Mercurial > repos > bgruening > protease_prediction
diff protease.xml @ 0:c7a363d7ab26 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/protease_prediction commit e933135e5dc9aa8c96800fd10b62b256ac3a8523-dirty
author | bgruening |
---|---|
date | Sat, 12 Mar 2016 19:28:41 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/protease.xml Sat Mar 12 19:28:41 2016 -0500 @@ -0,0 +1,81 @@ +<tool id="eden_protease_prediction" name="Protease prediction" version="@VERSION@"> + <description>based on cleavage sites</description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements"/> + <expand macro="stdio"/> + <version_command>echo "@VERSION@"</version_command> + <command><![CDATA[ + python $__tool_directory__/protease.py + #if $selected_tasks.selected_task == 'fit': + fit + -i $selected_tasks.infile_train + --negative-ratio $selected_tasks.options.negative_ratio + --shuffle-order $selected_tasks.options.shuffle_order + -r $selected_tasks.options.random_state + #else: + predict + -m $selected_tasks.infile_model + -i $selected_tasks.infile_data + #end if +]]> + </command> + <inputs> + <expand macro="loadConditional"> + <section name="options" title="Advanced Options" expanded="False"> + <param name="negative_ratio" type="integer" optional="true" value="2" label="Negative to positive instance ratio" + help="Relative size ratio for the randomly permuted negative instances w.r.t. the positive instances." /> + <param name="shuffle_order" type="integer" optional="true" value="2" label="Order of k-mer shuffling" + help="Order of the k-mer for the random shuffling procedure." /> + <param name="random_state" type="integer" value="1" label="Random seed" /> + </section> + </expand> + </inputs> + <outputs> + <data format="tabular" name="outfile_predict" from_work_dir="out/predictions.txt"> + <filter>selected_tasks['selected_task'] == 'predict'</filter> + </data> + <data format="eden_model" name="outfile_fit" from_work_dir="out/model"> + <filter>selected_tasks['selected_task'] == 'fit'</filter> + </data> + </outputs> + <tests> + <test> + <param name="infile_train" value="CTSL_train.fasta" ftype="fasta"/> + <param name="selected_task" value="fit"/> + <param name="shuffle_order" value="3"/> + <output name="outfile_fit" file="model" ftpye="eden_model" compare="sim_size" delta="100000"/> + </test> + <test> + <param name="infile_model" value="model" ftype="eden_model"/> + <param name="infile_data" value="CTSL_test.fasta" ftype="fasta"/> + <param name="selected_task" value="predict"/> + <output name="outfile_predict" file="predictions.txt" ftpye="tabular"/> + </test> + </tests> + <help><![CDATA[ +**What it does** + +This tool can learn the cleavage specificity of a given class of protease. In a second step this can be used to predict proteases given a cleavage site. +The method assumes that the candidate cleavage point is between the two amino acids adjacent to the central position. +The method is based on an efficient string kernel implemented in the Explicit Decomposition with Neighbourhood (EDeN) library. +This approach uses the notion of k-mers with gaps to enumerate all possible substrings of increasing order which are used as features in an efficient linear binary classification estimator. + +**Example Input** + +:: + + >CTSL1 + SSFVSNWD + >CTSL1 + SSIQATTA + >CTSL1 + SSLAGCQI + >CTSL1 + SSLGGTVV + + + ]]></help> + <expand macro="eden_citation"/> +</tool>