Mercurial > repos > artbio > wisecondorx
changeset 0:bf0ebc9921f2 draft default tip
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/wisecondorx commit b391b0f3348bd86a5c276dc4d3ff9dc98890c115
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/macro.xml Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,54 @@ +<macros> + <token name="@VERSION@">1.2.9</token> + <token name="@WRAPPER_VERSION@">@VERSION@+galaxy0</token> + <token name="@PROFILE@">23.0</token> + <token name="@pipefail@"><![CDATA[set -o | grep -q pipefail && set -o pipefail;]]></token> + + <xml name="requirements"> + <requirements> + <requirement type="package" version="@VERSION@">wisecondorx</requirement> + </requirements> + </xml> +<token name="@help@"><![CDATA[ +**What it does** + +WisecondorX, which uses a within-sample normalization technique, detects Copy +Number Variation from BAM input files. + +It is important that **no** read quality filtering is executed prior to running +WisecondorX: this software requires low-quality reads to distinguish informative +bins from non-informative ones. + +There are three main stages (converting, reference build and predicting) when +using WisecondorX: + +**1. Convert .bam files** of aligned reads to .npz files (for both normal and +tumor samples) using the Galaxy tool **WisecondorX convert bam to npz** + +**2. Buid a reference index** from .npz files from **normal** samples using the +Galaxy tool **WisecondorX build reference**. + +.. class:: warningmark + +Automated gender prediction, required to consistently analyze sex chromosomes, +is based on a Gaussian mixture model. If few samples (<20) are included during +reference creation, or not both male and female samples (for NIPT, this means +male and female feti) are represented, this process might not be accurate. +Therefore, alternatively, one can manually tweak the --yfrac parameter. + +.. class:: warningmark + +It is of paramount importance that the reference set consists of exclusively +negative (normal) control samples that originate from the same sequencer, mapper, +reference genome, type of material, ... etc, as the test samples. As a rule of +thumb, think of all laboratory and in silico steps: the more sources of bias that +can be omitted, the better. + +Try to include at least 50 samples per reference. The more the better, yet, from +500 on it is unlikely to observe additional improvement concerning normalization. + +**3. Predict Copy Number Variantions** from the reference index and tumor .npz cases +of interest using the Galaxy tool **WisecondorX predict CNVs** + +]]></token> +</macros>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/predict_abberations.bed Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,1 @@ +chr start end ratio zscore type
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/predict_bins.bed Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,317 @@ +chr start end id ratio zscore +1 1 10000000 1:1-10000000 -0.04954355067336978 -2.037779916912006 +1 10000001 20000000 1:10000001-20000000 -0.0014125779425643093 -0.10001714481146037 +1 20000001 30000000 1:20000001-30000000 0.03234067338674368 1.2980967255857836 +1 30000001 40000000 1:30000001-40000000 -0.05792484774617053 -2.368843340065259 +1 40000001 50000000 1:40000001-50000000 -0.005917668648292321 -0.28611096420702337 +1 50000001 60000000 1:50000001-60000000 0.027222337313954202 1.0803833003975123 +1 60000001 70000000 1:60000001-70000000 0.001622777753055444 0.022058864259069184 +1 70000001 80000000 1:70000001-80000000 -0.05799699406684357 -2.3707385223877 +1 80000001 90000000 1:80000001-90000000 0.00588429639147958 0.1903304132858065 +1 90000001 100000000 1:90000001-100000000 0.030649821750973732 1.2139067743425338 +1 100000001 110000000 1:100000001-110000000 0.027260132141565016 1.0727685056320349 +1 110000001 120000000 1:110000001-120000000 -0.056066962637539804 -2.2951856527187857 +1 120000001 130000000 1:120000001-130000000 nan nan +1 130000001 140000000 1:130000001-140000000 nan nan +1 140000001 150000000 1:140000001-150000000 nan nan +1 150000001 160000000 1:150000001-160000000 0.0036776352926055794 0.10631830206530807 +1 160000001 170000000 1:160000001-170000000 0.019979760786727363 0.7790569003775082 +1 170000001 180000000 1:170000001-180000000 0.01218078148994715 0.45626847689288696 +1 180000001 190000000 1:180000001-190000000 0.01982283178473716 0.7725446196936347 +1 190000001 200000000 1:190000001-200000000 0.019669120994075504 0.7578978968471597 +1 200000001 210000000 1:200000001-210000000 0.0056577906518882086 0.18762820296782867 +1 210000001 220000000 1:210000001-220000000 -0.005404940057200173 -0.27046300245467336 +1 220000001 230000000 1:220000001-230000000 0.04106394246383599 1.6604864744571954 +1 230000001 240000000 1:230000001-240000000 0.03964876380671275 1.5944038069078865 +1 240000001 250000000 1:240000001-250000000 0.01923471847788136 0.7431094841792917 +2 1 10000000 2:1-10000000 0.0027732580442541557 0.09592986629069632 +2 10000001 20000000 2:10000001-20000000 -0.04417041240683002 -1.7440317939360588 +2 20000001 30000000 2:20000001-30000000 0.03931146470665246 1.5700629070964323 +2 30000001 40000000 2:30000001-40000000 -0.009981616066552599 -0.3909610094600971 +2 40000001 50000000 2:40000001-50000000 -0.035013719310128276 -1.3699557444533885 +2 50000001 60000000 2:50000001-60000000 -0.0071616827098629965 -0.2796062894640207 +2 60000001 70000000 2:60000001-70000000 0.06675510994417017 2.7182468891298712 +2 70000001 80000000 2:70000001-80000000 0.013121236713972556 0.509636304344645 +2 80000001 90000000 2:80000001-90000000 -0.009563272892219057 -0.39023772276383 +2 90000001 100000000 2:90000001-100000000 -0.002844543416171229 -0.12385567729177185 +2 100000001 110000000 2:100000001-110000000 0.01269985506999403 0.49273167938791973 +2 110000001 120000000 2:110000001-120000000 0.029794752397371067 1.1825084695041725 +2 120000001 130000000 2:120000001-130000000 0.009163680867146216 0.351064902222141 +2 130000001 140000000 2:130000001-140000000 -0.03898047985269028 -1.5435430682046571 +2 140000001 150000000 2:140000001-150000000 0.024876454303863278 1.0009319649132058 +2 150000001 160000000 2:150000001-160000000 0.046367652919019 1.875992302744168 +2 160000001 170000000 2:160000001-170000000 0.006770177844757872 0.27374626472268265 +2 170000001 180000000 2:170000001-180000000 0.03468272759641676 1.3870463922884202 +2 180000001 190000000 2:180000001-190000000 -0.008751650071693056 -0.34241835512383506 +2 190000001 200000000 2:190000001-200000000 0.01189846645102963 0.47878345298203673 +2 200000001 210000000 2:200000001-210000000 0.032503572676526454 1.2982315277646297 +2 210000001 220000000 2:210000001-220000000 0.006732446946626011 0.2538656626779531 +2 220000001 230000000 2:220000001-230000000 0.00879518825265517 0.3363222597995061 +2 230000001 240000000 2:230000001-240000000 -0.00612942823405461 -0.2576276451616943 +2 240000001 250000000 2:240000001-250000000 0.009553518725203155 0.35296997093197735 +3 1 10000000 3:1-10000000 -0.01466784269115177 -0.5947413437587377 +3 10000001 20000000 3:10000001-20000000 0.0006803639274978161 0.02991343054413471 +3 20000001 30000000 3:20000001-30000000 0.03626428979108492 1.4414940478750902 +3 30000001 40000000 3:30000001-40000000 -0.002411609641887197 -0.0925915491819718 +3 40000001 50000000 3:40000001-50000000 0.02606520518211619 1.0456571104256696 +3 50000001 60000000 3:50000001-60000000 -0.02257971490929995 -0.9046519731933667 +3 60000001 70000000 3:60000001-70000000 -0.010355866482824931 -0.42512290812506043 +3 70000001 80000000 3:70000001-80000000 0.015154166320070364 0.5887928441103882 +3 80000001 90000000 3:80000001-90000000 -0.00497735165335301 -0.21283868342391904 +3 90000001 100000000 3:90000001-100000000 0.002775390720006417 0.09454968251151652 +3 100000001 110000000 3:100000001-110000000 -0.006941438659249518 -0.27159140413669847 +3 110000001 120000000 3:110000001-120000000 0.017449136939365093 0.6808902592696677 +3 120000001 130000000 3:120000001-130000000 0.039603066557635215 1.5775036700033926 +3 130000001 140000000 3:130000001-140000000 -0.05574880056816877 -2.165018940031337 +3 140000001 150000000 3:140000001-150000000 0.009079136748998486 0.36400372857442803 +3 150000001 160000000 3:150000001-160000000 0.007673556073564363 0.30795628717191564 +3 160000001 170000000 3:160000001-170000000 0.016065357476104165 0.6253415066507858 +3 170000001 180000000 3:170000001-180000000 0.019283370166292845 0.772538228327987 +3 180000001 190000000 3:180000001-190000000 0.035367835016245276 1.4223882780200756 +3 190000001 200000000 3:190000001-200000000 0.008163161661156727 0.3091442737466669 +4 1 10000000 4:1-10000000 0.019023926174197625 0.780926258430245 +4 10000001 20000000 4:10000001-20000000 -0.028616830811875157 -1.1303008627501279 +4 20000001 30000000 4:20000001-30000000 -0.007535897131051102 -0.29547666880818185 +4 30000001 40000000 4:30000001-40000000 0.01983374887869882 0.8067465442892596 +4 40000001 50000000 4:40000001-50000000 nan nan +4 50000001 60000000 4:50000001-60000000 -0.03704871063679293 -1.4608105752125293 +4 60000001 70000000 4:60000001-70000000 0.0042338377059430365 0.17594953899918941 +4 70000001 80000000 4:70000001-80000000 0.06504086164699512 2.685750096479181 +4 80000001 90000000 4:80000001-90000000 0.00772362961629779 0.322380624841718 +4 90000001 100000000 4:90000001-100000000 -0.003214171984189293 -0.12282049682396343 +4 100000001 110000000 4:100000001-110000000 -0.008222085723295677 -0.3228428711622289 +4 110000001 120000000 4:110000001-120000000 -0.004524570858963519 -0.17522656511481444 +4 120000001 130000000 4:120000001-130000000 0.027946751005051437 1.1375093694835547 +4 130000001 140000000 4:130000001-140000000 -0.025080115515575138 -0.9910939305831569 +4 140000001 150000000 4:140000001-150000000 0.03941855630160674 1.60839479588927 +4 150000001 160000000 4:150000001-160000000 0.03851579573393887 1.5803611394447576 +4 160000001 170000000 4:160000001-170000000 -0.016708597497548102 -0.6602235839350833 +4 170000001 180000000 4:170000001-180000000 -0.056977817874276415 -2.234348735531656 +4 180000001 190000000 4:180000001-190000000 -0.023378499931675647 -0.9239957753594855 +4 190000001 200000000 4:190000001-200000000 nan nan +5 1 10000000 5:1-10000000 -0.00306199917667051 -0.10999742274805305 +5 10000001 20000000 5:10000001-20000000 0.0281742316747647 1.122429739483895 +5 20000001 30000000 5:20000001-30000000 0.00695048391499073 0.27990942857471385 +5 30000001 40000000 5:30000001-40000000 -0.013150375638286972 -0.5038875399187397 +5 40000001 50000000 5:40000001-50000000 -0.02235540445105575 -0.863822626607884 +5 50000001 60000000 5:50000001-60000000 0.012710258248314624 0.505149936502488 +5 60000001 70000000 5:60000001-70000000 0.0012495311181744718 0.0540547278705283 +5 70000001 80000000 5:70000001-80000000 -0.006046050399487714 -0.2267992657619049 +5 80000001 90000000 5:80000001-90000000 -0.017555145280223675 -0.6783791792534998 +5 90000001 100000000 5:90000001-100000000 0.02233077023287514 0.886590549839599 +5 100000001 110000000 5:100000001-110000000 -0.0008293353545546364 -0.02583528041363425 +5 110000001 120000000 5:110000001-120000000 0.005581575721617287 0.22414325046463504 +5 120000001 130000000 5:120000001-130000000 0.00040123420158686676 0.02241605475362191 +5 130000001 140000000 5:130000001-140000000 -0.0074605221717828 -0.2863851033219454 +5 140000001 150000000 5:140000001-150000000 -0.03776908431064265 -1.455128924832699 +5 150000001 160000000 5:150000001-160000000 -0.026243422513507204 -1.0131892245278722 +5 160000001 170000000 5:160000001-170000000 -0.0044146963164516054 -0.16618491394222842 +5 170000001 180000000 5:170000001-180000000 -0.0024330270195577625 -0.08388585135697793 +5 180000001 190000000 5:180000001-190000000 -0.1973323889477154 -7.223768700045383 +6 1 10000000 6:1-10000000 0.015732205056039218 0.6488370403836113 +6 10000001 20000000 6:10000001-20000000 0.016474594142635187 0.678812569982653 +6 20000001 30000000 6:20000001-30000000 0.022742303949138544 0.9289173881353457 +6 30000001 40000000 6:30000001-40000000 -0.004467655671153028 -0.16088335961833417 +6 40000001 50000000 6:40000001-50000000 -0.0038899170762250516 -0.13788159692865976 +6 50000001 60000000 6:50000001-60000000 -0.0016253998352964258 -0.047634505700625496 +6 60000001 70000000 6:60000001-70000000 -0.004317712071245596 -0.1582753277490494 +6 70000001 80000000 6:70000001-80000000 -0.04268459065527676 -1.6591244086512715 +6 80000001 90000000 6:80000001-90000000 -0.02183031073338951 -0.8478698467895686 +6 90000001 100000000 6:90000001-100000000 -0.027804161344918595 -1.0843724156593495 +6 100000001 110000000 6:100000001-110000000 0.05839753416678761 2.389501041447716 +6 110000001 120000000 6:110000001-120000000 -0.01912543337813187 -0.7413891553212635 +6 120000001 130000000 6:120000001-130000000 0.014601532288707256 0.6032133616492037 +6 130000001 140000000 6:130000001-140000000 0.030998544327021007 1.2683612600437637 +6 140000001 150000000 6:140000001-150000000 -0.0045757610856260135 -0.1659717200904195 +6 150000001 160000000 6:150000001-160000000 0.0136504203166922 0.5622167940240991 +6 160000001 170000000 6:160000001-170000000 0.0076497367597900155 0.3240603705379399 +6 170000001 180000000 6:170000001-180000000 nan nan +7 1 10000000 7:1-10000000 0.00021687862047283443 0.01608266014120184 +7 10000001 20000000 7:10000001-20000000 -0.008008197860314741 -0.3127086986891882 +7 20000001 30000000 7:20000001-30000000 -0.010881082630011073 -0.4270972886971947 +7 30000001 40000000 7:30000001-40000000 0.03283068331119261 1.3382341523779333 +7 40000001 50000000 7:40000001-50000000 -0.04754798691192537 -1.8672184447907472 +7 50000001 60000000 7:50000001-60000000 -0.027813804877284704 -1.0978988847620363 +7 60000001 70000000 7:60000001-70000000 -0.0071838735903256914 -0.2798448058325481 +7 70000001 80000000 7:70000001-80000000 -0.04755958950415205 -1.8697333860041419 +7 80000001 90000000 7:80000001-90000000 -0.0020513975004469703 -0.0748019391109327 +7 90000001 100000000 7:90000001-100000000 0.015349323432009062 0.6258123003554703 +7 100000001 110000000 7:100000001-110000000 0.029405814837298733 1.1979789192944108 +7 110000001 120000000 7:110000001-120000000 -0.014588924887045012 -0.5743947626673926 +7 120000001 130000000 7:120000001-130000000 -0.0023758370502534516 -0.08778493662338653 +7 130000001 140000000 7:130000001-140000000 -0.011017332583464766 -0.4325166470673458 +7 140000001 150000000 7:140000001-150000000 0.029706760504426402 1.2102899091357635 +7 150000001 160000000 7:150000001-160000000 -0.03433024672838011 -1.3537860541419655 +8 1 10000000 8:1-10000000 0.0206319449059327 0.8182802530279543 +8 10000001 20000000 8:10000001-20000000 0.038619330667521164 1.5700761928476445 +8 20000001 30000000 8:20000001-30000000 -0.0638579942688208 -2.506204887964693 +8 30000001 40000000 8:30000001-40000000 -0.011734582889841628 -0.46682866835128656 +8 40000001 50000000 8:40000001-50000000 -0.031494502397302844 -1.2503853113214545 +8 50000001 60000000 8:50000001-60000000 0.008510416787427661 0.34139310443421944 +8 60000001 70000000 8:60000001-70000000 -0.023897900212908545 -0.9515050404320594 +8 70000001 80000000 8:70000001-80000000 0.017532804240236205 0.70653093097801 +8 80000001 90000000 8:80000001-90000000 0.020977868179333847 0.8465568956728705 +8 90000001 100000000 8:90000001-100000000 0.019529059695413593 0.7891355936784927 +8 100000001 110000000 8:100000001-110000000 -0.009372010272758387 -0.37286404501355586 +8 110000001 120000000 8:110000001-120000000 -0.04350484795453549 -1.7197203517706365 +8 120000001 130000000 8:120000001-130000000 -0.01001300559828008 -0.3982858046251174 +8 130000001 140000000 8:130000001-140000000 -0.027278377664516667 -1.0863311105342262 +8 140000001 150000000 8:140000001-150000000 -0.0434510360509685 -1.7208233888905153 +9 1 10000000 9:1-10000000 0.00939095744597003 0.37154175158765707 +9 10000001 