Mercurial > repos > bgruening > create_tool_recommendation_model
comparison utils.py @ 4:afec8c595124 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit 65d36f271296a38deeceb0d0e8d471b2898ee8f4"
author | bgruening |
---|---|
date | Tue, 07 Jul 2020 03:25:49 -0400 |
parents | 5b3c08710e47 |
children | 4f7e6612906b |
comparison
equal
deleted
inserted
replaced
3:5b3c08710e47 | 4:afec8c595124 |
---|---|
1 import os | |
2 import numpy as np | 1 import numpy as np |
3 import json | 2 import json |
4 import h5py | 3 import h5py |
5 import random | 4 import random |
5 from numpy.random import choice | |
6 | 6 |
7 from keras import backend as K | 7 from keras import backend as K |
8 | 8 |
9 | 9 |
10 def read_file(file_path): | 10 def read_file(file_path): |
52 Create a weighted loss function. Penalise the misclassification | 52 Create a weighted loss function. Penalise the misclassification |
53 of classes more with the higher usage | 53 of classes more with the higher usage |
54 """ | 54 """ |
55 weight_values = list(class_weights.values()) | 55 weight_values = list(class_weights.values()) |
56 weight_values.extend(weight_values) | 56 weight_values.extend(weight_values) |
57 | |
58 def weighted_binary_crossentropy(y_true, y_pred): | 57 def weighted_binary_crossentropy(y_true, y_pred): |
59 # add another dimension to compute dot product | 58 # add another dimension to compute dot product |
60 expanded_weights = K.expand_dims(weight_values, axis=-1) | 59 expanded_weights = K.expand_dims(weight_values, axis=-1) |
61 return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) | 60 return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) |
62 return weighted_binary_crossentropy | 61 return weighted_binary_crossentropy |
63 | 62 |
64 | 63 |
65 def balanced_sample_generator(train_data, train_labels, batch_size, l_tool_tr_samples): | 64 def balanced_sample_generator(train_data, train_labels, batch_size, l_tool_tr_samples, reverse_dictionary): |
66 while True: | 65 while True: |
67 dimension = train_data.shape[1] | 66 dimension = train_data.shape[1] |
68 n_classes = train_labels.shape[1] | 67 n_classes = train_labels.shape[1] |
69 tool_ids = list(l_tool_tr_samples.keys()) | 68 tool_ids = list(l_tool_tr_samples.keys()) |
69 random.shuffle(tool_ids) | |
70 generator_batch_data = np.zeros([batch_size, dimension]) | 70 generator_batch_data = np.zeros([batch_size, dimension]) |
71 generator_batch_labels = np.zeros([batch_size, n_classes]) | 71 generator_batch_labels = np.zeros([batch_size, n_classes]) |
72 generated_tool_ids = choice(tool_ids, batch_size) | |
72 for i in range(batch_size): | 73 for i in range(batch_size): |
73 random_toolid_index = random.sample(range(0, len(tool_ids)), 1)[0] | 74 random_toolid = generated_tool_ids[i] |
74 random_toolid = tool_ids[random_toolid_index] | |
75 sample_indices = l_tool_tr_samples[str(random_toolid)] | 75 sample_indices = l_tool_tr_samples[str(random_toolid)] |
76 random_index = random.sample(range(0, len(sample_indices)), 1)[0] | 76 random_index = random.sample(range(0, len(sample_indices)), 1)[0] |
77 random_tr_index = sample_indices[random_index] | 77 random_tr_index = sample_indices[random_index] |
78 generator_batch_data[i] = train_data[random_tr_index] | 78 generator_batch_data[i] = train_data[random_tr_index] |
