| 
406
 | 
     1 import argparse
 | 
| 
 | 
     2 import utils.general_utils as utils
 | 
| 
416
 | 
     3 from typing import Optional, Dict, Set, List, Tuple, Union
 | 
| 
406
 | 
     4 import os
 | 
| 
 | 
     5 import numpy as np
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import cobra
 | 
| 
407
 | 
     8 from cobra import Model, Reaction, Metabolite
 | 
| 
 | 
     9 import re
 | 
| 
406
 | 
    10 import sys
 | 
| 
 | 
    11 import csv
 | 
| 
 | 
    12 from joblib import Parallel, delayed, cpu_count
 | 
| 
414
 | 
    13 import utils.rule_parsing  as rulesUtils
 | 
| 
417
 | 
    14 import utils.reaction_parsing as reactionUtils
 | 
| 
418
 | 
    15 import utils.model_utils as modelUtils
 | 
| 
406
 | 
    16 
 | 
| 
 | 
    17 ################################# process args ###############################
 | 
| 
 | 
    18 def process_args(args :List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    19     """
 | 
| 
 | 
    20     Processes command-line arguments.
 | 
| 
 | 
    21 
 | 
| 
 | 
    22     Args:
 | 
| 
 | 
    23         args (list): List of command-line arguments.
 | 
| 
 | 
    24 
 | 
| 
 | 
    25     Returns:
 | 
| 
 | 
    26         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    27     """
 | 
| 
 | 
    28     parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
 | 
| 
 | 
    29                                      description = 'process some value\'s')
 | 
| 
 | 
    30     
 | 
| 
 | 
    31     
 | 
| 
407
 | 
    32     parser.add_argument("-mo", "--model_upload", type = str,
 | 
| 
406
 | 
    33         help = "path to input file with custom rules, if provided")
 | 
| 
 | 
    34 
 | 
| 
 | 
    35     parser.add_argument('-ol', '--out_log', 
 | 
| 
 | 
    36                         help = "Output log")
 | 
| 
 | 
    37     
 | 
| 
 | 
    38     parser.add_argument('-td', '--tool_dir',
 | 
| 
 | 
    39                         type = str,
 | 
| 
 | 
    40                         required = True,
 | 
| 
 | 
    41                         help = 'your tool directory')
 | 
| 
 | 
    42     
 | 
| 
 | 
    43     parser.add_argument('-ir', '--input_ras',
 | 
| 
 | 
    44                         type=str,
 | 
| 
 | 
    45                         required = False,
 | 
| 
 | 
    46                         help = 'input ras')
 | 
| 
 | 
    47     
 | 
| 
 | 
    48     parser.add_argument('-rn', '--name',
 | 
| 
 | 
    49                 type=str,
 | 
| 
 | 
    50                 help = 'ras class names')
 | 
| 
 | 
    51 
 | 
| 
 | 
    52     parser.add_argument('-cc', '--cell_class',
 | 
| 
 | 
    53                     type = str,
 | 
| 
 | 
    54                     help = 'output of cell class')
 | 
| 
 | 
    55     parser.add_argument(
 | 
| 
 | 
    56         '-idop', '--output_path', 
 | 
| 
 | 
    57         type = str,
 | 
| 
 | 
    58         default='ras_to_bounds/',
 | 
| 
 | 
    59         help = 'output path for maps')
 | 
| 
 | 
    60     
 | 
| 
411
 | 
    61     parser.add_argument('-sm', '--save_models',
 | 
| 
 | 
    62                     type=utils.Bool("save_models"),
 | 
| 
 | 
    63                     default=False,
 | 
| 
 | 
    64                     help = 'whether to save models with applied bounds')
 | 
| 
 | 
    65     
 | 
| 
 | 
    66     parser.add_argument('-smp', '--save_models_path',
 | 
| 
 | 
    67                         type = str,
 | 
| 
 | 
    68                         default='saved_models/',
 | 
| 
 | 
    69                         help = 'output path for saved models')
 | 
| 
 | 
    70     
 | 
| 
 | 
    71     parser.add_argument('-smf', '--save_models_format',
 | 
| 
 | 
    72                         type = str,
 | 
| 
 | 
    73                         default='csv',
 | 
| 
 | 
    74                         help = 'format for saved models (csv, xml, json, mat, yaml, tabular)')
 | 
| 
 | 
    75 
 | 
| 
406
 | 
    76     
 | 
| 
 | 
    77     ARGS = parser.parse_args(args)
 | 
| 
 | 
    78     return ARGS
 | 
| 
 | 
    79 
 | 
| 
 | 
    80 ########################### warning ###########################################
 | 
| 
 | 
    81 def warning(s :str) -> None:
 | 
| 
 | 
    82     """
 | 
| 
 | 
    83     Log a warning message to an output log file and print it to the console.
 | 
| 
 | 
    84 
 | 
| 
 | 
    85     Args:
 | 
| 
 | 
    86         s (str): The warning message to be logged and printed.
