| 546 | 1 """ | 
|  | 2 Flux sampling and analysis utilities for COBRA models. | 
|  | 3 | 
|  | 4 This script supports two modes: | 
|  | 5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from | 
|  | 6     separate files before sampling. | 
|  | 7 - Mode 2 (model_and_bounds=False): load complete models and sample directly. | 
|  | 8 | 
|  | 9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples | 
|  | 10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files. | 
|  | 11 """ | 
|  | 12 | 
|  | 13 import argparse | 
|  | 14 from typing import List | 
|  | 15 import os | 
|  | 16 import pandas as pd | 
|  | 17 import numpy as np | 
|  | 18 import cobra | 
|  | 19 from joblib import Parallel, delayed, cpu_count | 
|  | 20 from cobra.sampling import OptGPSampler | 
|  | 21 import sys | 
|  | 22 | 
|  | 23 try: | 
|  | 24     from .utils import general_utils as utils | 
|  | 25     from .utils import CBS_backend | 
|  | 26     from .utils import model_utils | 
|  | 27 except: | 
|  | 28     import utils.general_utils as utils | 
|  | 29     import utils.CBS_backend as CBS_backend | 
|  | 30     import utils.model_utils as model_utils | 
|  | 31 | 
|  | 32 | 
|  | 33 ################################# process args ############################### | 
|  | 34 def process_args(args: List[str] = None) -> argparse.Namespace: | 
|  | 35     """ | 
|  | 36     Processes command-line arguments. | 
|  | 37 | 
|  | 38     Args: | 
|  | 39         args (list): List of command-line arguments. | 
|  | 40 | 
|  | 41     Returns: | 
|  | 42         Namespace: An object containing parsed arguments. | 
|  | 43     """ | 
|  | 44     parser = argparse.ArgumentParser(usage='%(prog)s [options]', | 
|  | 45                                      description='process some value\'s') | 
|  | 46 | 
|  | 47     parser.add_argument("-mo", "--model_upload", type=str, | 
|  | 48         help="path to input file with custom rules, if provided") | 
|  | 49 | 
|  | 50     parser.add_argument("-mab", "--model_and_bounds", type=str, | 
|  | 51         choices=['True', 'False'], | 
|  | 52         required=True, | 
|  | 53         help="upload mode: True for model+bounds, False for complete models") | 
|  | 54 | 
|  | 55     parser.add_argument("-ens", "--sampling_enabled", type=str, | 
|  | 56         choices=['true', 'false'], | 
|  | 57         required=True, | 
|  | 58         help="enable sampling: 'true' for sampling, 'false' for no sampling") | 
|  | 59 | 
|  | 60     parser.add_argument('-ol', '--out_log', | 
|  | 61                         help="Output log") | 
|  | 62 | 
|  | 63     parser.add_argument('-td', '--tool_dir', | 
|  | 64                         type=str, | 
|  | 65                         default=os.path.dirname(os.path.abspath(__file__)), | 
|  | 66                         help='your tool directory (default: auto-detected package location)') | 
|  | 67 | 
|  | 68     parser.add_argument('-inf', '--input_file', | 
|  | 69                         required=True, | 
|  | 70                         type=str, | 
|  | 71                         help='path to file containing list of input bounds files or complete model files (one per line)') | 
|  | 72 | 
|  | 73     parser.add_argument('-nif', '--name_file', | 
|  | 74                         required=True, | 
|  | 75                         type=str, | 
|  | 76                         help='path to file containing list of cell names (one per line)') | 
|  | 77 | 
|  | 78     parser.add_argument('-a', '--algorithm', | 
|  | 79                         type=str, | 
|  | 80                         choices=['OPTGP', 'CBS'], | 
|  | 81                         required=True, | 
|  | 82                         help='choose sampling algorithm') | 
|  | 83 | 
|  | 84     parser.add_argument('-th', '--thinning', | 
|  | 85                         type=int, | 
|  | 86                         default=100, | 
|  | 87                         required=True, | 
|  | 88                         help='choose thinning') | 
|  | 89 | 
|  | 90     parser.add_argument('-ns', '--n_samples', | 
|  | 91                         type=int, | 
|  | 92                         required=True, | 
|  | 93                         help='choose how many samples (set to 0 for optimization only)') | 
|  | 94 | 
|  | 95     parser.add_argument('-sd', '--seed', | 
|  | 96                         type=int, | 
|  | 97                         required=True, | 
|  | 98                         help='seed for random number generation') | 
|  | 99 | 
|  | 100     parser.add_argument('-nb', '--n_batches', | 
|  | 101                         type=int, | 
|  | 102                         required=True, | 
|  | 103                         help='choose how many batches') | 
|  | 104 | 
|  | 105     parser.add_argument('-opt', '--perc_opt', | 
|  | 106                         type=float, | 
|  | 107                         default=0.9, | 
|  | 108                         required=False, | 
