Previous changeset 4:09a05b1e1379 (2019-04-20) Next changeset 6:30b5e33eca40 (2019-04-20) |
Commit message:
Deleted selected files |
removed:
phage_promoter.py |
b |
diff -r 09a05b1e1379 -r ebd359f22fa5 phage_promoter.py --- a/phage_promoter.py Sat Apr 20 10:57:46 2019 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 |
[ |
b'@@ -1,570 +0,0 @@\n-# -*- coding: utf-8 -*-\n-"""\n-Created on Thu Jul 19 13:45:05 2018\n-\n-@author: Marta\n-"""\n-\n-from Bio import SeqIO\n-import numpy as np\n-import pandas as pd\n-from auxiliar import free_energy,freq_base\n-from Bio.Seq import Seq\n-from Bio.SeqRecord import SeqRecord\n-from Bio.Alphabet import IUPAC\n-from auxiliar import get_bacteria, get_families, get_max_pssm, get_scores, get_lifecycle\n-\n-#division of the test genome in sequences of 65 bp\n-def get_testseqs65(form,fic,both=False):\n- ALL = []\n- indexes = []\n- a = 0\n- rec = SeqIO.read(fic,form)\n- genome = rec.seq\n- i = 0\n- j = 65\n- while j < len(genome):\n- s = genome[i:j]\n- ALL.append([1,i,j,s])\n- i += 20\n- j += 20\n- a += 1\n- indexes.append(rec.name+":"+str(a))\n- if both:\n- comp = genome.reverse_complement()\n- size = len(rec.seq)\n- i = 0\n- j = 65\n- while j < len(comp):\n- s = comp[i:j]\n- ALL.append([-1,size-j,size-i,s])\n- i += 20\n- j += 20\n- a += 1\n- indexes.append(rec.name+":"+str(a))\n- df = pd.DataFrame(ALL, index=indexes, columns=[\'strand\',\'iniprom\',\'endprom\',\'seq\'])\n- return df\n-\n-#calculate the scores of all sequences (similar to get_posScores and get_negScores)\n-def get_testScores(loc,test):\n- scores = []\n- posis = []\n- sizes = []\n- dic = {}\n- for ind,row in test.iterrows():\n- _,window = ind.split(\':\')\n- strand = row[\'strand\']\n- ini = row[\'iniprom\']\n- end = row[\'endprom\']\n- seq = row[\'seq\']\n- pos = [ini,end,strand]\n- dic[window] = pos\n- s = seq\n- score10_6,pos10_6 = get_scores(os.path.join(loc,\'pssm10_6.txt\'), s)\n- maxi10_6 = get_max_pssm(os.path.join(loc,\'pssm10_6.txt\'))\n- score10_8,pos10_8 = get_scores(os.path.join(loc,\'pssm10_8.txt\'), s)\n- maxi10_8 = get_max_pssm(os.path.join(loc,\'pssm10_8.txt\'))\n- scores23,pos23 = get_scores(os.path.join(loc,\'pssm_23.txt\'), s)\n- maxi23 = get_max_pssm(os.path.join(loc,\'pssm_23.txt\'))\n- scores21,pos21 = get_scores(os.path.join(loc,\'pssm_21.txt\'), s)\n- maxi21 = get_max_pssm(os.path.join(loc,\'pssm_21.txt\'))\n- scores27,pos27 = get_scores(os.path.join(loc,\'pssm_27.txt\'), s)\n- maxi27 = get_max_pssm(os.path.join(loc,\'pssm_27.txt\'))\n- scores32,pos32 = get_scores(os.path.join(loc,\'pssm_32.txt\'), s)\n- maxi32 = get_max_pssm(os.path.join(loc,\'pssm_32.txt\'))\n- score23 = max(scores23)\n- score21 = max(scores21)\n- score27 = max(scores27)\n- score32 = max(scores32)\n- maxiphage = max(score23,score21,score27,score32)\n- if maxiphage == score23: phage_max = score23*maxi23\n- elif maxiphage == score21: phage_max = score21*maxi21\n- elif maxiphage == score27: phage_max = score27*maxi27\n- elif maxiphage == score32: phage_max = score32*maxi32\n- score35_6,pos35_6 = get_scores(os.path.join(loc,\'pssm35_6.txt\'), s)\n- maxi35_6 = get_max_pssm(os.path.join(loc,\'pssm35_6.txt\'))\n- score35_9,pos35_9 = get_scores(os.path.join(loc,\'pssm35_9.txt\'), s)\n- maxi35_9 = get_max_pssm(os.path.join(loc,\'pssm35_9.txt\'))\n- score35_t4,pos35_t4 = get_scores(os.path.join(loc,\'pssm35_t4.txt\'), s)\n- maxi35_t4 = get_max_pssm(os.path.join(loc,\'pssm35_t4.txt\'))\n- score35_cbb,pos35_cbb = get_scores(os.path.join(loc,\'pssm35_cbb.txt\'), s)\n- maxi35_cbb = get_max_pssm(os.path.join(loc,\'pssm35_cbb.txt\'))\n- score35_lb,pos35_lb = get_scores(os.path.join(loc,\'pssm35_lb.txt\'),s)\n- maxi35_lb = get_max_pssm(os.path.join(loc,\'pssm35_lb.txt\'))\n- score35_mu, pos35_mu = get_scores(os.path.join(loc,\'pssm35_mu.txt\'),s)\n- maxi35_mu = get_max_pssm(os.path.join(loc,\'pssm35_mu.txt\'))\n- \n- dists6 = []\n- score6 = []\n- for p in pos10_6:\n- for a in range(14,22):\n- d = p-a-6\n- '..b' inds = new_df.groups[g]\n- if len(inds) == 1: new_inds.append(inds[0])\n- else:\n- maxi = max(new_df.get_group(g)[\'Scores\'])\n- i = new_df.groups[g][new_df.get_group(g)[\'Scores\']==maxi][0]\n- new_inds.append(i)\n- \n- output = test.loc[new_inds,:]\n- strands = []\n- new_pos = []\n- old_pos = output[\'Positions\'].tolist()\n- \n- from Bio.SeqFeature import SeqFeature, FeatureLocation\n- feats = rec.features\n- for ind, row in output.iterrows():\n- pos = row[\'Positions\']\n- if \'complement\' in pos: \n- strands.append(\'-\')\n- new_pos.append(pos[10:])\n- ini,end= pos[11:-1].split(\'..\')\n- new_loc = FeatureLocation(int(ini),int(end),strand=-1)\n- else: \n- strands.append(\'+\')\n- new_pos.append(pos)\n- ini,end= pos[1:-1].split(\'..\')\n- new_loc = FeatureLocation(int(ini),int(end),strand=1)\n- feat = SeqFeature(new_loc, type=\'regulatory\',qualifiers={\'regulatory_class\':[\'promoter\'], \'note=\':[\'predicted by PhagePromoter\']})\n- feats.append(feat) \n- \n- output.insert(loc=0, column=\'Strand\', value=strands)\n- output[\'Positions\'] = new_pos\n- output.to_html(\'output.html\',index=False, justify=\'center\')\n- recs = []\n- i = 0\n- for ind,row in output.iterrows():\n- s = Seq(row[\'Promoter Sequence\'])\n- posis = old_pos[i]\n- typ = row[\'Type\']\n- score = row[\'Scores\']\n- sq = SeqRecord(seq=s, id=ind, description=typ+\' \'+posis+\' score=\'+str(score))\n- recs.append(sq)\n- i += 1\n- SeqIO.write(recs, \'output.fasta\',\'fasta\')\n- new_rec = rec\n- new_rec.seq.alphabet = IUPAC.IUPACAmbiguousDNA()\n- new_feats = sorted(feats, key=lambda x: x.location.start)\n- new_rec.features = new_feats\n- SeqIO.write(new_rec,\'output.gb\',\'genbank\')\n-\n-if __name__== "__main__":\n- \n- import sys\n- import os\n- __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))\n- \n- gen_format = sys.argv[1]\n- genome_file = sys.argv[2]\n- both = sys.argv[3]\n- threshold = sys.argv[4]\n- family = sys.argv[5]\n- host = sys.argv[6]\n- phage_type = sys.argv[7]\n- model = sys.argv[8]\n- \'\'\'\n- gen_format = \'genbank\'\n- genome_file = \'test-data/NC_015264.gb\'\n- both = False\n- threshold = \'0.50\'\n- family = \'Podoviridae\'\n- host = \'Pseudomonas\'\n- phage_type = \'virulent\'\n- model = \'SVM2400\'\n- #model = \'ANN1600\'\n- \'\'\'\n- \n- rec = SeqIO.read(genome_file, gen_format)\n- test_windows = get_testseqs65(gen_format, genome_file,both)\n- try: score_test,dic_window = get_testScores(__location__,test_windows)\n- except IndexError: print(\'Error. Input sequence can only have A,C,G or T\')\n- else:\n- df_test,df_testinfo = create_dftest(score_test,dic_window,family,host,phage_type)\n- if model == \'ANN1600\':\n- scaler_file = os.path.join(__location__, \'scaler1600.sav\')\n- model_file = os.path.join(__location__, \'model1600.sav\')\n- preds = get_predictions(scaler_file, model_file, df_test,df_testinfo,threshold)\n- if preds is None: print(\'There is no sequence with a score value higher or equal to the threshold \'+str(threshold))\n- elif type(preds) == str: print(preds)\n- else: output = get_finaldf(preds,rec)\n- else:\n- scaler_file = os.path.join(__location__, \'scaler2400.sav\')\n- model_file = os.path.join(__location__, \'model2400.sav\')\n- new_df_test = df_test.iloc[:,[0,1,2,3,4,5,6,7,8,9,13,14,16,17,19,20,22,24,25]]\n- preds = get_predictions(scaler_file, model_file, new_df_test,df_testinfo,threshold)\n- if preds is None: print(\'There is no sequence with a score value higher or equal to the threshold \'+str(threshold))\n- elif type(preds) == str: print(preds)\n- else: output = get_finaldf(preds,rec)\n- \n' |