 | 
| 
 | 
    87     
 | 
| 
 | 
    88     Returns:
 | 
| 
 | 
    89       None
 | 
| 
 | 
    90     """
 | 
| 
411
 | 
    91     if ARGS.out_log:
 | 
| 
 | 
    92         with open(ARGS.out_log, 'a') as log:
 | 
| 
 | 
    93             log.write(s + "\n\n")
 | 
| 
406
 | 
    94     print(s)
 | 
| 
 | 
    95 
 | 
| 
 | 
    96 ############################ dataset input ####################################
 | 
| 
 | 
    97 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
    98     """
 | 
| 
 | 
    99     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
   100 
 | 
| 
 | 
   101     Args:
 | 
| 
 | 
   102         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
   103         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
   104 
 | 
| 
 | 
   105     Returns:
 | 
| 
 | 
   106         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
   107 
 | 
| 
 | 
   108     Raises:
 | 
| 
 | 
   109         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
   110         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
   111     """
 | 
| 
 | 
   112     try:
 | 
| 
 | 
   113         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   114     except pd.errors.EmptyDataError:
 | 
| 
 | 
   115         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   116     if len(dataset.columns) < 2:
 | 
| 
 | 
   117         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   118     return dataset
 | 
| 
 | 
   119 
 | 
| 
 | 
   120 
 | 
| 
 | 
   121 def apply_ras_bounds(bounds, ras_row):
 | 
| 
 | 
   122     """
 | 
| 
 | 
   123     Adjust the bounds of reactions in the model based on RAS values.
 | 
| 
 | 
   124 
 | 
| 
 | 
   125     Args:
 | 
| 
 | 
   126         bounds (pd.DataFrame): Model bounds.
 | 
| 
 | 
   127         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   128     Returns:
 | 
| 
 | 
   129         new_bounds (pd.DataFrame): integrated bounds.
 | 
| 
 | 
   130     """
 | 
| 
 | 
   131     new_bounds = bounds.copy()
 | 
| 
 | 
   132     for reaction in ras_row.index:
 | 
| 
 | 
   133         scaling_factor = ras_row[reaction]
 | 
| 
 | 
   134         if not np.isnan(scaling_factor):
 | 
| 
 | 
   135             lower_bound=bounds.loc[reaction, "lower_bound"]
 | 
| 
 | 
   136             upper_bound=bounds.loc[reaction, "upper_bound"]
 | 
| 
 | 
   137             valMax=float((upper_bound)*scaling_factor)
 | 
| 
 | 
   138             valMin=float((lower_bound)*scaling_factor)
 | 
| 
 | 
   139             if upper_bound!=0 and lower_bound==0:
 | 
| 
 | 
   140                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   141             if upper_bound==0 and lower_bound!=0:
 | 
| 
 | 
   142                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   143             if upper_bound!=0 and lower_bound!=0:
 | 
| 
 | 
   144                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   145                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   146     return new_bounds
 | 
| 
 | 
   147 
 | 
| 
414
 | 
   148 
 | 
| 
411
 | 
   149 def save_model(model, filename, output_folder, file_format='csv'):
 | 
| 
 | 
   150     """
 | 
| 
 | 
   151     Save a COBRA model to file in the specified format.
 | 
| 
 | 
   152     
 | 
| 
 | 
   153     Args:
 | 
| 
 | 
   154         model (cobra.Model): The model to save.
 | 
| 
 | 
   155         filename (str): Base filename (without extension).
 | 
| 
 | 
   156         output_folder (str): Output directory.
 | 
| 
 | 
   157         file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv').