|  | 109                         help='choose the fraction of optimality for FVA (0-1)') | 
|  | 110 | 
|  | 111     parser.add_argument('-ot', '--output_type', | 
|  | 112                         type=str, | 
|  | 113                         required=True, | 
|  | 114                         help='output type for sampling results') | 
|  | 115 | 
|  | 116     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 117                         type=str, | 
|  | 118                         required=False, | 
|  | 119                         help='output type analysis (optimization methods)') | 
|  | 120 | 
|  | 121     parser.add_argument('-idop', '--output_path', | 
|  | 122                         type=str, | 
|  | 123                         default='flux_simulation/', | 
|  | 124                         help = 'output path for fluxes') | 
|  | 125 | 
|  | 126     parser.add_argument('-otm', '--out_mean', | 
|  | 127                     type = str, | 
|  | 128                     required=False, | 
|  | 129                     help = 'output of mean of fluxes') | 
|  | 130 | 
|  | 131     parser.add_argument('-otmd', '--out_median', | 
|  | 132                     type = str, | 
|  | 133                     required=False, | 
|  | 134                     help = 'output of median of fluxes') | 
|  | 135 | 
|  | 136     parser.add_argument('-otq', '--out_quantiles', | 
|  | 137                     type = str, | 
|  | 138                     required=False, | 
|  | 139                     help = 'output of quantiles of fluxes') | 
|  | 140 | 
|  | 141     parser.add_argument('-otfva', '--out_fva', | 
|  | 142                     type = str, | 
|  | 143                     required=False, | 
|  | 144                     help = 'output of FVA results') | 
|  | 145     parser.add_argument('-otp', '--out_pfba', | 
|  | 146                     type = str, | 
|  | 147                     required=False, | 
|  | 148                     help = 'output of pFBA results') | 
|  | 149     parser.add_argument('-ots', '--out_sensitivity', | 
|  | 150                     type = str, | 
|  | 151                     required=False, | 
|  | 152                     help = 'output of sensitivity results') | 
|  | 153     ARGS = parser.parse_args(args) | 
|  | 154     return ARGS | 
|  | 155 ########################### warning ########################################### | 
|  | 156 def warning(s :str) -> None: | 
|  | 157     """ | 
|  | 158     Log a warning message to an output log file and print it to the console. | 
|  | 159 | 
|  | 160     Args: | 
|  | 161         s (str): The warning message to be logged and printed. | 
|  | 162 | 
|  | 163     Returns: | 
|  | 164       None | 
|  | 165     """ | 
|  | 166     with open(ARGS.out_log, 'a') as log: | 
|  | 167         log.write(s + "\n\n") | 
|  | 168     print(s) | 
|  | 169 | 
|  | 170 | 
|  | 171 def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None: | 
|  | 172     """ | 
|  | 173     Write a DataFrame to a TSV file under path with a given base name. | 
|  | 174 | 
|  | 175     Args: | 
|  | 176         dataset: The DataFrame to write. | 
|  | 177         name: Base file name (without extension). If None, 'path' is treated as the full file path. | 
|  | 178         path: Directory path where the file will be saved. | 
|  | 179         keep_index: Whether to keep the DataFrame index in the file. | 
|  | 180 | 
|  | 181     Returns: | 
|  | 182         None | 
|  | 183     """ | 
|  | 184     dataset.index.name = 'Reactions' | 
|  | 185     if name: | 
|  | 186         dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index) | 
|  | 187     else: | 
|  | 188         dataset.to_csv(path, sep = '\t', index = keep_index) | 
|  | 189 | 
|  | 190 ############################ dataset input #################################### | 
|  | 191 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 192     """ | 
|  | 193     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 194 | 
|  | 195     Args: | 
|  | 196         data (str): Path to the CSV file containing the dataset. | 
|  | 197         name (str): Name of the dataset, used in error messages. | 
|  | 198 | 
|  | 199     Returns: | 
|  | 200         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 201 | 
|  | 202     Raises: | 
|  | 203         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 204         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 205     """ | 
|  | 206     try: | 
|  | 207         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 208     except pd.errors.EmptyDataError: | 
|  | 209         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 210     if len(dataset.columns) < 2: | 
|  | 211         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 212     return dataset | 
|  | 213 | 
|  | 214 | 
|  | 215 | 
|  | 216 def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None: | 
|  | 217     """ | 
|  | 218     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
