Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
view test-data/get_params02.tabular @ 15:b94babda32e4 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f031d8ddfb73cec24572648666ac44ee47f08aad
author | bgruening |
---|---|
date | Thu, 11 Aug 2022 09:11:27 +0000 |
parents | fcc5eaaec401 |
children |
line wrap: on
line source
Parameter Value * memory memory: None * steps "steps: [('robustscaler', RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True, with_scaling=True)), ('lassocv', LassoCV(alphas=None, copy_X=True, cv='warn', eps=0.001, fit_intercept=True, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False, precompute='auto', random_state=None, selection='cyclic', tol=0.0001, verbose=False))]" @ robustscaler "robustscaler: RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True, with_scaling=True)" @ lassocv "lassocv: LassoCV(alphas=None, copy_X=True, cv='warn', eps=0.001, fit_intercept=True, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False, precompute='auto', random_state=None, selection='cyclic', tol=0.0001, verbose=False)" @ robustscaler__copy robustscaler__copy: True @ robustscaler__quantile_range robustscaler__quantile_range: (25.0, 75.0) @ robustscaler__with_centering robustscaler__with_centering: True @ robustscaler__with_scaling robustscaler__with_scaling: True @ lassocv__alphas lassocv__alphas: None @ lassocv__copy_X lassocv__copy_X: True @ lassocv__cv lassocv__cv: 'warn' @ lassocv__eps lassocv__eps: 0.001 @ lassocv__fit_intercept lassocv__fit_intercept: True @ lassocv__max_iter lassocv__max_iter: 1000 @ lassocv__n_alphas lassocv__n_alphas: 100 * lassocv__n_jobs lassocv__n_jobs: 1 @ lassocv__normalize lassocv__normalize: False @ lassocv__positive lassocv__positive: False @ lassocv__precompute lassocv__precompute: 'auto' @ lassocv__random_state lassocv__random_state: None @ lassocv__selection lassocv__selection: 'cyclic' @ lassocv__tol lassocv__tol: 0.0001 * lassocv__verbose lassocv__verbose: False Note: @, searchable params in searchcv too.