 | 
| 
 | 
   158     
 | 
| 
 | 
   159     Returns:
 | 
| 
 | 
   160         None
 | 
| 
 | 
   161     """
 | 
| 
 | 
   162     if not os.path.exists(output_folder):
 | 
| 
 | 
   163         os.makedirs(output_folder)
 | 
| 
 | 
   164     
 | 
| 
 | 
   165     try:
 | 
| 
 | 
   166         if file_format == 'tabular' or file_format == 'csv':
 | 
| 
 | 
   167             # Special handling for tabular format using utils functions
 | 
| 
 | 
   168             filepath = os.path.join(output_folder, f"{filename}.csv")
 | 
| 
 | 
   169             
 | 
| 
418
 | 
   170             rules = modelUtils.generate_rules(model, asParsed = False)
 | 
| 
 | 
   171             reactions = modelUtils.generate_reactions(model, asParsed = False)
 | 
| 
 | 
   172             bounds = modelUtils.generate_bounds(model)
 | 
| 
 | 
   173             medium = modelUtils.get_medium(model)
 | 
| 
411
 | 
   174             
 | 
| 
 | 
   175             try:
 | 
| 
418
 | 
   176                 compartments = modelUtils.generate_compartments(model)
 | 
| 
411
 | 
   177             except:
 | 
| 
 | 
   178                 compartments = None
 | 
| 
 | 
   179 
 | 
| 
 | 
   180             df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
 | 
| 
 | 
   181             df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
 | 
| 
 | 
   182             df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
 | 
| 
 | 
   183             df_medium = medium.rename(columns = {"reaction": "ReactionID"})
 | 
| 
 | 
   184             df_medium["InMedium"] = True # flag per indicare la presenza nel medium
 | 
| 
 | 
   185 
 | 
| 
 | 
   186             merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
 | 
| 
 | 
   187             merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
 | 
| 
 | 
   188             
 | 
| 
 | 
   189             # Add compartments only if they exist and model name is ENGRO2
 | 
| 
 | 
   190             if compartments is not None and hasattr(ARGS, 'name') and ARGS.name == "ENGRO2": 
 | 
| 
 | 
   191                 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
 | 
| 
 | 
   192             
 | 
| 
 | 
   193             merged = merged.merge(df_medium, on = "ReactionID", how = "left")
 | 
| 
 | 
   194             merged["InMedium"] = merged["InMedium"].fillna(False)
 | 
| 
 | 
   195             merged = merged.sort_values(by = "InMedium", ascending = False)
 | 
| 
 | 
   196             
 | 
| 
 | 
   197             merged.to_csv(filepath, sep="\t", index=False)
 | 
| 
 | 
   198             
 | 
| 
 | 
   199         else:
 | 
| 
 | 
   200             # Standard COBRA formats
 | 
| 
 | 
   201             filepath = os.path.join(output_folder, f"{filename}.{file_format}")
 | 
| 
 | 
   202             
 | 
| 
 | 
   203             if file_format == 'xml':
 | 
| 
 | 
   204                 cobra.io.write_sbml_model(model, filepath)
 | 
| 
 | 
   205             elif file_format == 'json':
 | 
| 
 | 
   206                 cobra.io.save_json_model(model, filepath)
 | 
| 
 | 
   207             elif file_format == 'mat':
 | 
| 
 | 
   208                 cobra.io.save_matlab_model(model, filepath)
 | 
| 
 | 
   209             elif file_format == 'yaml':
 | 
| 
 | 
   210                 cobra.io.save_yaml_model(model, filepath)
 | 
| 
 | 
   211             else:
 | 
| 
 | 
   212                 raise ValueError(f"Unsupported format: {file_format}")
 | 
| 
 | 
   213         
 | 
| 
 | 
   214         print(f"Model saved: {filepath}")
 | 
| 
 | 
   215         
 | 
| 
 | 
   216     except Exception as e:
 | 
| 
 | 
   217         warning(f"Error saving model {filename}: {str(e)}")
 | 
| 
 | 
   218 
 | 
| 
 | 
   219 def apply_bounds_to_model(model, bounds):
 | 
| 
 | 
   220     """
 | 
| 
 | 
   221     Apply bounds from a DataFrame to a COBRA model.
 | 
| 
 | 
   222     
 | 
| 
 | 
   223     Args:
 | 
| 
 | 
   224         model (cobra.Model): The metabolic model to modify.
