149022739\n+1 15283 0.01694765905913661\n+1 16177 0.01140545001599714\n+1 17436 0.01361331290463183\n+1 19449 0.02016217762198948\n+1 20413 0.01361331290463183\n+1 20975 0.05188131930920554\n+1 21084 0.01293018149022739\n+1 21531 0.01288750750752746\n+1 22178 0.004716483573564139\n+1 22283 0.01496776720543493\n+1 22554 0.01939527223534108\n+1 22570 0.01293018149022739\n+1 22706 0.02586036298045478\n+1 22715 0.01288750750752746\n+1 23188 0.01361331290463183\n+1 23698 0.01140545001599714\n+1 24309 0.02016217762198948\n+1 24510 0.01293018149022739\n+1 24541 0.01288750750752746\n+1 25019 0.01140545001599714\n+1 26513 0.01199234924928183\n+1 26569 0.01692356855789115\n+1 26721 0.01293018149022739\n+1 27172 0.01293018149022739\n+1 27389 0.02556759030080374\n+1 28621 0.01293018149022739\n+1 29313 0.0224516508081524\n+1 29735 0.03384713711578231\n+1 30007 0.02556759030080374\n+1 30445 0.01361331290463183\n+1 30453 0.04490330161630479\n+1 30833 0.01199234924928183\n+1 31159 0.01704506020053583\n+1 31588 0.02577501501505492\n+1 31713 0.01704506020053583\n+1 31931 0.02049545933475693\n+1 31963 0.01288750750752746\n+1 33113 0.01356353828493919\n+1 33433 0.01692356855789115\n+1 33979 0.0224516508081524\n+1 34869 0.01293018149022739\n+1 35056 0.01704506020053583\n+1 35828 0.01199234924928183\n+1 35928 0.01496776720543493\n+1 36463 0.01692356855789115\n+1 36581 0.01361331290463183\n+1 37021 0.01293018149022739\n+1 37256 0.01361331290463183\n+1 37731 0.01692356855789115\n+1 37831 0.01361331290463183\n+1 37859 0.01140545001599714\n+1 38203 0.01288750750752746\n+1 38978 0.02049545933475693\n+1 39526 0.01293018149022739\n+1 39705 0.01140545001599714\n+1 39762 0.02398469849856365\n+1 40007 0.01263004034003412\n+1 40920 0.004716483573564139\n+1 40975 0.01199234924928183\n+1 41367 0.01704506020053583\n+1 41385 0.01704506020053583\n+1 41559 0.02577501501505492\n+1 41645 0.01692356855789115\n+1 41800 0.03474305741210783\n+1 42042 0.02049545933475693\n+1 42057 0.01361331290463183\n+1 42103 0.01293018149022739\n+1 43077 0.02016217762198948\n+1 43474 0.01361331290463183\n+1 43781 0.01455664195936539\n+1 43937 0.02049545933475693\n+1 44401 0.01694765905913661\n+1 45359 0.02016217762198948\n+1 45447 0.0224516508081524\n+1 45548 0.01692356855789115\n+1 45746 0.01704506020053583\n+1 46264 0.01140545001599714\n+1 46627 0.006315020170017061\n+1 48545 0.01199234924928183\n+1 50045 0.02016217762198948\n+1 50271 0.01356353828493919\n+1 50742 0.05188131930920554\n+1 50871 0.01356353828493919\n+1 51188 0.01293018149022739\n+1 51486 0.02049545933475693\n+1 52094 0.01704506020053583\n+1 52548 0.02016217762198948\n+1 52666 0.01293018149022739\n+1 52833 0.003157510085008531\n+1 53247 0.0171081750239957\n+1 53497 0.01293018149022739\n+1 54371 0.01694765905913661\n+1 55601 0.01288750750752746\n+1 55999 0.02049545933475693\n+1 56154 0.02281090003199427\n+1 57027 0.01356353828493919\n+1 57543 0.02049545933475693\n+1 57633 0.02398469849856365\n+1 58055 0.03384713711578231\n+1 58277 0.01704506020053583\n+1 58575 0.02722662580926366\n+1 58845 0.01361331290463183\n+1 58964 0.01886593429425656\n+1 59388 0.02016217762198948\n+1 59679 0.01199234924928183\n+1 60697 0.01140545001599714\n+1 61549 0.013613'..b' 0.02434907336554575\n+4 989433 0.02550919576861992\n+4 990804 0.01217453668277288\n+4 991468 0.006824756966025142\n+4 991475 0.02837632374130612\n+4 