20000000 9:10000001-20000000 0.0019249124835837665 0.07342608914972887 +9 20000001 30000000 9:20000001-30000000 nan nan +9 30000001 40000000 9:30000001-40000000 -0.006796307090005416 -0.2727496852182093 +9 40000001 50000000 9:40000001-50000000 nan nan +9 50000001 60000000 9:50000001-60000000 nan nan +9 60000001 70000000 9:60000001-70000000 nan nan +9 70000001 80000000 9:70000001-80000000 0.0025526559473861327 0.0981313556088763 +9 80000001 90000000 9:80000001-90000000 -0.02448900495179313 -0.968970897673129 +9 90000001 100000000 9:90000001-100000000 0.024891848129699464 0.9954336107390866 +9 100000001 110000000 9:100000001-110000000 0.018809839649419256 0.7498408267228337 +9 110000001 120000000 9:110000001-120000000 -0.04960957964146416 -1.942777261947177 +9 120000001 130000000 9:120000001-130000000 -0.00880375959644314 -0.35207401910845065 +9 130000001 140000000 9:130000001-140000000 -0.00961278379143818 -0.3842451478426133 +10 1 10000000 10:1-10000000 -0.025282396561535605 -1.0051701514792954 +10 10000001 20000000 10:10000001-20000000 0.014700629086388927 0.5970088802031047 +10 20000001 30000000 10:20000001-30000000 0.03226806397356753 1.3151250942193684 +10 30000001 40000000 10:30000001-40000000 -0.044954214404446385 -1.777300103274846 +10 40000001 50000000 10:40000001-50000000 -0.08566090692175034 -3.4192839149753174 +10 50000001 60000000 10:50000001-60000000 -0.0002981917221372385 -0.009226194426872652 +10 60000001 70000000 10:60000001-70000000 0.005933641740981277 0.24189224310483795 +10 70000001 80000000 10:70000001-80000000 -0.02021300199741985 -0.80448151484732 +10 80000001 90000000 10:80000001-90000000 -0.032276367309482405 -1.2808944140132101 +10 90000001 100000000 10:90000001-100000000 -0.03001445466447732 -1.1907196189948817 +10 100000001 110000000 10:100000001-110000000 0.030702786791715383 1.250784726710977 +10 110000001 120000000 10:110000001-120000000 0.041646696009583324 1.7020972757726456 +10 120000001 130000000 10:120000001-130000000 0.023523487829799603 0.9565739621521425 +10 130000001 140000000 10:130000001-140000000 0.016196438602470276 0.66113114292475 +11 1 10000000 11:1-10000000 -0.03581463295432329 -1.401227458445462 +11 10000001 20000000 11:10000001-20000000 -0.017426172731554397 -0.6840871824118568 +11 20000001 30000000 11:20000001-30000000 -0.016057168068517712 -0.6310352631494758 +11 30000001 40000000 11:30000001-40000000 0.028593228960990178 1.1524815930111891 +11 40000001 50000000 11:40000001-50000000 0.024046428670010934 0.9683294352339441 +11 50000001 60000000 11:50000001-60000000 0.07314593248780782 3.0785594770749514 +11 60000001 70000000 11:60000001-70000000 -0.02231004227988148 -0.8764230177364339 +11 70000001 80000000 11:70000001-80000000 -0.011843445202051618 -0.4612881506573179 +11 80000001 90000000 11:80000001-90000000 0.02013371494259112 0.8103226720367603 +11 90000001 100000000 11:90000001-100000000 -0.013531497054077872 -0.531615896319081 +11 100000001 110000000 11:100000001-110000000 -0.02063422614779682 -0.8107615887621088 +11 110000001 120000000 11:110000001-120000000 0.016014952692370556 0.6509540447682887 +11 120000001 130000000 11:120000001-130000000 -0.009585136504013464 -0.3759242928080648 +11 130000001 140000000 11:130000001-140000000 -0.029685439779832762 -1.1626572875695504 +12 1 10000000 12:1-10000000 0.04585161432403065 1.8983401150846326 +12 10000001 20000000 12:10000001-20000000 -0.023303772572693334 -0.9188252776378798 +12 20000001 30000000 12:20000001-30000000 0.020644315173378985 0.8495055595070082 +12 30000001 40000000 12:30000001-40000000 -0.049162667885723314 -1.9344085270918951 +12 40000001 50000000 12:40000001-50000000 -0.0082981643232976 -0.32109393356467186 +12 50000001 60000000 12:50000001-60000000 0.000859952443344143 0.04677607044841259 +12 60000001 70000000 12:60000001-70000000 0.026913795813337957 1.1061885853025268 +12 70000001 80000000 12:70000001-80000000 -0.018566870097600816 -0.730090634783613 +12 80000001 90000000 12:80000001-90000000 -0.029162570168812678 -1.1502818710671616 +12 90000001 100000000 12:90000001-100000000 -0.007273742063167581 -0.28006008566146756 +12 100000001 110000000 12:100000001-110000000 -0.07954015039252423 -3.1064146584347982 +12 110000001 120000000 12:110000001-120000000 -0.00039144919853810727 -0.0020859199471905693 +12 120000001 130000000 12:120000001-130000000 0.049086335033781195 2.026816643189698 +12 130000001 140000000 12:130000001-140000000 -0.021744777628390038 -0.8631011291002287 +13 1 10000000 13:1-10000000 nan nan +13 10000001 20000000 13:10000001-20000000 nan nan +13 20000001 30000000 13:20000001-30000000 -0.009656753617364098 -0.36729210552032326 +13 30000001 40000000 13:30000001-40000000 0.042061924743976936 1.7302316151921193 +13 40000001 50000000 13:40000001-50000000 0.055373175144399024 2.2816529396093266 +13 50000001 60000000 13:50000001-60000000 -0.01667652168496713 -0.6457846781153704 +13 60000001 70000000 13:60000001-70000000 0.008346377008774032 0.3520582734267505 +13 70000001 80000000 13:70000001-80000000 -0.002554264101621818 -0.08477369667991035 +13 80000001 90000000 13:80000001-90000000 -0.00534912014120097 -0.1962231214032517 +13 90000001 100000000 13:90000001-100000000 -0.008908840705848515 -0.3376075679247741 +13 100000001 110000000 13:100000001-110000000 0.02150370071364117 0.8837193830095974 +13 110000001 120000000 13:110000001-120000000 0.007256660392835141 0.3126957510931542 +14 1 10000000 14:1-10000000 nan nan +14 10000001 20000000 14:10000001-20000000 nan nan +14 20000001 30000000 14:20000001-30000000 -0.006626145326900847 -0.2561565594381251 +14 30000001 40000000 14:30000001-40000000 -0.015509173662509394 -0.6143267630669463 +14 40000001 50000000 14:40000001-50000000 0.02149949964626884 0.8800890548705425 +14 50000001 60000000 14:50000001-60000000 0.03679880936188848 1.5091649420610784 +14 60000001 70000000 14:60000001-70000000 0.053773215331583905 2.214968649614744 +14 70000001 80000000 14:70000001-80000000 0.021317126214166163 0.8785517000899401 +14 80000001 90000000 14:80000001-90000000 -0.03151336720618568 -1.2500552624481234 +14 90000001 100000000 14:90000001-100000000 -0.0416870692710144 -1.650184415935656 +14 100000001 110000000 14:100000001-110000000 0.0035058727944338825 0.1490161232441591 +15 1 10000000 15:1-10000000 nan nan +15 10000001 20000000 15:10000001-20000000 nan nan +15 20000001 30000000 15:20000001-30000000 nan nan +15 30000001 40000000 15:30000001-40000000 0.007651171848000582 0.31475373097690357 +15 40000001 50000000 15:40000001-50000000 0.05016403399546734 2.0638124180547837 +15 50000001 60000000 15:50000001-60000000 -0.033641545470941475 -1.3331935846842662 +15 60000001 70000000 15:60000001-70000000 0.0032394081307219507 0.1364261219479641 +15 70000001 80000000 15:70000001-80000000 -0.013406817539286676 -0.5319858771048407 +15 80000001 90000000 15:80000001-90000000 -0.02241717655226552 -0.8907392725849449 +15 90000001 100000000 15:90000001-100000000 -0.023091155667494666 -0.9174842369620465 +15 100000001 110000000 15:100000001-110000000 0.04875490806051794 2.011437626389599 +16 1 10000000 16:1-10000000 0.015613534890434941 0.6237512966184409 +16 10000001 20000000 16:10000001-20000000 0.0005439011028519588 0.01255598433935668 +16 20000001 30000000 16:20000001-30000000 0.0732324156428063 3.0177334336393016 +16 30000001 40000000 16:30000001-40000000 -0.054469928590655185 -2.162403810073181 +16 40000001 50000000 16:40000001-50000000 0.01813709854863917 0.7218951831778254 +16 50000001 60000000 16:50000001-60000000 -0.05723333688043617 -2.2724986805052834 +16 60000001 70000000 16:60000001-70000000 -0.004184381546241695 -0.17790195574423653 +16 70000001 80000000 16:70000001-80000000 0.007301717962691849 0.28234174549518515 +16 80000001 90000000 16:80000001-90000000 0.00937900180269912 0.37011615304819756 +16 90000001 100000000 16:90000001-100000000 nan nan +17 1 10000000 17:1-10000000 0.0004316751575414166 0.025851364090371753 +17 10000001 20000000 17:10000001-20000000 0.005501661360702138 0.22983479607633225 +17 20000001 30000000 17:20000001-30000000 0.0376323612752476 1.5790453167930645 +17 30000001 40000000 17:30000001-40000000 -0.007997853490625685 -0.3117155882221979 +17 40000001 50000000 17:40000001-50000000 0.06843368075845338 2.8199217972801147 +17 50000001 60000000 17:50000001-60000000 -0.01785908067289162 -0.7026255025479773 +17 60000001 70000000 17:60000001-70000000 0.058455624981440794 2.401753572591004 +17 70000001 80000000 17:70000001-80000000 0.026984064071546392 1.1021456817476445 +17 80000001 90000000 17:80000001-90000000 0.006869817773389827 0.28502645834951745 +18 1 10000000 18:1-10000000 -0.0212176294191172 -0.8282615354884798 +18 10000001 20000000 18:10000001-20000000 0.0849653258080829 3.4829633648718272 +18 20000001 30000000 18:20000001-30000000 0.009665993221586318 0.3934968783370261 +18 30000001 40000000 18:30000001-40000000 0.022234215861628295 0.8982327858168634 +18 40000001 50000000 18:40000001-50000000 -0.014751098567981444 -0.5746053905214142 +18 50000001 60000000 18:50000001-60000000 0.012358147464810629 0.5012432038919561 +18 60000001 70000000 18:60000001-70000000 -0.008122874604008016 -0.31342402755897286 +18 70000001 80000000 18:70000001-80000000 -0.0033932308036662196 -0.12633373312774904 +18 80000001 90000000 18:80000001-90000000 0.10634975850569614 4.3918802853640795 +19 1 10000000 19:1-10000000 nan nan +19 10000001 20000000 19:10000001-20000000 0.02338718480906324 0.9371000508939006 +19 20000001 30000000 19:20000001-30000000 0.0016192329112033454 0.06455322910870305 +19 30000001 40000000 19:30000001-40000000 -0.016414448306286206 -0.6495603510470805 +19 40000001 50000000 19:40000001-50000000 0.013953162403958663 0.5592941216205073 +19 50000001 60000000 19:50000001-60000000 -0.026491449724493948 -1.0463463060421774 +20 1 10000000 20:1-10000000 0.004415934577788096 0.18094749263990748 +20 10000001 20000000 20:10000001-20000000 -0.0015257958192696254 -0.05635617426161793 +20 20000001 30000000 20:20000001-30000000 0.011356150557422921 0.463349549613987 +20 30000001 40000000 20:30000001-40000000 0.04832339461875347 1.9651712862465622 +20 40000001 50000000 20:40000001-50000000 0.002058925822068644 0.08669518357715515 +20 50000001 60000000 20:50000001-60000000 -0.026454965118318553 -1.0414052703283316 +20 60000001 70000000 20:60000001-70000000 -0.01404748466152417 -0.5512510786934586 +21 1 10000000 21:1-10000000 nan nan +21 10000001 20000000 21:10000001-20000000 -0.025683332190871457 -1.0094328127541692 +21 20000001 30000000 21:20000001-30000000 0.02657805642164083 1.0778969720886815 +21 30000001 40000000 21:30000001-40000000 -0.015665486408755112 -0.6115881238744478 +21 40000001 50000000 21:40000001-50000000 -0.0063924278396725815 -0.24736849021826626 +22 1 10000000 22:1-10000000 nan nan +22 10000001 20000000 22:10000001-20000000 -0.035979913832053415 -1.4319862380618358 +22 20000001 30000000 22:20000001-30000000 -0.03775440025299403 -1.5030086324021878 +22 30000001 40000000 22:30000001-40000000 -0.0327155577009055 -1.3044020825473626 +22 40000001 50000000 22:40000001-50000000 -0.02443136403628654 -0.976368192179424 +22 50000001 60000000 22:50000001-60000000 0.042313429133239586 1.7364268589651852 +X 1 10000000 X:1-10000000 0.04931851358472728 1.6704531245154441 +X 10000001 20000000 X:10000001-20000000 0.02718845309018554 0.9440176239356763 +X 20000001 30000000 X:20000001-30000000 -0.014267351268826181 -0.3871718107217453 +X 30000001 40000000 X:30000001-40000000 0.025980354460086477 0.9046807483268727 +X 40000001 50000000 X:40000001-50000000 -0.009742885062837143 -0.2437390422675029 +X 50000001 60000000 X:50000001-60000000 -0.014551565643648038 -0.39616685107614386 +X 60000001 70000000 X:60000001-70000000 -0.08497689046044601 -2.5713018064280253 +X 70000001 80000000 X:70000001-80000000 -0.015594033231660176 -0.42914452052792057 +X 80000001 90000000 X:80000001-90000000 -0.030528785180684786 -0.8989872729642105 +X 90000001 100000000 X:90000001-100000000 -0.024914008099105458 -0.722918403493542 +X 100000001 110000000 X:100000001-110000000 -0.019859615807420662 -0.5638350192329954 +X 110000001 120000000 X:110000001-120000000 0.0075845539896018865 0.30974726841857264 +X 120000001 130000000 X:120000001-130000000 -0.05913853363578263 -1.7855707521141684 +X 130000001 140000000 X:130000001-140000000 -0.02374419086758032 -0.6861487961271984 +X 140000001 150000000 X:140000001-150000000 -0.005291502639923923 -0.10218348201809535 +X 150000001 160000000 X:150000001-160000000 -0.021520485843592178 -0.6161712091875068
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/predict_segments.bed Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,28 @@ +chr start end ratio zscore +1 1 120000000 -0.0087 -2.538405323843277 +1 140000001 250000000 0.0176 4.312862224344486 +2 1 250000000 0.0077 3.3452597487045215 +3 1 200000000 0.0058 2.311500455599722 +4 1 40000000 0.0007 0.11656739335236131 +4 40000001 190000000 0.0006 0.35088837729023276 +5 1 190000000 -0.0138 -4.742762233161156 +6 1 170000000 0.0029 0.9290111777306987 +7 1 160000000 -0.0066 -1.3173166420256102 +8 1 150000000 -0.0093 -2.345755449706625 +9 1 20000000 0.0057 0.5378706474020528 +9 20000001 40000000 -0.0068 -0.5822999425114906 +9 60000001 140000000 -0.0066 -0.8909887079018787 +10 1 140000000 -0.0053 -0.972447941393507 +11 1 140000000 -0.0011 -0.25869752816517777 +12 1 140000000 -0.0067 -1.6120716034316234 +13 20000001 120000000 0.0091 2.6165198496794595 +14 20000001 110000000 0.0046 1.4493631003182375 +15 30000001 110000000 0.0022 0.5631104559578264 +16 1 90000000 0.0009 0.20349127260764568 +17 1 90000000 0.0198 3.2916417620408067 +18 1 90000000 0.0209 2.8871676559099937 +19 10000001 60000000 -0.0008 -0.09701491554952066 +20 1 70000000 0.0034 0.49591449488386785 +21 10000001 50000000 -0.0053 -0.6285903890420564 +22 10000001 60000000 -0.0177 -1.875889555547745 +X 1 160000000 -0.0134 -2.6093805092022024
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/predict_statistics.txt Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,29 @@ +chr ratio.mean ratio.median zscore +1 0.003256724685060297 0.009032538940713365 1.1604576995182534 +2 0.007728111371764734 0.00879518825265517 3.6168182974192224 +3 0.0057970691646083835 0.007918358867360545 2.2102487208570447 +4 0.0005794303608920617 -0.0038693714215764057 0.3050780556626696 +5 -0.013750074657332427 -0.00306199917667051 -5.00766851062217 +6 0.00293681601872286 -0.0016253998352964258 0.9407744372804929 +7 -0.0066155513952186815 -0.007596035725320216 -1.3291500169147508 +8 -0.009253570570903735 -0.01001300559828008 -2.3586673175031008 +9 -0.004174118616434959 -0.0024356973032108246 -0.7243064497148664 +10 -0.005266146751525984 0.0028177250094220192 -1.0963168057162755 +11 -0.0010682214397647377 -0.012687471128064745 -0.25403103304752794 +12 -0.006720586939014568 -0.007785953193232591 -1.7313975674091997 +13 0.009139617144346813 0.002351198145606662 2.7174009747784944 +14 0.004617644740226149 0.0035058727944338825 1.4966978929197126 +15 0.0021565565774295426 -0.005083704704282363 0.5800013406347537 +16 0.0009244703405124733 0.007301717962691849 0.20870556732386122 +17 0.01982791519920036 0.006869817773389827 3.1146698354398854 +18 0.020898589066626748 0.009665993221586318 2.845910113450034 +19 -0.000657740980105667 0.0016192329112033454 -0.08006761423301532 +20 0.003446546608787667 0.002058925822068644 0.5033887759993748 +21 -0.005290652555760193 -0.011028957124213846 -0.5341417465937656 +22 -0.017713587100928845 -0.0327155577009055 -1.6790692284983704 +X -0.013378674115274611 -0.015072799437654107 -2.6107602961602137 +Gender based on --yfrac (or manually overridden by --gender): F +Number of reads: 2081160 +Standard deviation of the ratios per chromosome: 0.00932 +Median segment variance per bin (doi: 10.1093/nar/gky1263): 0.0008 +Copy number profile abnormality (CPA) score (doi: 10.1186/s13073-020-00735-4): 2.32398