79 generator_batch_labels[i] = train_labels[random_tr_index] | 79 generator_batch_labels[i] = train_labels[random_tr_index] |
127 # compute scores for published recommendations | 127 # compute scores for published recommendations |
128 if standard_topk_prediction_pos in reverse_data_dictionary: | 128 if standard_topk_prediction_pos in reverse_data_dictionary: |
129 pred_t_name = reverse_data_dictionary[int(standard_topk_prediction_pos)] | 129 pred_t_name = reverse_data_dictionary[int(standard_topk_prediction_pos)] |
130 if last_tool_name in standard_conn: | 130 if last_tool_name in standard_conn: |
131 pub_tools = standard_conn[last_tool_name] | 131 pub_tools = standard_conn[last_tool_name] |
132 if pred_t_name in pub_tools: | 132 if pred_t_name in pub_tools: |
133 pub_precision = 1.0 | 133 pub_precision = 1.0 |
134 if last_tool_id in lowest_tool_ids: | 134 # count precision only when there is actually true published tools |
135 lowest_pub_prec = 1.0 | 135 if last_tool_id in lowest_tool_ids: |
136 if standard_topk_prediction_pos in usage_scores: | 136 lowest_pub_prec = 1.0 |
137 usage_wt_score.append(np.log(usage_scores[standard_topk_prediction_pos] + 1.0)) | 137 else: |
138 lowest_pub_prec = np.nan | |
139 if standard_topk_prediction_pos in usage_scores: | |
140 usage_wt_score.append(np.log(usage_scores[standard_topk_prediction_pos] + 1.0)) | |
141 else: | |
142 # count precision only when there is actually true published tools | |
143 # else set to np.nan. Set to 0 only when there is wrong prediction | |
144 pub_precision = np.nan | |
145 lowest_pub_prec = np.nan | |
138 # compute scores for normal recommendations | 146 # compute scores for normal recommendations |
139 if normal_topk_prediction_pos in reverse_data_dictionary: | 147 if normal_topk_prediction_pos in reverse_data_dictionary: |
140 pred_t_name = reverse_data_dictionary[int(normal_topk_prediction_pos)] | 148 pred_t_name = reverse_data_dictionary[int(normal_topk_prediction_pos)] |
141 if pred_t_name in actual_next_tool_names: | 149 if pred_t_name in actual_next_tool_names: |
142 if normal_topk_prediction_pos in usage_scores: | 150 if normal_topk_prediction_pos in usage_scores: |
143 usage_wt_score.append(np.log(usage_scores[normal_topk_prediction_pos] + 1.0)) | 151 usage_wt_score.append(np.log(usage_scores[normal_topk_prediction_pos] + 1.0)) |
144 top_precision = 1.0 | 152 top_precision = 1.0 |
145 if last_tool_id in lowest_tool_ids: | 153 if last_tool_id in lowest_tool_ids: |
146 lowest_norm_prec = 1.0 | 154 lowest_norm_prec = 1.0 |
155 else: | |
156 lowest_norm_prec = np.nan | |
147 if len(usage_wt_score) > 0: | 157 if len(usage_wt_score) > 0: |
148 mean_usage = np.mean(usage_wt_score) | 158 mean_usage = np.mean(usage_wt_score) |
149 return mean_usage, top_precision, pub_precision, lowest_pub_prec, lowest_norm_prec | 159 return mean_usage, top_precision, pub_precision, lowest_pub_prec, lowest_norm_prec |
150 | 160 |
151 | 161 |
166 precision = np.zeros([len(y), len(topk_list)]) | 176 precision = np.zeros([len(y), len(topk_list)]) |
167 usage_weights = np.zeros([len(y), len(topk_list)]) | 177 usage_weights = np.zeros([len(y), len(topk_list)]) |
168 epo_pub_prec = np.zeros([len(y), len(topk_list)]) | 178 epo_pub_prec = np.zeros([len(y), len(topk_list)]) |