991935 0.01648847232539554\n+4 991985 0.01715397885778408\n+4 992490 0.01418816187065306\n+4 993053 0.03412378483012571\n+4 993510 0.02008530766406564\n+4 994106 0.02729902786410057\n+4 994950 0.01217453668277288\n+4 995605 0.01275459788430996\n+4 995653 0.01648847232539554\n+4 995751 0.02008530766406564\n+4 996536 0.01217453668277288\n+4 997796 0.02729902786410057\n+4 997962 0.02008530766406564\n+4 997977 0.02008530766406564\n+4 998855 0.01418816187065306\n+4 999264 0.01364951393205028\n+4 1000099 0.01364951393205028\n+4 1000335 0.01418816187065306\n+4 1000999 0.01715397885778408\n+4 1001147 0.02008530766406564\n+4 1001734 0.01715397885778408\n+4 1002607 0.01715397885778408\n+4 1002835 0.02008530766406564\n+4 1003113 0.02008530766406564\n+4 1003223 0.03279917006918209\n+4 1003403 0.01648847232539554\n+4 1003884 0.02837632374130612\n+4 1005765 0.01715397885778408\n+4 1006311 0.01275459788430996\n+4 1006420 0.02008530766406564\n+4 1006560 0.01364951393205028\n+4 1006793 0.02008530766406564\n+4 1007602 0.01418816187065306\n+4 1007775 0.01418816187065306\n+4 1007912 0.01217453668277288\n+4 1007977 0.02008530766406564\n+4 1008679 0.01364951393205028\n+4 1008831 0.01217453668277288\n+4 1008899 0.01364951393205028\n+4 1009994 0.01715397885778408\n+4 1010769 0.02008530766406564\n+4 1010791 0.01418816187065306\n+4 1011301 0.01364951393205028\n+4 1011321 0.02729902786410057\n+4 1012185 0.02008530766406564\n+4 1012987 0.02008530766406564\n+4 1013009 0.01418816187065306\n+4 1014667 0.01418816187065306\n+4 1014853 0.01418816187065306\n+4 1015484 0.01418816187065306\n+4 1016179 0.01715397885778408\n+4 1016289 0.01715397885778408\n+4 1016369 0.00637729894215498\n+4 1017173 0.01715397885778408\n+4 1017602 0.02128224280597959\n+4 1018165 0.02008530766406564\n+4 1018883 0.02008530766406564\n+4 1019196 0.01217453668277288\n+4 1019328 0.01364951393205028\n+4 1019929 0.01217453668277288\n+4 1020006 0.02008530766406564\n+4 1020555 0.01364951393205028\n+4 1020677 0.01715397885778408\n+4 1020740 0.03965379373314344\n+4 1021827 0.02008530766406564\n+4 1021884 0.01217453668277288\n+4 1022182 0.006087268341386438\n+4 1023273 0.01275459788430996\n+4 1026711 0.01275459788430996\n+4 1026790 0.01364951393205028\n+4 1027300 0.01418816187065306\n+4 1027631 0.02008530766406564\n+4 1027652 0.01715397885778408\n+4 1027973 0.01364951393205028\n+4 1028155 0.03297694465079107\n+4 1028295 0.01364951393205028\n+4 1028315 0.04946541697618662\n+4 1028638 0.01715397885778408\n+4 1028912 0.01364951393205028\n+4 1029870 0.02573096828667612\n+4 1030059 0.01364951393205028\n+4 1030226 0.01275459788430996\n+4 1031121 0.01364951393205028\n+4 1032791 0.01648847232539554\n+4 1033089 0.01715397885778408\n+4 1033256 0.01364951393205028\n+4 1033699 0.01648847232539554\n+4 1033833 0.01217453668277288\n+4 1034350 0.02729902786410057\n+4 1034513 0.02008530766406564\n+4 1035161 0.01275459788430996\n+4 1035177 0.030331207224535\n+4 1036844 0.02573096828667612\n+4 1037044 0.02434907336554575\n+4 1037226 0.02008530766406564\n+4 1037251 0.01648847232539554\n+4 1037326 0.02573096828667612\n+4 1037360 0.01299725962753113\n+4 1037916 0.02837632374130612\n+4 1038731 0.01364951393205028\n+4 1039281 0.02008530766406564\n+4 1039328 0.01715397885778408\n+4 1039896 0.01715397885778408\n+4 1040201 0.01057434499550492\n+4 1040273 0.02128224280597959\n+4 1040325 