comparison protease.xml @ 0:c7a363d7ab26 draft default tip

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/protease_prediction commit e933135e5dc9aa8c96800fd10b62b256ac3a8523-dirty
author bgruening
date Sat, 12 Mar 2016 19:28:41 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:c7a363d7ab26
1 <tool id="eden_protease_prediction" name="Protease prediction" version="@VERSION@">
2 <description>based on cleavage sites</description>
3 <macros>
4 <import>macros.xml</import>
5 </macros>
6 <expand macro="requirements"/>
7 <expand macro="stdio"/>
8 <version_command>echo "@VERSION@"</version_command>
9 <command><![CDATA[
10 python $__tool_directory__/protease.py
11 #if $selected_tasks.selected_task == 'fit':
12 fit
13 -i $selected_tasks.infile_train
14 --negative-ratio $selected_tasks.options.negative_ratio
15 --shuffle-order $selected_tasks.options.shuffle_order
16 -r $selected_tasks.options.random_state
17 #else:
18 predict
19 -m $selected_tasks.infile_model
20 -i $selected_tasks.infile_data
21 #end if
22 ]]>
23 </command>
24 <inputs>
25 <expand macro="loadConditional">
26 <section name="options" title="Advanced Options" expanded="False">
27 <param name="negative_ratio" type="integer" optional="true" value="2" label="Negative to positive instance ratio"
28 help="Relative size ratio for the randomly permuted negative instances w.r.t. the positive instances." />
29 <param name="shuffle_order" type="integer" optional="true" value="2" label="Order of k-mer shuffling"
30 help="Order of the k-mer for the random shuffling procedure." />
31 <param name="random_state" type="integer" value="1" label="Random seed" />
32 </section>
33 </expand>
34 </inputs>
35 <outputs>
36 <data format="tabular" name="outfile_predict" from_work_dir="out/predictions.txt">
37 <filter>selected_tasks['selected_task'] == 'predict'</filter>
38 </data>
39 <data format="eden_model" name="outfile_fit" from_work_dir="out/model">
40 <filter>selected_tasks['selected_task'] == 'fit'</filter>
41 </data>
42 </outputs>
43 <tests>
44 <test>
45 <param name="infile_train" value="CTSL_train.fasta" ftype="fasta"/>
46 <param name="selected_task" value="fit"/>
47 <param name="shuffle_order" value="3"/>
48 <output name="outfile_fit" file="model" ftpye="eden_model" compare="sim_size" delta="100000"/>
49 </test>
50 <test>
51 <param name="infile_model" value="model" ftype="eden_model"/>
52 <param name="infile_data" value="CTSL_test.fasta" ftype="fasta"/>
53 <param name="selected_task" value="predict"/>
54 <output name="outfile_predict" file="predictions.txt" ftpye="tabular"/>
55 </test>
56 </tests>
57 <help><![CDATA[
58 **What it does**
59
60 This tool can learn the cleavage specificity of a given class of protease. In a second step this can be used to predict proteases given a cleavage site.
61 The method assumes that the candidate cleavage point is between the two amino acids adjacent to the central position.
62 The method is based on an efficient string kernel implemented in the Explicit Decomposition with Neighbourhood (EDeN) library.
63 This approach uses the notion of k-mers with gaps to enumerate all possible substrings of increasing order which are used as features in an efficient linear binary classification estimator.
64
65 **Example Input**
66
67 ::
68
69 >CTSL1
70 SSFVSNWD
71 >CTSL1
72 SSIQATTA
73 >CTSL1
74 SSLAGCQI
75 >CTSL1
76 SSLGGTVV
77
78
79 ]]></help>
80 <expand macro="eden_citation"/>
81 </tool>