Mercurial > repos > bgruening > sklearn_regression_metrics
view model_prediction.py @ 20:203b2ade8097 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ba6a47bdf76bbf4cb276206ac1a8cbf61332fd16"
author | bgruening |
---|---|
date | Fri, 13 Sep 2019 12:13:26 -0400 |
parents | 28d51b976c29 |
children | a152c1d23379 |
line wrap: on
line source
import argparse import json import numpy as np import pandas as pd import tabix import warnings from scipy.io import mmread from sklearn.pipeline import Pipeline from galaxy_ml.externals.selene_sdk.sequences import Genome from galaxy_ml.utils import (load_model, read_columns, get_module, try_get_attr) N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) def main(inputs, infile_estimator, outfile_predict, infile_weights=None, infile1=None, fasta_path=None, ref_seq=None, vcf_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : strgit File path to trained estimator input outfile_predict : str File path to save the prediction results, tabular infile_weights : str File path to weights input infile1 : str File path to dataset containing features fasta_path : str File path to dataset containing fasta file ref_seq : str File path to dataset containing the reference genome sequence. vcf_path : str File path to dataset containing variants info. """ warnings.filterwarnings('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load model with open(infile_estimator, 'rb') as est_handler: estimator = load_model(est_handler) main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): if not infile_weights or infile_weights == 'None': raise ValueError("The selected model skeleton asks for weights, " "but dataset for weights wan not selected!") main_est.load_weights(infile_weights) # handle data input input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options'] ['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) X = read_columns(df, c=c, c_option=column_option).astype(float) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # fasta input elif input_type == 'seq_fasta': if not hasattr(estimator, 'data_batch_generator'): raise ValueError( "To do prediction on sequences in fasta input, " "the estimator must be a `KerasGBatchClassifier`" "equipped with data_batch_generator!") pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] seq_length = estimator.data_batch_generator.seq_length batch_size = getattr(estimator, 'batch_size', 32) steps = (n_seqs + batch_size - 1) // batch_size seq_type = params['input_options']['seq_type'] klass = try_get_attr( 'galaxy_ml.preprocessors', seq_type) pred_data_generator = klass( fasta_path, seq_length=seq_length) if params['method'] == 'predict': preds = estimator.predict( X, data_generator=pred_data_generator, steps=steps) else: preds = estimator.predict_proba( X, data_generator=pred_data_generator, steps=steps) # vcf input elif input_type == 'variant_effect': klass = try_get_attr('galaxy_ml.preprocessors', 'GenomicVariantBatchGenerator') options = params['input_options'] options.pop('selected_input') if options['blacklist_regions'] == 'none': options['blacklist_regions'] = None pred_data_generator = klass( ref_genome_path=ref_seq, vcf_path=vcf_path, **options) pred_data_generator.fit() variants = pred_data_generator.variants # TODO : remove the following block after galaxy-ml v0.7.13 blacklist_tabix = getattr(pred_data_generator.reference_genome_, '_blacklist_tabix', None) clean_variants = [] if blacklist_tabix: start_radius = pred_data_generator.start_radius_ end_radius = pred_data_generator.end_radius_ for chrom, pos, name, ref, alt, strand in variants: center = pos + len(ref) // 2 start = center - start_radius end = center + end_radius if isinstance(pred_data_generator.reference_genome_, Genome): if "chr" not in chrom: chrom = "chr" + chrom if "MT" in chrom: chrom = chrom[:-1] try: rows = blacklist_tabix.query(chrom, start, end) found = 0 for row in rows: found = 1 break if found: continue except tabix.TabixError: pass clean_variants.append((chrom, pos, name, ref, alt, strand)) else: clean_variants = variants setattr(pred_data_generator, 'variants', clean_variants) variants = np.array(clean_variants) # predict 1600 sample at once then write to file gen_flow = pred_data_generator.flow(batch_size=1600) file_writer = open(outfile_predict, 'w') header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) file_writer.write(header_row) header_done = False steps_done = 0 # TODO: multiple threading try: while steps_done < len(gen_flow): index_array = next(gen_flow.index_generator) batch_X = gen_flow._get_batches_of_transformed_samples( index_array) if params['method'] == 'predict': batch_preds = estimator.predict( batch_X, # The presence of `pred_data_generator` below is to # override model carrying data_generator if there # is any. data_generator=pred_data_generator) else: batch_preds = estimator.predict_proba( batch_X, # The presence of `pred_data_generator` below is to # override model carrying data_generator if there # is any. data_generator=pred_data_generator) if batch_preds.ndim == 1: batch_preds = batch_preds[:, np.newaxis] batch_meta = variants[index_array] batch_out = np.column_stack([batch_meta, batch_preds]) if not header_done: heads = np.arange(batch_preds.shape[-1]).astype(str) heads_str = '\t'.join(heads) file_writer.write("\t%s\n" % heads_str) header_done = True for row in batch_out: row_str = '\t'.join(row) file_writer.write("%s\n" % row_str) steps_done += 1 finally: file_writer.close() # TODO: make api `pred_data_generator.close()` pred_data_generator.close() return 0 # end input # output if len(preds.shape) == 1: rval = pd.DataFrame(preds, columns=['Predicted']) else: rval = pd.DataFrame(preds) rval.to_csv(outfile_predict, sep='\t', header=True, index=False) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") aparser.add_argument("-w", "--infile_weights", dest="infile_weights") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-v", "--vcf_path", dest="vcf_path") args = aparser.parse_args() main(args.inputs, args.infile_estimator, args.outfile_predict, infile_weights=args.infile_weights, infile1=args.infile1, fasta_path=args.fasta_path, ref_seq=args.ref_seq, vcf_path=args.vcf_path)