0.02008530766406564\n+4 1040381 0.02729902786410057\n+4 1040891 0.01648847232539554\n+4 1040913 0.02128224280597959\n+4 1041230 0.01364951393205028\n+4 1042343 0.02008530766406564\n+4 1042547 0.0151656036122675\n+4 1042627 0.01715397885778408\n+4 1042774 0.01715397885778408\n+4 1042815 0.01418816187065306\n+4 1043231 0.01275459788430996\n+4 1043781 0.01364951393205028\n+4 1044112 0.01364951393205028\n+4 1046133 0.01715397885778408\n+4 1046509 0.01648847232539554\n+4 1046561 0.02729902786410057\n+4 1046703 0.01715397885778408\n+4 1047335 0.01364951393205028\n+4 1047547 0.01217453668277288\n+4 1048455 0.02008530766406564\n'
b
diff -r 000000000000 -r eaddff553324 test-data/y.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/y.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,39 @@
+0 0 0.0 1.0 2.0 0 0 -2.76903910779 -0.777269253713 2.08028572913
+2 2 0.0 0.0 1.0 1 1 -1.46032791667 0.555654963057 -1.54234795893
+1 1 0.0 1.0 0.0 1 1 1.72939677275 -1.3402943146 -7.95375106924
+0 0 1.0 0.0 0.0 0 0 -3.15016545997 0.19568758864 1.40593056786
+2 2 0.0 0.0 1.0 1 1 1.21845859294 -0.677633363546 -6.62421395692
+0 0 1.0 0.0 0.0 0 0 -3.25263252854 -0.908498631085 2.74671790479
+2 2 0.0 0.0 1.0 1 1 1.38291089706 -0.924165117418 -6.87449092795
+0 0 1.0 0.0 0.0 0 0 -1.7423603376 -0.326034812837 -1.12743832183
+1 2 0.0 1.0 0.0 1 1 -1.88141734237 0.0471879612496 -0.990485600884
+1 2 0.0 0.9 0.1 1 1 -1.32547081613 -0.193430743286 -1.66958283068
+1 1 0.0 1.0 0.0 1 1 -2.7799666645 0.485621555351 1.21494093967
+2 2 0.0 0.2 0.8 1 1 -1.60125339649 -0.493901618129 -1.20213785254
+1 2 0.0 1.0 0.0 1 1 -1.86658623206 0.162709340336 -0.691875382528
+1 1 0.0 1.0 0.0 1 1 -1.82214550549 -0.130278514956 -0.836834994045
+1 2 0.0 0.9 0.1 1 1 -1.910728736 -0.0978509403157 -0.469743754594
+1 2 0.0 1.0 0.0 1 1 1.1191441248 -0.350015230403 -6.43122655533
+0 0 1.0 0.0 0.0 0 0 -1.80789829975 -0.267725170783 -0.533251833633
+1 1 0.0 0.9 0.1 1 1 -1.82704375852 0.186802710054 -0.367392242502
+1 1 0.0 0.9 0.1 1 1 1.05683832083 -0.491476736579 -6.10526049159
+0 0 1.0 0.0 0.0 0 0 1.58740583243 -1.32084852823 -7.47140590741
+0 0 1.0 0.0 0.0 0 0 -2.47802529094 -0.500673021108 1.37455405057
+2 2 0.0 0.3 0.7 1 1 -1.85517293032 -0.363363308535 -0.177124010926
+1 1 0.0 0.8 0.2 1 1 0.84169544958 -0.533176028466 -5.7625592501
+0 0 1.0 0.0 0.0 0 0 0.971871089969 -0.336154264594 -5.74291415928
+0 0 1.0 0.0 0.0 0 0 -2.18006328471 -0.33580204472 0.261632810716
+2 2 0.0 0.2 0.8 1 1 1.62753221054 -1.0437871236 -7.15189570944
+0 0 1.0 0.0 0.0 0 0 0.982418549211 -1.02370887933 -6.10073429813
+0 0 1.0 0.0 0.0 0 0 -1.51375235626 -0.156051081077 -1.37297970696
+1 1 0.0 1.0 0.0 1 1 -1.05517039337 0.171153321655 -1.66261211523
+1 1 0.0 1.0 0.0 1 1 1.05117238483 -0.819727602718 -6.16276877471
+0 0 1.0 0.0 0.0 0 0 -2.60008493281 -0.303483971372 0.937773514338
+2 2 0.0 0.0 1.0 1 1 -1.89873152969 -0.370955554274 0.0400346749524
+1 1 0.0 0.8 0.2 1 1 1.30185976049 -0.750494764082 -6.91956219185
+0 0 1.0 0.0 0.0 0 0 -2.20545858405 -0.462493064934 0.374957060793
+2 2 0.0 0.3 0.7 1 1 -2.97088391755 -0.384323906096 1.93410852068
+2 2 0.0 0.0 1.0 1 1 -1.52001848153 -0.275207915229 -0.625142611926
+1 1 0.0 1.0 0.0 1 1 1.32168915538 -0.986903615337 -7.22461895473
+0 0 1.0 0.0 0.0 0 0 -2.42938278814 0.0312031758068 0.740031884365
+1 2 0.0 0.0 1.0 1 1 -1.52001848153 -0.370955554274 0.937773514338