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wisecondor_npz_converter.xml Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,57 @@ +<tool id="wisecondorx_npz_converter" name="WisecondorX convert" version="@WRAPPER_VERSION@" profile="@PROFILE@"> + <description> + bam to npz + </description> + <macros> + <import>macro.xml</import> + </macros> + <expand macro="requirements"/> + <stdio> + <exit_code range="1:" level="fatal" description="Error occured" /> + </stdio> + <command detect_errors="exit_code"><![CDATA[ + @pipefail@ + ln -f -s $bam.metadata.bam_index input.bam.bai && + ln -f -s $bam input.bam && + printf "Creating 5kb bins for file $bam.element_identifier" && + WisecondorX convert input.bam output.npz + ]]></command> + <inputs> + <param name="bam" type="data" label="Bam input" format="bam" + help="input Bam is converted in .npz file"/> + </inputs> + <outputs> + <data name="npz" format="npz" from_work_dir="output.npz" label="${on_string}.npz" /> + </outputs> + <tests> + <test expect_num_outputs="1"> + <param ftype="bam" name="bam" value="npz_convert_input.bam" /> + <output name="npz" ftype="npz" file="npz_convert_output.npz" compare="sim_size" delta="10000"/> + </test> + </tests> + <help> +@help@ +<![CDATA[ +.. class:: infomark + +**WisecondorX convert input.bam/cram output.npz [--optional arguments]** + +Option List:: + + --reference Fasta reference to be used with cram inputs. + This option is currently not available in this Galaxy wrapper, + which takes only bam inputs. + --binsize Size per bin in bp; the reference bin size should be a multiple of this value. + Note that this parameter does not impact the resolution, yet it + can be used to optimize processing speed (default: x=5e3). + The --binsize parameter is currently not exposed in this Galaxy + wrapper and is fixed to 5e3 + --normdup Use this flag to avoid duplicate removal. + The --normdup parameter is currently not exposed in this Galaxy + wrapper. Default is to remove duplicates. + + ]]></help> + <citations> + <citation type="doi">10.1093/nar/gky1263</citation> + </citations> +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wisecondor_predict.xml Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,112 @@ +<tool id="wisecondorx_predict" name="WisecondorX predict" version="@WRAPPER_VERSION@" profile="@PROFILE@"> + <description> + CNVs + </description> + <macros> + <import>macro.xml</import> + </macros> + <expand macro="requirements"/> + <stdio> + <exit_code range="1:" level="fatal" description="Error occured" /> + </stdio> + <command detect_errors="exit_code"><![CDATA[ + @pipefail@ + ln -s $npz_input sample.npz && + ln -s $reference reference.npz && + WisecondorX predict sample.npz reference.npz sample --plot --bed + ]]></command> + <inputs> + <param name="npz_input" type="data" format="npz" label="npz file from sample to analyse"/> + <param name="reference" type="data" format="npz" label="npz reference built with WisecondorX build"/> + </inputs> + <outputs> + <data name="aberrations" format="bed" label="sample abberations" from_work_dir="sample_aberrations.bed"/> + <data name="bins" format="bed" label="sample bins" from_work_dir="sample_bins.bed"/> + <data name="segments" format="bed" label="sample segments" from_work_dir="sample_segments.bed"/> + <data name="statistics" format="txt" label="statistics" from_work_dir="sample_statistics.txt"/> + <collection name="plots" type="list" format="png" label="CNV plots"> + <discover_datasets pattern="__name_and_ext__" directory="sample.plots" /> + </collection> + </outputs> + <tests> + <test expect_num_outputs="5"> + <param name="npz_input" value="input_sample_predict.npz" ftype="npz" /> + <param name="reference" value="input_reference_predict.10000kb.npz" /> + <output name="aberrations" ftype="bed" file="predict_abberations.bed" /> + <output name="bins" ftype="bed" file="predict_bins.bed" compare="sim_size" delta="1000"/> + <output name="segments" ftype="bed" file="predict_segments.bed"/> + <output name="statistics" ftype="txt" file="predict_statistics.txt" compare="sim_size" delta="1000"/> + <output_collection name="plots" type="list"> + <element name="chr1" file="chr1.png" compare="sim_size" delta="10000"/> + <element name="chr10" file="chr10.png" compare="sim_size" delta="10000"/> + <element name="chr11" file="chr11.png" compare="sim_size" delta="10000"/> + <element name="chr12" file="chr12.png" compare="sim_size" delta="10000"/> + <element name="chr13" file="chr13.png" compare="sim_size" delta="10000"/> + <element name="chr14" file="chr14.png" compare="sim_size" delta="10000"/> + <element name="chr15" file="chr15.png" compare="sim_size" delta="10000"/> + <element name="chr16" file="chr16.png" compare="sim_size" delta="10000"/> + <element name="chr17" file="chr17.png" compare="sim_size" delta="10000"/> + <element name="chr18" file="chr18.png" compare="sim_size" delta="10000"/> + <element name="chr19" file="chr19.png" compare="sim_size" delta="10000"/> + <element name="chr2" file="chr2.png" compare="sim_size" delta="10000"/> + <element name="chr20" file="chr20.png" compare="sim_size" delta="10000"/> + <element name="chr21" file="chr21.png" compare="sim_size" delta="10000"/> + <element name="chr22" file="chr22.png" compare="sim_size" delta="10000"/> + <element name="chr3" file="chr3.png" compare="sim_size" delta="10000"/> + <element