Repository 'segmetrics'
hg clone https://toolshed.g2.bx.psu.edu/repos/imgteam/segmetrics

Changeset 4:7989264b5780 (2023-06-20)
Previous changeset 3:c496306c1cba (2022-10-08) Next changeset 5:ac55e2f4d9e3 (2023-11-13)
Commit message:
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/segmetrics/ commit 075271cee9cb9c2625c04dbefd903cdea6e74724
modified:
run-segmetrics.py
segmetrics.xml
test-data/results1.tsv
test-data/results2.tsv
removed:
test-data/results1.csv
test-data/results2.csv
b
diff -r c496306c1cba -r 7989264b5780 run-segmetrics.py
--- a/run-segmetrics.py Sat Oct 08 21:54:40 2022 +0000
+++ b/run-segmetrics.py Tue Jun 20 21:40:31 2023 +0000
[
@@ -1,5 +1,5 @@
 """
-Copyright 2022 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University.
+Copyright 2022-2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University.
 
 Distributed under the MIT license.
 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
@@ -7,127 +7,50 @@
 """
 
 import argparse
-import csv
-import itertools
 import pathlib
+import subprocess
 import tempfile
 import zipfile
 
-import numpy as np
-import segmetrics as sm
-import skimage.io
+import pandas as pd
 
 
-measures = [
-    ('dice', 'Dice', sm.regional.Dice()),
-    ('seg', 'SEG', sm.regional.ISBIScore()),
-    ('jc', 'Jaccard coefficient', sm.regional.JaccardSimilarityIndex()),
-    ('ji', 'Jaccard index', sm.regional.JaccardIndex()),
-    ('ri', 'Rand index', sm.regional.RandIndex()),
-    ('ari', 'Adjusted Rand index', sm.regional.AdjustedRandIndex()),
-    ('hsd_sym', 'HSD (sym)', sm.boundary.Hausdorff('sym')),
-    ('hsd_e2a', 'HSD (e2a)', sm.boundary.Hausdorff('e2a')),
-    ('hsd_a2e', 'HSD (a2e)', sm.boundary.Hausdorff('a2e')),
-    ('nsd', 'NSD', sm.boundary.NSD()),
-    ('o_hsd_sym', 'Ob. HSD (sym)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('sym'))),
-    ('o_hsd_e2a', 'Ob. HSD (e2a)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('e2a'))),
-    ('o_hsd_a2e', 'Ob. HSD (a2e)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('a2e'))),
-    ('o_nsd', 'Ob. NSD', sm.boundary.ObjectBasedDistance(sm.boundary.NSD())),
-    ('fs', 'Split', sm.detection.FalseSplit()),
-    ('fm', 'Merge', sm.detection.FalseMerge()),
-    ('fp', 'Spurious', sm.detection.FalsePositive()),
-    ('fn', 'Missing', sm.detection.FalseNegative()),
-]
-
-
-def process_batch(study, gt_filelist, seg_filelist, namelist, gt_is_unique, seg_is_unique):
-    for gt_filename, seg_filename, name in zip(gt_filelist, seg_filelist, namelist):
-        img_ref = skimage.io.imread(gt_filename)
-        img_seg = skimage.io.imread(seg_filename)
-        study.set_expected(img_ref, unique=gt_is_unique)
-        study.process(img_seg, unique=seg_is_unique, chunk_id=name)
-
-
-def aggregate(measure, values):
-    fnc = np.sum if measure.ACCUMULATIVE else np.mean
-    return fnc(values)
-
-
-def is_zip_filepath(filepath):
-    return filepath.lower().endswith('.zip')
-
-
-def is_image_filepath(filepath):
-    suffixes = ['png', 'tif', 'tiff']
-    return any((filepath.lower().endswith(f'.{suffix}') for suffix in suffixes))
+def process_batch(seg_dir, seg_file, gt_file, tsv_output_file, recursive, gt_unique, seg_unique, measures):
+    with tempfile.NamedTemporaryFile() as csv_output_file:
+        cmd = ['python', '-m', 'segmetrics.cli', str(seg_dir), str(seg_file), str(gt_file), str(csv_output_file.name), '--semicolon']
+        if recursive:
+            cmd.append('--recursive')
+        if gt_unique:
+            cmd.append('--gt-unique')
+        if seg_unique:
+            cmd.append('--seg-unique')
+        cmd += measures
+        subprocess.run(cmd, check=True)
+        df = pd.read_csv(csv_output_file.name, sep=';')
+        df.to_csv(str(tsv_output_file), sep='\t', index=False)
 