b
diff -r 000000000000 -r eaddff553324 test-data/y_score.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/y_score.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,75 @@
+0.04521016253284027
+-0.0017878318955413253
+-0.3380009790698638
+-0.15416229901482092
+-0.008989122568787922
+0.3775746361984437
+-0.20342288788672414
+0.21787658306027935
+-0.5322523189136876
+-0.6361907868807346
+-0.036875765955103335
+-0.24857077769453662
+-0.5305978020035378
+-0.5288479779433272
+-0.22579627342382325
+0.4905346629557697
+-0.12238193946346121
+-0.42773421293023084
+0.16878080982659216
+0.051637548704625946
+0.023623352380110763
+-0.3553978552068183
+-0.4597636722184091
+-0.36924223816393
+-0.539585171546133
+-0.4138055622986405
+-0.25401950905817183
+0.35124248378117207
+-0.5767911246317095
+-0.4452974937020068
+0.13456824841567622
+-0.08366761511503285
+-0.5855411774730717
+0.4493951821813167
+-0.0008118901312900162
+-0.375188782981553
+-0.052180286682808386
+-0.3624923116131733
+-0.3212899940903371
+-0.6326134385656439
+-0.5951558341213625
+-0.026698968757988106
+-0.6389295278289815
+-0.4665622957151918
+0.24683878631472084
+0.06670297201702563
+-0.09995075976356604
+-0.0026791784207790825
+-0.26843502542172126
+-0.23167967546053814
+-0.5500853075669638
+-0.07278578744420061
+-0.1908269856404199
+-0.10431209677312014
+-0.40541232698507823
+-1.3031302463301446
+-0.10509162333664135
+-0.06155868232417461
+-0.4347097510343062
+-0.8391150198454305
+-0.5372307413404114
+-0.46030478301666744
+-0.11618205513493052
+-0.021278188504645024
+-0.16029035414173087
+-0.35975375227600914
+-0.4814892536194141
+-0.1385760560857231
+0.3409736022465082
+-0.5355178831501075
+0.22534151535735567
+0.07294052191693523
+-0.3386178239054628
+0.15540977852505278
+0.07383896651967975
b
diff -r 000000000000 -r eaddff553324 test-data/y_true.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/y_true.tabular Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,75 @@
+0
+1
+0
+0
+1
+1
+1
+1
+0
+0
+0
+0
+0
+0
+0
+1
+0
+1
+1
+0
+0
+0
+0
+0
+0
+0
+0
+1
+0
+0
+1
+1
+0
+1
+0
+0
+1
+0
+0
+0
+0
+0
+0
+0
+1
+1
+1
+0
+1
+0
+0
+1
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+1
+0
+0
+0
+1
+1
+0
+1
+0
+0
+0
+1
b
diff -r 000000000000 -r eaddff553324 test-data/zero_one_loss.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/zero_one_loss.txt Fri Nov 01 17:15:22 2019 -0400
b
@@ -0,0 +1,2 @@
+zero_one_loss : 
+0.15384615384615385
b
diff -r 000000000000 -r eaddff553324 train_test_eval.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/train_test_eval.py Fri Nov 01 17:15:22 2019 -0400
[
b'@@ -0,0 +1,432 @@\n+import argparse\n+import joblib\n+import json\n+import numpy as np\n+import pandas as pd\n+import pickle\n+import warnings\n+from itertools import chain\n+from scipy.io import mmread\n+from sklearn.base import clone\n+from sklearn import (cluster, compose, decomposition, ensemble,\n+                     feature_extraction, feature_selection,\n+                     gaussian_process, kernel_approximation, metrics,\n+                     model_selection, naive_bayes, neighbors,\n+                     pipeline, preprocessing, svm, linear_model,\n+                     tree, discriminant_analysis)\n+from sklearn.exceptions import FitFailedWarning\n+from sklearn.metrics.scorer import _check_multimetric_scoring\n+from sklearn.model_selection._validation import _score, cross_validate\n+from sklearn.model_selection import _search, _validation\n+from sklearn.utils import indexable, safe_indexing\n+\n+from galaxy_ml.model_validations import train_test_split\n+from galaxy_ml.utils import (SafeEval, get_scoring, load_model,\n+                             read_columns, try_get_attr, get_module)\n+\n+\n+_fit_and_score = try_get_attr(\'galaxy_ml.model_validations\', \'_fit_and_score\')\n+setattr(_search, \'_fit_and_score\', _fit_and_score)\n+setattr(_validation, \'_fit_and_score\', _fit_and_score)\n+\n+N_JOBS = int(__import__(\'os\').environ.get(\'GALAXY_SLOTS\', 1))\n+CACHE_DIR = \'./cached\'\n+NON_SEARCHABLE = (\'n_jobs\', \'pre_dispatch\', \'memory\', \'_path\',\n+                  \'nthread\', \'callbacks\')\n+ALLOWED_CALLBACKS = (\'EarlyStopping\', \'TerminateOnNaN\', \'ReduceLROnPlateau\',\n+                     \'CSVLogger\', \'None\')\n+\n+\n+def _eval_swap_params(params_builder):\n+    swap_params = {}\n+\n+    for p in params_builder[\'param_set\']:\n+        swap_value = p[\'sp_value\'].strip()\n+        if swap_value == \'\':\n+            continue\n+\n+        param_name = p[\'sp_name\']\n+        if param_name.lower().endswith(NON_SEARCHABLE):\n+            warnings.warn("Warning: `%s` is not eligible for search and was "\n+                          "omitted!" % param_name)\n+            continue\n+\n+        if not swap_value.startswith(\':\'):\n+            safe_eval = SafeEval(load_scipy=True, load_numpy=True)\n+            ev = safe_eval(swap_value)\n+        else:\n+            # Have `:` before search list, asks for estimator evaluatio\n+            safe_eval_es = SafeEval(load_estimators=True)\n+            swap_value = swap_value[1:].strip()\n+            # TODO maybe add regular express check\n+            ev = safe_eval_es(swap_value)\n+\n+        swap_params[param_name] = ev\n+\n+    return swap_params\n+\n+\n+def train_test_split_none(*arrays, **kwargs):\n+    """extend train_test_split to take None arrays\n+    and support split by group names.\n+    """\n+    nones = []\n+    new_arrays = []\n+    for idx, arr in enumerate(arrays):\n+        if arr is None:\n+            nones.append(idx)\n+        else:\n+            new_arrays.append(arr)\n+\n+    if kwargs[\'shuffle\'] == \'None\':\n+        kwargs[\'shuffle\'] = None\n+\n+    group_names = kwargs.pop(\'group_names\', None)\n+\n+    if group_names is not None and group_names.strip():\n+        group_names = [name.strip() for name in\n+                       group_names.split(\',\')]\n+        new_arrays = indexable(*new_arrays)\n+        groups = kwargs[\'labels\']\n+        n_samples = new_arrays[0].shape[0]\n+        index_arr = np.arange(n_samples)\n+        test = index_arr[np.isin(groups, group_names)]\n+        train = index_arr[~np.isin(groups, group_names)]\n+        rval = list(chain.from_iterable(\n+            (safe_indexing(a, train),\n+             safe_indexing(a, test)) for a in new_arrays))\n+    else:\n+        rval = train_test_split(*new_arrays, **kwargs)\n+\n+    for pos in nones:\n+        rval[pos * 2: 2] = [None, None]\n+\n+    return rval\n+\n+\n+def main(inputs, infile_estimator, infile1, infile2,\n+         outfile_result, outfile_object=None,\n+         outfile_weights=None, groups=None,\n+         