name="chr4" file="chr4.png" compare="sim_size" delta="10000"/> + <element name="chr5" file="chr5.png" compare="sim_size" delta="10000"/> + <element name="chr6" file="chr6.png" compare="sim_size" delta="10000"/> + <element name="chr7" file="chr7.png" compare="sim_size" delta="10000"/> + <element name="chr8" file="chr8.png" compare="sim_size" delta="10000"/> + <element name="chr9" file="chr9.png" compare="sim_size" delta="10000"/> + <element name="chrX" file="chrX.png" compare="sim_size" delta="10000"/> + <element name="genome_wide" file="genome_wide.png" compare="sim_size" delta="10000"/> + </output_collection> + </test> + </tests> + <help> +@help@ +<![CDATA[ +.. class:: infomark + +**WisecondorX predict test_input.npz reference_input.npz output_id [--optional arguments]** + +Option List:: + + --minrefbins Minimum amount of sensible reference bins per target bin; + should generally not be tweaked (default: x=150) + --maskrepeats Bins with distances > mean + sd * 3 in the reference will be + masked. This parameter represents the number of masking cycles + and defines the stringency of the blacklist (default: x=5) + **Should be a multiple of the 5e3**. + Not exposed in this Galaxy wrapper. + --zscore Z-score cutoff to call segments as aberrations (default: x=5) + --alpha P-value cutoff for calling circular binary segmentation + breakpoints (default: x=1e-4). + Not exposed in this Galaxy wrapper. + --beta When beta is given, --zscore is ignored. Beta sets a ratio + cutoff for aberration calling. It's a number between 0 (liberal) + and 1 (conservative) and, when used, is optimally close to the + purity (e.g. fetal/tumor fraction) + Not exposed in this Galaxy wrapper. + --blacklist Blacklist for masking additional regions; requires headerless + .bed file. This is particularly useful when the reference set + is too small to recognize some obvious loci (such as centromeres). + Not exposed in this Galaxy wrapper. + --gender Force WisecondorX to analyze this case as male (M) or female (F). + Useful when e.g. dealing with a loss of chromosome Y, which + causes erroneous gender predictions (choices: x=F or x=M). + Not exposed in this Galaxy wrapper. + --bed Outputs tab-delimited .bed files. + --plot Outputs custom .png plots, directly interpretable. + --ylim [a,b] Force WisecondorX to use y-axis interval [a,b] during plotting, e.g. [-2,2]. + Not exposed in this Galaxy wrapper. + --cairo Some operating systems require the cairo bitmap type to write plots. + Not exposed in this Galaxy wrapper. + --seed Random seed for segmentation algorithm (default:None). + Not exposed in this Galaxy wrapper. + ]]></help> + <citations> + <citation type="doi">10.1093/nar/gky1263</citation> + </citations> +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wisecondor_reference_builder.xml Sun Dec 15 16:37:13 2024 +0000 @@ -0,0 +1,66 @@ +<tool id="wisecondorx_reference_builder" name="WisecondorX build" version="@WRAPPER_VERSION@" profile="@PROFILE@"> + <description> + reference + </description> + <macros> + <import>macro.xml</import> + </macros> + <expand macro="requirements"/> + <stdio> + <exit_code range="1:" level="fatal" description="Error occured" /> + </stdio> + <command detect_errors="exit_code"><![CDATA[ + @pipefail@ + #for $num, $file in enumerate($npz_inputs): + ln -s $file "${num}.npz" && + #end for + WisecondorX newref *.npz reference.npz + --binsize ${bin} + --cpus \${GALAXY_SLOTS:-4} && + mv reference.npz $npz + ]]></command> + <inputs> + <param name="npz_inputs" type="data" label="npz inputs" multiple="True" format="npz" + help="Build reference from npz inputs from normal sample (at least 10 samples required)"/> + <param name="bin" size="9" type="integer" value="100000" label="Bin size in nucleotides" + help="Bin default value is 100 kb (100000)" /> + </inputs> + <outputs> + <data name="npz" format="npz" label="reference_${bin}nt" /> + </outputs> + <tests> + <test expect_num_outputs="1"> + <param name="npz_inputs" + value="0.ref.npz,1.ref.npz,2.ref.npz,3.ref.npz,4.ref.npz,5.ref.npz,6.ref.npz,7.ref.npz,8.ref.npz,9.ref.npz"/> + <param name="bin" value="10000" /> + <output name="npz" ftype="npz" file="output_reference.npz" compare="sim_size" delta="10000"/> + </test> + </tests> + <help> +@help@ +<![CDATA[ +.. class:: infomark + +**WisecondorX newref reference_input_dir/*.npz reference_output.npz [--optional arguments]** + +Option List:: + + --nipt Always include this flag for the generation of a NIPT reference + --binsize Size per bin in bp, defines the resolution of the output (default: x=1e5) + **Should be a multiple of the 5e3** + --refsize Amount of reference locations per target; + should generally not be tweaked (default: x=300) + --yfrac Y read fraction cutoff, in order to manually define gender. + Setting this to 1 will treat all samples as female. + This parameter is not currently exposed in the Galaxy wrapper. + --plotyfrac plots Y read fraction histogram and Gaussian mixture fit to file x, + can help when setting --yfrac manually; software quits after plotting + The --normdup parameter is currently not exposed in this Galaxy + wrapper. Default is to remove duplicates. + --cpus Number of threads requested (This is defined by the Galaxy administrator) + + ]]></help> + <citations> + <citation type="doi">10.1093/nar/gky1263</citation> + </citations> +</tool>