|  | 219 | 
|  | 220     Args: | 
|  | 221         model (cobra.Model): The COBRA model to sample from. | 
|  | 222         model_name (str): The name of the model, used in naming output files. | 
|  | 223         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 224         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 225         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 226         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 227 | 
|  | 228     Returns: | 
|  | 229         None | 
|  | 230     """ | 
|  | 231     import numpy as np | 
|  | 232 | 
|  | 233     # Get reaction IDs for consistent column ordering | 
|  | 234     reaction_ids = [rxn.id for rxn in model.reactions] | 
|  | 235 | 
|  | 236     # Sample and save each batch as numpy file | 
|  | 237     for i in range(n_batches): | 
|  | 238         optgp = OptGPSampler(model, thinning, seed) | 
|  | 239         samples = optgp.sample(n_samples) | 
|  | 240 | 
|  | 241         # Save as numpy array (more memory efficient) | 
|  | 242         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 243         np.save(batch_filename, samples.to_numpy()) | 
|  | 244 | 
|  | 245         seed += 1 | 
|  | 246 | 
|  | 247     # Merge all batches into a single DataFrame | 
|  | 248     all_samples = [] | 
|  | 249 | 
|  | 250     for i in range(n_batches): | 
|  | 251         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 252         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 253         all_samples.append(batch_data) | 
|  | 254 | 
|  | 255     # Concatenate all batches | 
|  | 256     samplesTotal_array = np.vstack(all_samples) | 
|  | 257 | 
|  | 258     # Convert back to DataFrame with proper column names | 
|  | 259     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 260 | 
|  | 261     # Save the final merged result as CSV | 
|  | 262     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) | 
|  | 263 | 
|  | 264     # Clean up temporary numpy files | 
|  | 265     for i in range(n_batches): | 
|  | 266         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 267         if os.path.exists(batch_filename): | 
|  | 268             os.remove(batch_filename) | 
|  | 269 | 
|  | 270 | 
|  | 271 def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None: | 
|  | 272     """ | 
|  | 273     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
|  | 274 | 
|  | 275     Args: | 
|  | 276         model (cobra.Model): The COBRA model to sample from. | 
|  | 277         model_name (str): The name of the model, used in naming output files. | 
|  | 278         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 279         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 280         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 281 | 
|  | 282     Returns: | 
|  | 283         None | 
|  | 284     """ | 
|  | 285     import numpy as np | 
|  | 286 | 
|  | 287     # Get reaction IDs for consistent column ordering | 
|  | 288     reaction_ids = [reaction.id for reaction in model.reactions] | 
|  | 289 | 
|  | 290     # Perform FVA analysis once for all batches | 
|  | 291     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6) | 
|  | 292 | 
|  | 293     # Generate random objective functions for all samples across all batches | 
|  | 294     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed) | 
|  | 295 | 
|  | 296     # Sample and save each batch as numpy file | 
|  | 297     for i in range(n_batches): | 
|  | 298         samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples)) | 
|  | 299 | 
|  | 300         try: | 
|  | 301             CBS_backend.randomObjectiveFunctionSampling( | 
|  | 302                 model, | 
|  | 303                 n_samples, | 
|  | 304                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 305                 samples | 
|  | 306             ) | 
|  | 307         except Exception as e: | 
|  | 308             utils.logWarning( | 
|  | 309                 f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}", | 
|  | 310                 ARGS.out_log | 
|  | 311             ) | 
|  | 312             CBS_backend.randomObjectiveFunctionSampling_cobrapy( | 
|  | 313                 model, | 
|  | 314                 n_samples, | 
|  | 315                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 316                 samples | 
|  | 317             ) | 
|  | 318 | 
|  | 319         # Save as numpy array (more memory efficient) | 
|  | 320         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 321         utils.logWarning(batch_filename, ARGS.out_log) | 
|  | 322         np.save(batch_filename, samples.to_numpy()) | 
|  | 323 | 
|  | 324     # Merge all batches into a single DataFrame | 
|  | 325     all_samples = [] | 
|  | 326 | 
|  | 327     for i in range(n_batches): | 
|  | 328         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 329         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 330         all_samples.append(batch_data) | 