ref_seq=None, intervals=None, targets=None,\n+         fasta_path=None):\n+    """\n+ '..b'rain, groups_test = \\\n+        train_test_split_none(X, y, groups, **test_split_options)\n+\n+    exp_scheme = params[\'experiment_schemes\'][\'selected_exp_scheme\']\n+\n+    # handle validation (second) split\n+    if exp_scheme == \'train_val_test\':\n+        val_split_options = (params[\'experiment_schemes\']\n+                                   [\'val_split\'][\'split_algos\'])\n+\n+        if val_split_options[\'shuffle\'] == \'group\':\n+            val_split_options[\'labels\'] = groups_train\n+        if val_split_options[\'shuffle\'] == \'stratified\':\n+            if y_train is not None:\n+                val_split_options[\'labels\'] = y_train\n+            else:\n+                raise ValueError("Stratified shuffle split is not "\n+                                 "applicable on empty target values!")\n+\n+        X_train, X_val, y_train, y_val, groups_train, groups_val = \\\n+            train_test_split_none(X_train, y_train, groups_train,\n+                                  **val_split_options)\n+\n+    # train and eval\n+    if hasattr(estimator, \'validation_data\'):\n+        if exp_scheme == \'train_val_test\':\n+            estimator.fit(X_train, y_train,\n+                          validation_data=(X_val, y_val))\n+        else:\n+            estimator.fit(X_train, y_train,\n+                          validation_data=(X_test, y_test))\n+    else:\n+        estimator.fit(X_train, y_train)\n+\n+    if hasattr(estimator, \'evaluate\'):\n+        scores = estimator.evaluate(X_test, y_test=y_test,\n+                                    scorer=scorer,\n+                                    is_multimetric=True)\n+    else:\n+        scores = _score(estimator, X_test, y_test, scorer,\n+                        is_multimetric=True)\n+    # handle output\n+    for name, score in scores.items():\n+        scores[name] = [score]\n+    df = pd.DataFrame(scores)\n+    df = df[sorted(df.columns)]\n+    df.to_csv(path_or_buf=outfile_result, sep=\'\\t\',\n+              header=True, index=False)\n+\n+    memory.clear(warn=False)\n+\n+    if outfile_object:\n+        main_est = estimator\n+        if isinstance(estimator, pipeline.Pipeline):\n+            main_est = estimator.steps[-1][-1]\n+\n+        if hasattr(main_est, \'model_\') \\\n+                and hasattr(main_est, \'save_weights\'):\n+            if outfile_weights:\n+                main_est.save_weights(outfile_weights)\n+            del main_est.model_\n+            del main_est.fit_params\n+            del main_est.model_class_\n+            del main_est.validation_data\n+            if getattr(main_est, \'data_generator_\', None):\n+                del main_est.data_generator_\n+\n+        with open(outfile_object, \'wb\') as output_handler:\n+            pickle.dump(estimator, output_handler,\n+                        pickle.HIGHEST_PROTOCOL)\n+\n+\n+if __name__ == \'__main__\':\n+    aparser = argparse.ArgumentParser()\n+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)\n+    aparser.add_argument("-e", "--estimator", dest="infile_estimator")\n+    aparser.add_argument("-X", "--infile1", dest="infile1")\n+    aparser.add_argument("-y", "--infile2", dest="infile2")\n+    aparser.add_argument("-O", "--outfile_result", dest="outfile_result")\n+    