Mercurial > repos > bgruening > protease_prediction
comparison protease.xml @ 0:c7a363d7ab26 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/protease_prediction commit e933135e5dc9aa8c96800fd10b62b256ac3a8523-dirty
author | bgruening |
---|---|
date | Sat, 12 Mar 2016 19:28:41 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c7a363d7ab26 |
---|---|
1 <tool id="eden_protease_prediction" name="Protease prediction" version="@VERSION@"> | |
2 <description>based on cleavage sites</description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <expand macro="requirements"/> | |
7 <expand macro="stdio"/> | |
8 <version_command>echo "@VERSION@"</version_command> | |
9 <command><![CDATA[ | |
10 python $__tool_directory__/protease.py | |
11 #if $selected_tasks.selected_task == 'fit': | |
12 fit | |
13 -i $selected_tasks.infile_train | |
14 --negative-ratio $selected_tasks.options.negative_ratio | |
15 --shuffle-order $selected_tasks.options.shuffle_order | |
16 -r $selected_tasks.options.random_state | |
17 #else: | |
18 predict | |
19 -m $selected_tasks.infile_model | |
20 -i $selected_tasks.infile_data | |
21 #end if | |
22 ]]> | |
23 </command> | |
24 <inputs> | |
25 <expand macro="loadConditional"> | |
26 <section name="options" title="Advanced Options" expanded="False"> | |
27 <param name="negative_ratio" type="integer" optional="true" value="2" label="Negative to positive instance ratio" | |
28 help="Relative size ratio for the randomly permuted negative instances w.r.t. the positive instances." /> | |
29 <param name="shuffle_order" type="integer" optional="true" value="2" label="Order of k-mer shuffling" | |
30 help="Order of the k-mer for the random shuffling procedure." /> | |
31 <param name="random_state" type="integer" value="1" label="Random seed" /> | |
32 </section> | |
33 </expand> | |
34 </inputs> | |
35 <outputs> | |
36 <data format="tabular" name="outfile_predict" from_work_dir="out/predictions.txt"> | |
37 <filter>selected_tasks['selected_task'] == 'predict'</filter> | |
38 </data> | |
39 <data format="eden_model" name="outfile_fit" from_work_dir="out/model"> | |
40 <filter>selected_tasks['selected_task'] == 'fit'</filter> | |
41 </data> | |
42 </outputs> | |
43 <tests> | |
44 <test> | |
45 <param name="infile_train" value="CTSL_train.fasta" ftype="fasta"/> | |
46 <param name="selected_task" value="fit"/> | |
47 <param name="shuffle_order" value="3"/> | |
48 <output name="outfile_fit" file="model" ftpye="eden_model" compare="sim_size" delta="100000"/> | |
49 </test> | |
50 <test> | |
51 <param name="infile_model" value="model" ftype="eden_model"/> | |
52 <param name="infile_data" value="CTSL_test.fasta" ftype="fasta"/> | |
53 <param name="selected_task" value="predict"/> | |
54 <output name="outfile_predict" file="predictions.txt" ftpye="tabular"/> | |
55 </test> | |
56 </tests> | |
57 <help><![CDATA[ | |
58 **What it does** | |
59 | |
60 This tool can learn the cleavage specificity of a given class of protease. In a second step this can be used to predict proteases given a cleavage site. | |
61 The method assumes that the candidate cleavage point is between the two amino acids adjacent to the central position. | |
62 The method is based on an efficient string kernel implemented in the Explicit Decomposition with Neighbourhood (EDeN) library. | |
63 This approach uses the notion of k-mers with gaps to enumerate all possible substrings of increasing order which are used as features in an efficient linear binary classification estimator. | |
64 | |
65 **Example Input** | |
66 | |
67 :: | |
68 | |
69 >CTSL1 | |
70 SSFVSNWD | |
71 >CTSL1 | |
72 SSIQATTA | |
73 >CTSL1 | |
74 SSLAGCQI | |
75 >CTSL1 | |
76 SSLGGTVV | |
77 | |
78 | |
79 ]]></help> | |
80 <expand macro="eden_citation"/> | |
81 </tool> |