 | 
| 
 | 
   225         bounds (pd.DataFrame): DataFrame with reaction bounds.
 | 
| 
 | 
   226     
 | 
| 
 | 
   227     Returns:
 | 
| 
 | 
   228         cobra.Model: Modified model with new bounds.
 | 
| 
 | 
   229     """
 | 
| 
 | 
   230     model_copy = model.copy()
 | 
| 
 | 
   231     for reaction_id in bounds.index:
 | 
| 
 | 
   232         try:
 | 
| 
 | 
   233             reaction = model_copy.reactions.get_by_id(reaction_id)
 | 
| 
 | 
   234             reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"]
 | 
| 
 | 
   235             reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"]
 | 
| 
 | 
   236         except KeyError:
 | 
| 
 | 
   237             # Reaction not found in model, skip
 | 
| 
 | 
   238             continue
 | 
| 
 | 
   239     return model_copy
 | 
| 
 | 
   240 
 | 
| 
 | 
   241 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'):
 | 
| 
406
 | 
   242     """
 | 
| 
 | 
   243     Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
 | 
| 
 | 
   244 
 | 
| 
 | 
   245     Args:
 | 
| 
 | 
   246         cellName (str): The name of the RAS cell (used for naming the output file).
 | 
| 
 | 
   247         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   248         model (cobra.Model): The metabolic model to be modified.
 | 
| 
 | 
   249         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
 | 
| 
 | 
   250         output_folder (str): Folder path where the output CSV file will be saved.
 | 
| 
411
 | 
   251         save_models (bool): Whether to save models with applied bounds.
 | 
| 
 | 
   252         save_models_path (str): Path where to save models.
 | 
| 
 | 
   253         save_models_format (str): Format for saved models.
 | 
| 
406
 | 
   254     
 | 
| 
 | 
   255     Returns:
 | 
| 
 | 
   256         None
 | 
| 
 | 
   257     """
 | 
| 
 | 
   258     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
 | 
| 
 | 
   259     new_bounds = apply_ras_bounds(bounds, ras_row)
 | 
| 
 | 
   260     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
 | 
| 
411
 | 
   261     
 | 
| 
 | 
   262     # Save model if requested
 | 
| 
 | 
   263     if save_models:
 | 
| 
 | 
   264         modified_model = apply_bounds_to_model(model, new_bounds)
 | 
| 
 | 
   265         save_model(modified_model, cellName, save_models_path, save_models_format)
 | 
| 
 | 
   266     
 | 
| 
406
 | 
   267     pass
 | 
| 
 | 
   268 
 | 
| 
414
 | 
   269 def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
 | 
| 
406
 | 
   270     """
 | 
| 
 | 
   271     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
 | 
| 
 | 
   272     
 | 
| 
 | 
   273     Args:
 | 
| 
 | 
   274         model (cobra.Model): The metabolic model for which bounds will be generated.
 | 
| 
 | 
   275         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
 | 
| 
 | 
   276         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
 | 
| 
411
 | 
   277         save_models (bool): Whether to save models with applied bounds.
 | 
| 
 | 
   278         save_models_path (str): Path where to save models.
 | 
| 
 | 
   279         save_models_format (str): Format for saved models.
 | 
| 
406
 | 
   280 
 | 
| 
 | 
   281     Returns:
 | 
| 
 | 
   282         pd.DataFrame: DataFrame containing the bounds of reactions in the model.
 | 
| 
 | 
   283     """
 | 
| 
407
 | 
   284     rxns_ids = [rxn.id for rxn in model.reactions]            
 | 
| 
406
 | 
   285             
 | 
| 
 | 
   286     # Perform Flux Variability Analysis (FVA) on this medium
 | 
| 
 | 
   287     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
 | 
| 
 | 
   288     
 | 
| 
 | 
   289     # Set FVA bounds
 | 
| 
 | 
   290     for reaction in rxns_ids:
 | 
| 
 | 
   291         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
 | 
| 
 | 
   292         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
 | 
| 
 | 
   293 
 | 
| 
 | 
   294     if ras is not None:
 | 
| 
411
 | 
   295         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(
 | 
| 
 | 
   296             cellName, ras_row, model, rxns_ids, output_folder, 
 | 
| 
 | 
   297             save_models, save_models_path, save_models_format
 | 
| 
 | 
   298         ) for cellName, ras_row in ras.iterrows())
 | 
| 
406
 | 
   299     else:
 | 
| 
428
 | 
   300         raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.")