aparser.add_argument("-o", "--outfile_object", dest="outfile_object")\n+    aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights")\n+    aparser.add_argument("-g", "--groups", dest="groups")\n+    aparser.add_argument("-r", "--ref_seq", dest="ref_seq")\n+    aparser.add_argument("-b", "--intervals", dest="intervals")\n+    aparser.add_argument("-t", "--targets", dest="targets")\n+    aparser.add_argument("-f", "--fasta_path", dest="fasta_path")\n+    args = aparser.parse_args()\n+\n+    main(args.inputs, args.infile_estimator, args.infile1, args.infile2,\n+         args.outfile_result, outfile_object=args.outfile_object,\n+         outfile_weights=args.outfile_weights, groups=args.groups,\n+         ref_seq=args.ref_seq, intervals=args.intervals,\n+         targets=args.targets, fasta_path=args.fasta_path)\n'
b
diff -r 000000000000 -r eaddff553324 train_test_split.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/train_test_split.py Fri Nov 01 17:15:22 2019 -0400
[
@@ -0,0 +1,154 @@
+import argparse
+import json
+import pandas as pd
+import warnings
+
+from galaxy_ml.model_validations import train_test_split
+from galaxy_ml.utils import get_cv, read_columns
+
+
+def _get_single_cv_split(params, array, infile_labels=None,
+                         infile_groups=None):
+    """ output (train, test) subset from a cv splitter
+
+    Parameters
+    ----------
+    params : dict
+        Galaxy tool inputs
+    array : pandas DataFrame object
+        The target dataset to split
+    infile_labels : str
+        File path to dataset containing target values
+    infile_groups : str
+        File path to dataset containing group values
+    """
+    y = None
+    groups = None
+
+    nth_split = params['mode_selection']['nth_split']
+
+    # read groups
+    if infile_groups:
+        header = 'infer' if (params['mode_selection']['cv_selector']
+                             ['groups_selector']['header_g']) else None
+        column_option = (params['mode_selection']['cv_selector']
+                         ['groups_selector']['column_selector_options_g']
+                         ['selected_column_selector_option_g'])
+        if column_option in ['by_index_number', 'all_but_by_index_number',
+                             'by_header_name', 'all_but_by_header_name']:
+            c = (params['mode_selection']['cv_selector']['groups_selector']
+                 ['column_selector_options_g']['col_g'])
+        else:
+            c = None
+
+        groups = read_columns(infile_groups, c=c, c_option=column_option,
+                              sep='\t', header=header, parse_dates=True)
+        groups = groups.ravel()
+
+        params['mode_selection']['cv_selector']['groups_selector'] = groups
+
+    # read labels
+    if infile_labels:
+        target_input = (params['mode_selection']
+                        ['cv_selector'].pop('target_input'))
+        header = 'infer' if target_input['header1'] else None
+        col_index = target_input['col'][0] - 1
+        df = pd.read_csv(infile_labels, sep='\t', header=header,
+                         parse_dates=True)
+        y = df.iloc[:, col_index].values
+
+    # construct the cv splitter object
+    splitter, groups = get_cv(params['mode_selection']['cv_selector'])
+
+    total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups)