 
 if __name__ == "__main__":
     parser = argparse.ArgumentParser(description='Image segmentation and object detection performance measures for 2-D image data')
     parser.add_argument('input_seg', help='Path to the segmented image or image archive (ZIP)')
     parser.add_argument('input_gt', help='Path to the ground truth image or image archive (ZIP)')
-    parser.add_argument('results', help='Path to the results file (CSV)')
+    parser.add_argument('results', help='Path to the results file (TSV)')
     parser.add_argument('-unzip', action='store_true')
     parser.add_argument('-seg_unique', action='store_true')
     parser.add_argument('-gt_unique', action='store_true')
-    for measure in measures:
-        parser.add_argument(f'-measure-{measure[0]}', action='store_true', help=f'Include {measure[1]}')
-
+    parser.add_argument('measures', nargs='+', type=str, help='list of performance measures')
     args = parser.parse_args()
-    study = sm.study.Study()
-
-    used_measures = []
-    for measure in measures:
-        if getattr(args, f'measure_{measure[0]}'):
-            used_measures.append(measure)
-            study.add_measure(measure[2], measure[1])
 
     if args.unzip:
         zipfile_seg = zipfile.ZipFile(args.input_seg)
         zipfile_gt = zipfile.ZipFile(args.input_gt)
-        namelist = [filepath for filepath in zipfile_seg.namelist() if is_image_filepath(filepath) and filepath in zipfile_gt.namelist()]
-        print('namelist:', namelist)
         with tempfile.TemporaryDirectory() as tmpdir:
             basepath = pathlib.Path(tmpdir)
             gt_path, seg_path = basepath / 'gt', basepath / 'seg'
             zipfile_seg.extractall(str(seg_path))
             zipfile_gt.extractall(str(gt_path))
-            gt_filelist, seg_filelist = list(), list()
-            for filepath in namelist:
-                seg_filelist.append(str(seg_path / filepath))
-                gt_filelist.append(str(gt_path / filepath))
-            process_batch(study, gt_filelist, seg_filelist, namelist, args.gt_unique, args.seg_unique)
+            process_batch(seg_dir=seg_path, seg_file=rf'^{seg_path}/(.+\.(?:png|PNG|tif|TIF|tiff|TIFF))$', gt_file=gt_path / r'\1', tsv_output_file=args.results, recursive=True, gt_unique=args.gt_unique, seg_unique=args.seg_unique, measures=args.measures)
 