 | 
| 
406
 | 
   301     pass
 | 
| 
 | 
   302 
 | 
| 
 | 
   303 ############################# main ###########################################
 | 
| 
 | 
   304 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   305     """
 | 
| 
 | 
   306     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   307 
 | 
| 
 | 
   308     Returns:
 | 
| 
 | 
   309         None
 | 
| 
 | 
   310     """
 | 
| 
 | 
   311     if not os.path.exists('ras_to_bounds'):
 | 
| 
 | 
   312         os.makedirs('ras_to_bounds')
 | 
| 
 | 
   313 
 | 
| 
 | 
   314     global ARGS
 | 
| 
 | 
   315     ARGS = process_args(args)
 | 
| 
 | 
   316 
 | 
| 
428
 | 
   317 
 | 
| 
 | 
   318     ras_file_list = ARGS.input_ras.split(",")
 | 
| 
 | 
   319     ras_file_names = ARGS.name.split(",")
 | 
| 
 | 
   320     if len(ras_file_names) != len(set(ras_file_names)):
 | 
| 
 | 
   321         error_message = "Duplicated file names in the uploaded RAS matrices."
 | 
| 
 | 
   322         warning(error_message)
 | 
| 
 | 
   323         raise ValueError(error_message)
 | 
| 
 | 
   324         pass
 | 
| 
 | 
   325     ras_class_names = []
 | 
| 
 | 
   326     for file in ras_file_names:
 | 
| 
 | 
   327         ras_class_names.append(file.rsplit(".", 1)[0])
 | 
| 
 | 
   328     ras_list = []
 | 
| 
 | 
   329     class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
 | 
| 
 | 
   330     for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
 | 
| 
 | 
   331         ras = read_dataset(ras_matrix, "ras dataset")
 | 
| 
 | 
   332         ras.replace("None", None, inplace=True)
 | 
| 
 | 
   333         ras.set_index("Reactions", drop=True, inplace=True)
 | 
| 
 | 
   334         ras = ras.T
 | 
| 
 | 
   335         ras = ras.astype(float)
 | 
| 
 | 
   336         if(len(ras_file_list)>1):
 | 
| 
 | 
   337             #append class name to patient id (dataframe index)
 | 
| 
 | 
   338             ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index]
 | 
| 
 | 
   339         else:
 | 
| 
 | 
   340             ras.index = [f"{idx}" for idx in ras.index]
 | 
| 
 | 
   341         ras_list.append(ras)
 | 
| 
 | 
   342         for patient_id in ras.index:
 | 
| 
 | 
   343             class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
 | 
| 
 | 
   344     
 | 
| 
406
 | 
   345         
 | 
| 
 | 
   346         # Concatenate all ras DataFrames into a single DataFrame
 | 
| 
 | 
   347         ras_combined = pd.concat(ras_list, axis=0)
 | 
| 
 | 
   348         # Normalize the RAS values by max RAS
 | 
| 
 | 
   349         ras_combined = ras_combined.div(ras_combined.max(axis=0))
 | 
| 
 | 
   350         ras_combined.dropna(axis=1, how='all', inplace=True)
 | 
| 
 | 
   351 
 | 
| 
420
 | 
   352     model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload)
 | 
| 
407
 | 
   353 
 | 
| 
420
 | 
   354     validation = modelUtils.validate_model(model)
 | 
| 
406
 | 
   355 
 | 
| 
407
 | 
   356     print("\n=== VALIDAZIONE MODELLO ===")
 | 
| 
 | 
   357     for key, value in validation.items():
 | 
| 
 | 
   358         print(f"{key}: {value}")
 | 
| 
 | 
   359 
 | 
| 
428
 | 
   360 
 | 
| 
 | 
   361     generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path,
 | 
| 
 | 
   362                     save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
 | 
| 
 | 
   363                     save_models_format=ARGS.save_models_format)
 | 
| 
 | 
   364     class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
 | 
| 
 | 
   365 
 | 
| 
406
 | 
   366 
 | 
| 
 | 
   367     pass
 | 
| 
 | 
   368         
 | 
| 
 | 
   369 ##############################################################################
 | 
| 
 | 
   370 if __name__ == "__main__":
 | 
| 
 | 
   371     main() |