|  | 331 | 
|  | 332     # Concatenate all batches | 
|  | 333     samplesTotal_array = np.vstack(all_samples) | 
|  | 334 | 
|  | 335     # Convert back to DataFrame with proper column namesq | 
|  | 336     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 337 | 
|  | 338     # Save the final merged result as CSV | 
|  | 339     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) | 
|  | 340 | 
|  | 341     # Clean up temporary numpy files | 
|  | 342     for i in range(n_batches): | 
|  | 343         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 344         if os.path.exists(batch_filename): | 
|  | 345             os.remove(batch_filename) | 
|  | 346 | 
|  | 347 | 
|  | 348 | 
|  | 349 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]: | 
|  | 350     """ | 
|  | 351     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling. | 
|  | 352 | 
|  | 353     Args: | 
|  | 354         model_input_original (cobra.Model): The original COBRA model. | 
|  | 355         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 356         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 357 | 
|  | 358     Returns: | 
|  | 359         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 360     """ | 
|  | 361 | 
|  | 362     model_input = model_input_original.copy() | 
|  | 363     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
|  | 364 | 
|  | 365     # Apply bounds to model | 
|  | 366     for rxn_index, row in bounds_df.iterrows(): | 
|  | 367         try: | 
|  | 368             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 369             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 370         except KeyError: | 
|  | 371             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.") | 
|  | 372 | 
|  | 373     return perform_sampling_and_analysis(model_input, cell_name) | 
|  | 374 | 
|  | 375 | 
|  | 376 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]: | 
|  | 377     """ | 
|  | 378     Common function to perform sampling and analysis on a prepared model. | 
|  | 379 | 
|  | 380     Args: | 
|  | 381         model_input (cobra.Model): The prepared COBRA model with bounds applied. | 
|  | 382         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 383 | 
|  | 384     Returns: | 
|  | 385         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 386     """ | 
|  | 387 | 
|  | 388     returnList = [] | 
|  | 389 | 
|  | 390     if ARGS.sampling_enabled == "true": | 
|  | 391 | 
|  | 392         if ARGS.algorithm == 'OPTGP': | 
|  | 393             OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 394         elif ARGS.algorithm == 'CBS': | 
|  | 395             CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
|  | 396 | 
|  | 397         df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) | 
|  | 398 | 
|  | 399         if("fluxes" not in ARGS.output_types): | 
|  | 400             os.remove(ARGS.output_path + "/" + cell_name + '.csv') | 
|  | 401 | 
|  | 402         returnList = [df_mean, df_median, df_quantiles] | 
|  | 403 | 
|  | 404     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) | 
|  | 405 | 
|  | 406     if("pFBA" in ARGS.output_type_analysis): | 
|  | 407         returnList.append(df_pFBA) | 
|  | 408     if("FVA" in ARGS.output_type_analysis): | 
|  | 409         returnList.append(df_FVA) | 
|  | 410     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 411         returnList.append(df_sensitivity) | 
|  | 412 | 
|  | 413     return returnList | 
|  | 414 | 
|  | 415 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 416     """ | 
|  | 417     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 418 | 
|  | 419     Args: | 
|  | 420         model_name (str): Name of the model, used in filename for input. | 
|  | 421         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 422 | 
|  | 423     Returns: | 
|  | 424         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 425     """ | 
|  | 426 | 
|  | 427     df_mean = pd.DataFrame() | 
|  | 428     df_median= pd.DataFrame() | 
|  | 429     df_quantiles= pd.DataFrame() | 
|  | 430 | 
|  | 431     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
|  | 432     df_samples = df_samples.round(8) | 
|  | 433 | 
|  | 434     for output_type in output_types: | 
|  | 435         if(output_type == "mean"): | 
|  | 436             df_mean = df_samples.mean() | 
|  | 437             df_mean = df_mean.to_frame().T | 
|  | 438             df_mean = df_mean.reset_index(drop=True) | 
|  | 439             df_mean.index = [model_name] | 
|  | 440         elif(output_type == "median"): | 
|  | 441             df_median = df_samples.median() | 
|  | 442             df_median = df_median.to_frame().T | 
|  | 443             df_median = df_median.reset_index(drop=True) | 
|  | 444             df_median.index = [model_name] | 
|  | 445         elif(output_type == "quantiles"): | 