     else:
-        namelist = ['']
-        process_batch(study, [args.input_gt], [args.input_seg], namelist, args.gt_unique, args.seg_unique)
-
-    # define header
-    rows = [[''] + [measure[1] for measure in used_measures]]
-
-    # define rows
-    if len(namelist) > 1:
-        for chunk_id in namelist:
-            row = [chunk_id]
-            for measure in used_measures:
-                measure_name = measure[1]
-                measure = study.measures[measure_name]
-                chunks = study.results[measure_name]
-                row += [aggregate(measure, chunks[chunk_id])]
-            rows.append(row)
-
-    # define footer
-    rows.append([''])
-    for measure in used_measures:
-        measure_name = measure[1]
-        measure = study.measures[measure_name]
-        chunks = study.results[measure_name]
-        values = list(itertools.chain(*[chunks[chunk_id] for chunk_id in chunks]))
-        val = aggregate(measure, values)
-        rows[-1].append(val)
-
-    # write results
-    with open(args.results, 'w', newline='') as fout:
-        csv_writer = csv.writer(fout, delimiter='\t', quotechar='"', quoting=csv.QUOTE_MINIMAL)
-        for row in rows:
-            csv_writer.writerow(row)
+        seg_path = pathlib.Path(args.input_seg)
+        process_batch(seg_dir=seg_path.parent, seg_file=seg_path, gt_file=args.input_gt, tsv_output_file=args.results, recursive=False, gt_unique=args.gt_unique, seg_unique=args.seg_unique, measures=args.measures)
b
diff -r c496306c1cba -r 7989264b5780 segmetrics.xml
--- a/segmetrics.xml Sat Oct 08 21:54:40 2022 +0000
+++ b/segmetrics.xml Tue Jun 20 21:40:31 2023 +0000
[
b'@@ -1,8 +1,8 @@\n-<tool id="ip_segmetrics" name="SegMetrics" version="0.11.3-2" profile="20.05">\r\n+<tool id="ip_segmetrics" name="SegMetrics" version="1.4.0-1" profile="20.05">\r\n    <description>image segmentation and object detection performance measures</description>\r\n    <requirements> \r\n-        <requirement type="package" version="0.11.3">segmetrics</requirement>\r\n-        <requirement type="package" version="0.18.1">scikit-image</requirement>\r\n+        <requirement type="package" version="1.4">segmetrics</requirement>\r\n+        <requirement type="package" version="0.23.4">pandas</requirement>\r\n    </requirements>\r\n    <command detect_errors="aggressive">\r\n    <![CDATA[\r\n@@ -13,24 +13,28 @@\n    $unzip\r\n    $is_seg_unique\r\n    $is_gt_unique\r\n-   $measures.dice\r\n-   $measures.seg\r\n-   $measures.jc\r\n-   $measures.ji\r\n-   $measures.ri\r\n-   $measures.ari\r\n-   $measures.hsd_sym\r\n-   $measures.hsd_e2a\r\n-   $measures.hsd_a2e\r\n-   $measures.nsd\r\n-   $measures.o_hsd_sym\r\n-   $measures.o_hsd_e2a\r\n-   $measures.o_hsd_a2e\r\n-   $measures.o_nsd\r\n-   $measures.fs\r\n-   $measures.fm\r\n-   $measures.fp\r\n-   $measures.fn\r\n+   #for $m in $measures\r\n+       #set $kwargs = \'\'\r\n+       #set $suffix = \'\'\r\n+       #set $is_distance = False\r\n+       #if str($m.measure_type.measure_type_selector) == \'ISBIScore\':\r\n+           #set $kwargs = \'min_ref_size=\' + str($m.measure_type.min_ref_size) + \', \'\r\n+       #elif str($m.measure_type.measure_type_selector) == \'Hausdorff\':\r\n+           #set $kwargs = \'mode="\' + str($m.measure_type.mode) + \'", quantile=\' + str($m.measure_type.quantile) + \', \'\r\n+           #set $is_distance = True\r\n+       #elif str($m.measure_type.measure_type_selector) == \'NSD\':\r\n+           #set $is_distance = True\r\n+       #end if\r\n+       #if $is_distance:\r\n+           #if $m.measure_type.object_based:\r\n+               #set $suffix = \'.object_based()\'\r\n+           #end if\r\n+       #end if\r\n+       #if str($m.measure_type.aggregation) != \'\':\r\n+           #set $kwargs = \'aggregation="\' + str($m.measure_type.aggregation) + \'", \' + $kwargs\r\n+       #end if\r\n+       \'sm.${m.measure_type.measure_type_selector}(${kwargs})${suffix}\'\r\n+   #end for\r\n    ]]>\r\n    </command>\r\n    <inputs>\r\n@@ -43,46 +47,260 @@\n         <param name="is_seg_unique" type="boolean" checked="false" truevalue="-seg_unique" falsevalue="" label="Segmentation is uniquely labeled" />\r\n         <param name="is_gt_unique"  type="boolean" checked="false" truevalue="-gt_unique"  falsevalue="" label="Ground truth is uniquely labeled" />\r\n \r\n-        <section name="measures" title="Performance measures" >\r\n-            <param name="dice" type="boolean" checked="true"  truevalue="-measure-dice" falsevalue="" label="Dice" />\r\n-            <param name="seg"  type="boolean" checked="true"  truevalue="-measure-seg"  falsevalue="" label="SEG" />\r\n-            <param name="jc"   type="boolean" checked="false" truevalue="-measure-jc"   falsevalue="" label="Jaccard coefficient" />\r\n-            <param name="ji"   type="boolean" checked="true"  truevalue="-measure-ji"   falsevalue="" label="Jaccard index" />\r\n-            <param name="ri"   type="boolean" checked="false" truevalue="-measure-ri"   falsevalue="" label="Rand index" />\r\n-            <param name="ari"  type="boolean" checked="false" truevalue="-measure-ari"  falsevalue="" label="Adjusted Rand index" />\r\n-            <param name="hsd_sym" type="boolean" checked="false" truevalue="-measure-hsd_sym" falsevalue="" label="Hausdorff distance (symmetric)" />\r\n-            <param