+    if nth_split > total_n_splits:
+        raise ValueError("Total number of splits is {}, but got `nth_split` "
+                         "= {}".format(total_n_splits, nth_split))
+
+    i = 1
+    for train_index, test_index in splitter.split(array.values, y=y, groups=groups):
+        # suppose nth_split >= 1
+        if i == nth_split:
+            break
+        else:
+            i += 1
+
+    train = array.iloc[train_index, :]
+    test = array.iloc[test_index, :]
+
+    return train, test
+
+
+def main(inputs, infile_array, outfile_train, outfile_test,
+         infile_labels=None, infile_groups=None):
+    """
+    Parameter
+    ---------
+    inputs : str
+        File path to galaxy tool parameter
+
+    infile_array : str
+        File paths of input arrays separated by comma
+
+    infile_labels : str
+        File path to dataset containing labels
+
+    infile_groups : str
+        File path to dataset containing groups
+
+    outfile_train : str
+        File path to dataset containing train split
+
+    outfile_test : str
+        File path to dataset containing test split
+    """
+    warnings.simplefilter('ignore')
+
+    with open(inputs, 'r') as param_handler:
+        params = json.load(param_handler)
+
+    input_header = params['header0']
+    header = 'infer' if input_header else None
+    array = pd.read_csv(infile_array, sep='\t', header=header,
+                        parse_dates=True)
+
+    # train test split
+    if params['mode_selection']['selected_mode'] == 'train_test_split':
+        options = params['mode_selection']['options']
+        shuffle_selection = options.pop('shuffle_selection')
+        options['shuffle'] = shuffle_selection['shuffle']
+        if infile_labels:
+            header = 'infer' if shuffle_selection['header1'] else None
+            col_index = shuffle_selection['col'][0] - 1
+            df = pd.read_csv(infile_labels, sep='\t', header=header,
+                             parse_dates=True)
+            labels = df.iloc[:, col_index].values
+            options['labels'] = labels
+
+        train, test = train_test_split(array, **options)
+
+    # cv splitter
+    else:
+        train, test = _get_single_cv_split(params, array,
+                                           infile_labels=infile_labels,
+                                           infile_groups=infile_groups)
+
+    print("Input shape: %s" % repr(array.shape))
+    print("Train shape: %s" % repr(train.shape))
+    print("Test shape: %s" % repr(test.shape))
+    train.to_csv(outfile_train, sep='\t', header=input_header, index=False)
+    test.to_csv(outfile_test, sep='\t', header=input_header, index=False)
+
+
+if __name__ == '__main__':
+    aparser = argparse.ArgumentParser()
+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
+    aparser.add_argument("-X", "--infile_array", dest="infile_array")
+    aparser.add_argument("-y", "--infile_labels", dest="infile_labels")
+    aparser.add_argument("-g", "--infile_groups", dest="infile_groups")
+    aparser.add_argument("-o", "--outfile_train", dest="outfile_train")
+    aparser.add_argument("-t", "--outfile_test", dest="outfile_test")
+    args = aparser.parse_args()
+
+    main(args.inputs, args.infile_array, args.outfile_train,
+         args.outfile_test, args.infile_labels, args.infile_groups)