|  | 446             newRow = [] | 
|  | 447             cols = [] | 
|  | 448             for rxn in df_samples.columns: | 
|  | 449                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 450                 newRow.append(quantiles[0.25]) | 
|  | 451                 cols.append(rxn + "_q1") | 
|  | 452                 newRow.append(quantiles[0.5]) | 
|  | 453                 cols.append(rxn + "_q2") | 
|  | 454                 newRow.append(quantiles[0.75]) | 
|  | 455                 cols.append(rxn + "_q3") | 
|  | 456             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 457             df_quantiles.loc[0] = newRow | 
|  | 458             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 459             df_quantiles.index = [model_name] | 
|  | 460 | 
|  | 461     return df_mean, df_median, df_quantiles | 
|  | 462 | 
|  | 463 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 464     """ | 
|  | 465     Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function | 
|  | 466     is assumed to be already set in the model. | 
|  | 467 | 
|  | 468     Args: | 
|  | 469         model (cobra.Model): The COBRA model to analyze. | 
|  | 470         model_name (str): Name of the model, used in filenames for output. | 
|  | 471         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 472 | 
|  | 473     Returns: | 
|  | 474         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 475     """ | 
|  | 476 | 
|  | 477     df_pFBA = pd.DataFrame() | 
|  | 478     df_FVA= pd.DataFrame() | 
|  | 479     df_sensitivity= pd.DataFrame() | 
|  | 480 | 
|  | 481     for output_type in output_types: | 
|  | 482         if(output_type == "pFBA"): | 
|  | 483             solution = cobra.flux_analysis.pfba(model) | 
|  | 484             fluxes = solution.fluxes | 
|  | 485             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist() | 
|  | 486             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 487             df_pFBA.index = [model_name] | 
|  | 488             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 489         elif(output_type == "FVA"): | 
|  | 490             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8) | 
|  | 491             columns = [] | 
|  | 492             for rxn in fva.index.to_list(): | 
|  | 493                 columns.append(rxn + "_min") | 
|  | 494                 columns.append(rxn + "_max") | 
|  | 495             df_FVA= pd.DataFrame(columns = columns) | 
|  | 496             for index_rxn, row in fva.iterrows(): | 
|  | 497                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 498                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 499             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 500             df_FVA.index = [model_name] | 
|  | 501             df_FVA = df_FVA.astype(float).round(6) | 
|  | 502         elif(output_type == "sensitivity"): | 
|  | 503             solution_original = model.optimize().objective_value | 
|  | 504             reactions = model.reactions | 
|  | 505             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 506             newRow = [] | 
|  | 507             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 508             for rxn in reactions: | 
|  | 509                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 510             df_sensitivity.loc[model_name] = newRow | 
|  | 511             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 512     return df_pFBA, df_FVA, df_sensitivity | 
|  | 513 | 
|  | 514 ############################# main ########################################### | 
|  | 515 def main(args: List[str] = None) -> None: | 
|  | 516     """ | 
|  | 517     Initialize and run sampling/analysis based on the frontend input arguments. | 
|  | 518 | 
|  | 519     Returns: | 
|  | 520         None | 
|  | 521     """ | 
|  | 522 | 
|  | 523     num_processors = max(1, cpu_count() - 1) | 
|  | 524 | 
|  | 525     global ARGS | 
|  | 526     ARGS = process_args(args) | 
|  | 527 | 
|  | 528     if not os.path.exists('flux_simulation'): | 
|  | 529         os.makedirs('flux_simulation') | 
|  | 530 | 
|  | 531     # --- Read input files and names from the provided file paths --- | 
|  | 532     with open(ARGS.input_file, 'r') as f: | 
|  | 533         ARGS.input_files = [line.strip() for line in f if line.strip()] | 
|  | 534 | 
|  | 535     with open(ARGS.name_file, 'r') as f: | 
|  | 536         ARGS.file_names = [line.strip() for line in f if line.strip()] | 
|  | 537 | 
|  | 538     # output types (required) -> list | 
|  | 539     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] | 
|  | 540     # optional analysis output types -> list or empty | 
|  | 541     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] | 
|  | 542 | 
|  | 543     # Determine if sampling should be performed | 
|  | 544     if ARGS.sampling_enabled == "true": | 