name="hsd_e2a" type="boolean" checked="false" truevalue="-measure-hsd_e2a" falsevalue="" label="Hausdorff distance (ground truth to segmented)" />\r\n-            <param name="hsd_a2e" type="boolean" checked="false" truevalue="-measure-hsd_a2e" falsevalue="" label="Hausdorff distance (segmented to ground truth)" />\r\n-            <param name="nsd"     type="boolean" checked="false" truevalue="-measure-nsd"     falsevalue="" label="Normalized sum of distances" /'..b'unzip" value="true"/>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="Dice" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="ISBIScore" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="JaccardCoefficient" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="JaccardIndex" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="RandIndex" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="AdjustedRandIndex" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="Hausdorff" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="Hausdorff" />\r\n+                    <param name="quantile" value="0.9" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="Hausdorff" />\r\n+                    <param name="object_based" value="true" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="NSD" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="NSD" />\r\n+                    <param name="object_based" value="true" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="FalseSplit" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="FalseMerge" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="FalsePositive" />\r\n+                </conditional>\r\n+            </repeat>\r\n+            <repeat name="measures">\r\n+                <conditional name="measure_type">\r\n+                    <param name="measure_type_selector" value="FalseNegative" />\r\n+                </conditional>\r\n+            </repeat>\r\n         </test>\r\n     </tests>\r\n     <help>\r\n@@ -96,5 +314,6 @@\n         <citation type="doi">10.1093/bioinformatics/btu080</citation>\r\n         <citation type="doi">10.1109/ISBI.2009.5193098</citation>\r\n         <citation type="doi">10.1109/ICIP.2003.1246871</citation>\r\n+        <citation type="doi">10.1023/A:1007975324482</citation>\r\n     </citations>\r\n </tool>\r\n'
b
diff -r c496306c1cba -r 7989264b5780 test-data/results1.csv
--- a/test-data/results1.csv Sat Oct 08 21:54:40 2022 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,2 +0,0 @@
-,Dice,SEG,Jaccard index,Ob. HSD (sym),Ob. NSD,Split,Merge,Spurious,Missing
-,0.5473684210526316,0.291005291005291,1.6238374627624792,141.68949443548658,0.8175405481022531,0,1,2,0
b
diff -r c496306c1cba -r 7989264b5780 test-data/results1.tsv
--- a/test-data/results1.tsv Sat Oct 08 21:54:40 2022 +0000
+++ b/test-data/results1.tsv Tue Jun 20 21:40:31 2023 +0000
b
@@ -1,2 +1,2 @@
- Dice SEG Jaccard index Ob. HSD (sym) Ob. NSD Split Merge Spurious Missing
- 0.5473684210526316 0.291005291005291 1.6238374627624792 141.68949443548658 0.8175405481022531 0 1 2 0
+Sample Dice SEG Jaccard coef. Jaccard index Rand ARI HSD (sym) HSD (sym, Q=0.9) Ob. HSD (sym) NSD Ob. NSD Split Merge Spurious Missing
+ 0.5473684210526316 0.14285714285714285 0.37681159420289856 1.6238374627624792 0.7151668606674426 0.3776254329131262 179.0 94.0 142.42099468121046 0.5911414982164089 0.7765050343914003 1.0 0.0 0.0 2.0
b
diff -r c496306c1cba -r 7989264b5780 test-data/results2.csv
--- a/test-data/results2.csv Sat Oct 08 21:54:40 2022 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,4 +0,0 @@
-,Dice,SEG,Jaccard index,Ob. HSD (sym),Ob. NSD,Split,Merge,Spurious,Missing
-directory/img1.png,0.5473684210526316,0.14285714285714285,1.6238374627624792,142.42099468121046,0.7765050343914003,1,0,0,2
-directory/img2.png,0.5473684210526316,0.291005291005291,1.6238374627624792,141.68949443548658,0.8175405481022531,0,1,2,0
-,0.5473684210526316,0.2169312169312169,1.6238374627624792,142.0552445583485,0.7970227912468267,1,1,2,2
b
diff -r c496306c1cba -r 7989264b5780 test-data/results2.tsv
--- a/test-data/results2.tsv Sat Oct 08 21:54:40 2022 +0000
+++ b/test-data/results2.tsv Tue Jun 20 21:40:31 2023 +0000
b
@@ -1,4 +1,4 @@
- Dice SEG Jaccard index Ob. HSD (sym) Ob. NSD Split Merge Spurious Missing
-directory/img1.png 0.5473684210526316 0.14285714285714285 1.6238374627624792 142.42099468121046 0.7765050343914003 1 0 0 2
-directory/img2.png 0.5473684210526316 0.291005291005291 1.6238374627624792 141.68949443548658 0.8175405481022531 0 1 2 0
- 0.5473684210526316 0.2169312169312169 1.6238374627624792 142.0552445583485 0.7970227912468267 1 1 2 2
+Sample Dice SEG Jaccard coef. Jaccard index Rand ARI HSD (sym) HSD (sym, Q=0.9) Ob. HSD (sym) NSD Ob. NSD Split Merge Spurious Missing
+directory/img1.png 0.5473684210526316 0.14285714285714285 0.37681159420289856 1.6238374627624792 0.7151668606674426 0.3776254329131262 179.0 94.0 142.42099468121046 0.5911414982164089 0.7765050343914003 1.0 0.0 0.0 2.0
+directory/img2.png 0.5473684210526316 0.291005291005291 0.37681159420289856 1.6238374627624792 0.7151668606674426 0.3776254329131262 179.0 94.0 141.6894944354866 0.8107992461737683 0.8175405481022531 0.0 1.0 2.0 0.0
+ 0.5473684210526316 0.2169312169312169 0.37681159420289856 1.6238374627624792 0.7151668606674426 0.3776254329131262 179.0 94.0 142.0552445583485 0.7009703721950886 0.7970227912468267 0.5 0.5 1.0 1.0