169 epo_lowest_tools_pub_prec = list() | 179 epo_lowest_tools_pub_prec = list() |
170 epo_lowest_tools_norm_prec = list() | 180 epo_lowest_tools_norm_prec = list() |
171 | 181 lowest_counter = 0 |
172 # loop over all the test samples and find prediction precision | 182 # loop over all the test samples and find prediction precision |
173 for i in range(size): | 183 for i in range(size): |
174 lowest_pub_topk = list() | 184 lowest_pub_topk = list() |
175 lowest_norm_topk = list() | 185 lowest_norm_topk = list() |
176 actual_classes_pos = np.where(y[i] > 0)[0] | 186 actual_classes_pos = np.where(y[i] > 0)[0] |
179 for index, abs_topk in enumerate(topk_list): | 189 for index, abs_topk in enumerate(topk_list): |
180 usg_wt_score, absolute_precision, pub_prec, lowest_p_prec, lowest_n_prec = compute_precision(model, test_sample, y, reverse_data_dictionary, usage_scores, actual_classes_pos, abs_topk, standard_conn, last_tool_id, lowest_tool_ids) | 190 usg_wt_score, absolute_precision, pub_prec, lowest_p_prec, lowest_n_prec = compute_precision(model, test_sample, y, reverse_data_dictionary, usage_scores, actual_classes_pos, abs_topk, standard_conn, last_tool_id, lowest_tool_ids) |
181 precision[i][index] = absolute_precision | 191 precision[i][index] = absolute_precision |
182 usage_weights[i][index] = usg_wt_score | 192 usage_weights[i][index] = usg_wt_score |
183 epo_pub_prec[i][index] = pub_prec | 193 epo_pub_prec[i][index] = pub_prec |
184 if last_tool_id in lowest_tool_ids: | 194 lowest_pub_topk.append(lowest_p_prec) |
185 lowest_pub_topk.append(lowest_p_prec) | 195 lowest_norm_topk.append(lowest_n_prec) |
186 lowest_norm_topk.append(lowest_n_prec) | 196 epo_lowest_tools_pub_prec.append(lowest_pub_topk) |
197 epo_lowest_tools_norm_prec.append(lowest_norm_topk) | |
187 if last_tool_id in lowest_tool_ids: | 198 if last_tool_id in lowest_tool_ids: |
188 epo_lowest_tools_pub_prec.append(lowest_pub_topk) | 199 lowest_counter += 1 |
189 epo_lowest_tools_norm_prec.append(lowest_norm_topk) | |
190 mean_precision = np.mean(precision, axis=0) | 200 mean_precision = np.mean(precision, axis=0) |
191 mean_usage = np.mean(usage_weights, axis=0) | 201 mean_usage = np.mean(usage_weights, axis=0) |
192 mean_pub_prec = np.mean(epo_pub_prec, axis=0) | 202 mean_pub_prec = np.nanmean(epo_pub_prec, axis=0) |
193 mean_lowest_pub_prec = np.mean(epo_lowest_tools_pub_prec, axis=0) | 203 mean_lowest_pub_prec = np.nanmean(epo_lowest_tools_pub_prec, axis=0) |
194 mean_lowest_norm_prec = np.mean(epo_lowest_tools_norm_prec, axis=0) | 204 mean_lowest_norm_prec = np.nanmean(epo_lowest_tools_norm_prec, axis=0) |
195 return mean_usage, mean_precision, mean_pub_prec, mean_lowest_pub_prec, mean_lowest_norm_prec, len(epo_lowest_tools_pub_prec) | 205 return mean_usage, mean_precision, mean_pub_prec, mean_lowest_pub_prec, mean_lowest_norm_prec, lowest_counter |
196 | 206 |
197 | 207 |
198 def save_model(results, data_dictionary, compatible_next_tools, trained_model_path, class_weights, standard_connections): | 208 def save_model(results, data_dictionary, compatible_next_tools, trained_model_path, class_weights, standard_connections): |
199 # save files | 209 # save files |
200 trained_model = results["model"] | 210 trained_model = results["model"] |