|  | 545         perform_sampling = True | 
|  | 546     else: | 
|  | 547         perform_sampling = False | 
|  | 548 | 
|  | 549     print("=== INPUT FILES ===") | 
|  | 550     print(f"{ARGS.input_files}") | 
|  | 551     print(f"{ARGS.file_names}") | 
|  | 552     print(f"{ARGS.output_type}") | 
|  | 553     print(f"{ARGS.output_types}") | 
|  | 554     print(f"{ARGS.output_type_analysis}") | 
|  | 555     print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})") | 
|  | 556 | 
|  | 557     if ARGS.model_and_bounds == "True": | 
|  | 558         # MODE 1: Model + bounds (separate files) | 
|  | 559         print("=== MODE 1: Model + Bounds (separate files) ===") | 
|  | 560 | 
|  | 561         # Load base model | 
|  | 562         if not ARGS.model_upload: | 
|  | 563             sys.exit("Error: model_upload is required for Mode 1") | 
|  | 564 | 
|  | 565         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload) | 
|  | 566 | 
|  | 567         validation = model_utils.validate_model(base_model) | 
|  | 568 | 
|  | 569         print("\n=== MODEL VALIDATION ===") | 
|  | 570         for key, value in validation.items(): | 
|  | 571             print(f"{key}: {value}") | 
|  | 572 | 
|  | 573         # Set solver verbosity to 1 to see warning and error messages only. | 
|  | 574         base_model.solver.configuration.verbosity = 1 | 
|  | 575 | 
|  | 576         # Process each bounds file with the base model | 
|  | 577         results = Parallel(n_jobs=num_processors)( | 
|  | 578             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) | 
|  | 579             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 580         ) | 
|  | 581 | 
|  | 582     else: | 
|  | 583         # MODE 2: Multiple complete models | 
|  | 584         print("=== MODE 2: Multiple complete models ===") | 
|  | 585 | 
|  | 586         # Process each complete model file | 
|  | 587         results = Parallel(n_jobs=num_processors)( | 
|  | 588             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) | 
|  | 589             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 590         ) | 
|  | 591 | 
|  | 592     # Handle sampling outputs (only if sampling was performed) | 
|  | 593     if perform_sampling: | 
|  | 594         print("=== PROCESSING SAMPLING RESULTS ===") | 
|  | 595 | 
|  | 596         all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 597         all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 598         all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
|  | 599 | 
|  | 600         if "mean" in ARGS.output_types: | 
|  | 601             all_mean = all_mean.fillna(0.0) | 
|  | 602             all_mean = all_mean.sort_index() | 
|  | 603             write_to_file(all_mean.T, ARGS.out_mean, True) | 
|  | 604 | 
|  | 605         if "median" in ARGS.output_types: | 
|  | 606             all_median = all_median.fillna(0.0) | 
|  | 607             all_median = all_median.sort_index() | 
|  | 608             write_to_file(all_median.T, ARGS.out_median, True) | 
|  | 609 | 
|  | 610         if "quantiles" in ARGS.output_types: | 
|  | 611             all_quantiles = all_quantiles.fillna(0.0) | 
|  | 612             all_quantiles = all_quantiles.sort_index() | 
|  | 613             write_to_file(all_quantiles.T, ARGS.out_quantiles, True) | 
|  | 614     else: | 
|  | 615         print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===") | 
|  | 616 | 
|  | 617     # Handle optimization analysis outputs (always available) | 
|  | 618     print("=== PROCESSING OPTIMIZATION RESULTS ===") | 
|  | 619 | 
|  | 620     # Determine the starting index for optimization results | 
|  | 621     # If sampling was performed, optimization results start at index 3 | 
|  | 622     # If no sampling, optimization results start at index 0 | 
|  | 623     index_result = 3 if perform_sampling else 0 | 
|  | 624 | 
|  | 625     if "pFBA" in ARGS.output_type_analysis: | 
|  | 626         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 627         all_pFBA = all_pFBA.sort_index() | 
|  | 628         write_to_file(all_pFBA.T, ARGS.out_pfba, True) | 
|  | 629         index_result += 1 | 
|  | 630 | 
|  | 631     if "FVA" in ARGS.output_type_analysis: | 
|  | 632         all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 633         all_FVA = all_FVA.sort_index() | 
|  | 634         write_to_file(all_FVA.T, ARGS.out_fva, True) | 
|  | 635         index_result += 1 | 
|  | 636 | 
|  | 637     if "sensitivity" in ARGS.output_type_analysis: | 
|  | 638         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 639         all_sensitivity = all_sensitivity.sort_index() | 
|  | 640         write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True) | 
|  | 641 | 
|  | 642     return | 
|  | 643 | 
|  | 644 ############################################################################## | 
|  | 645 if __name__ == "__main__": | 
| 539 | 646     main() |