changeset 414:5086145cfb96 draft

Uploaded
author francesco_lapi
date Mon, 08 Sep 2025 21:54:14 +0000
parents 7a3ccf066b2c
children 4a248b45273c
files COBRAxy/custom_data_generator_beta.py COBRAxy/ras_to_bounds_beta.py COBRAxy/utils/general_utils.py
diffstat 3 files changed, 282 insertions(+), 167 deletions(-) [+]
line wrap: on
line diff
--- a/COBRAxy/custom_data_generator_beta.py	Mon Sep 08 21:37:14 2025 +0000
+++ b/COBRAxy/custom_data_generator_beta.py	Mon Sep 08 21:54:14 2025 +0000
@@ -72,7 +72,125 @@
     raise utils.DataErr(file_path,
         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
 
+################################- DATA GENERATION -################################
+ReactionId = str
+def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
+    """
+    Generates a dictionary mapping reaction ids to rules from the model.
 
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
+
+    Returns:
+        Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
+        Dict[ReactionId, str] : the generated dictionary of raw rules.
+    """
+    # Is the below approach convoluted? yes
+    # Ok but is it inefficient? probably
+    # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
+    _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
+    ruleExtractor = (lambda reaction :
+        rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
+
+    return {
+        reaction.id : ruleExtractor(reaction)
+        for reaction in model.reactions
+        if reaction.gene_reaction_rule }
+
+def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
+    """
+    Generates a dictionary mapping reaction ids to reaction formulas from the model.
+
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
+
+    Returns:
+        Dict[ReactionId, str] : the generated dictionary.
+    """
+
+    unparsedReactions = {
+        reaction.id : reaction.reaction
+        for reaction in model.reactions
+        if reaction.reaction 
+    }
+
+    if not asParsed: return unparsedReactions
+    
+    return reactionUtils.create_reaction_dict(unparsedReactions)
+
+def get_medium(model:cobra.Model) -> pd.DataFrame:
+    trueMedium=[]
+    for r in model.reactions:
+        positiveCoeff=0
+        for m in r.metabolites:
+            if r.get_coefficient(m.id)>0:
+                positiveCoeff=1;
+        if (positiveCoeff==0 and r.lower_bound<0):
+            trueMedium.append(r.id)
+
+    df_medium = pd.DataFrame()
+    df_medium["reaction"] = trueMedium
+    return df_medium
+
+def generate_bounds(model:cobra.Model) -> pd.DataFrame:
+
+    rxns = []
+    for reaction in model.reactions:
+        rxns.append(reaction.id)
+
+    bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
+
+    for reaction in model.reactions:
+        bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
+    return bounds
+
+
+
+def generate_compartments(model: cobra.Model) -> pd.DataFrame:
+    """
+    Generates a DataFrame containing compartment information for each reaction.
+    Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
+    
+    Args:
+        model: the COBRA model to extract compartment data from.
+        
+    Returns:
+        pd.DataFrame: DataFrame with ReactionID and compartment columns
+    """
+    pathway_data = []
+
+    # First pass: determine the maximum number of pathways any reaction has
+    max_pathways = 0
+    reaction_pathways = {}
+
+    for reaction in model.reactions:
+        # Get unique pathways from all metabolites in the reaction
+        if type(reaction.annotation['pathways']) == list:
+            reaction_pathways[reaction.id] = reaction.annotation['pathways']
+            max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
+        else:
+            reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
+
+    # Create column names for pathways
+    pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
+
+    # Second pass: create the data
+    for reaction_id, pathways in reaction_pathways.items():
+        row = {"ReactionID": reaction_id}
+        
+        # Fill pathway columns
+        for i in range(max_pathways):
+            col_name = pathway_columns[i]
+            if i < len(pathways):
+                row[col_name] = pathways[i]
+            else:
+                row[col_name] = None  # or "" if you prefer empty strings
+
+        pathway_data.append(row)
+
+    return pd.DataFrame(pathway_data)
 
 
 ###############################- FILE SAVING -################################
@@ -178,12 +296,12 @@
         model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
 
     # generate data
-    rules = utils.generate_rules(model, asParsed = False)
-    reactions = utils.generate_reactions(model, asParsed = False)
-    bounds = utils.generate_bounds(model)
-    medium = utils.get_medium(model)
+    rules = generate_rules(model, asParsed = False)
+    reactions = generate_reactions(model, asParsed = False)
+    bounds = generate_bounds(model)
+    medium = get_medium(model)
     if ARGS.name == "ENGRO2":
-        compartments = utils.generate_compartments(model)
+        compartments = generate_compartments(model)
 
     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
--- a/COBRAxy/ras_to_bounds_beta.py	Mon Sep 08 21:37:14 2025 +0000
+++ b/COBRAxy/ras_to_bounds_beta.py	Mon Sep 08 21:54:14 2025 +0000
@@ -10,6 +10,7 @@
 import sys
 import csv
 from joblib import Parallel, delayed, cpu_count
+import utils.rule_parsing  as rulesUtils
 
 # , medium
 
@@ -149,6 +150,126 @@
                 new_bounds.loc[reaction, "upper_bound"] = valMax
     return new_bounds
 
+################################- DATA GENERATION -################################
+ReactionId = str
+def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
+    """
+    Generates a dictionary mapping reaction ids to rules from the model.
+
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
+
+    Returns:
+        Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
+        Dict[ReactionId, str] : the generated dictionary of raw rules.
+    """
+    # Is the below approach convoluted? yes
+    # Ok but is it inefficient? probably
+    # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
+    _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
+    ruleExtractor = (lambda reaction :
+        rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
+
+    return {
+        reaction.id : ruleExtractor(reaction)
+        for reaction in model.reactions
+        if reaction.gene_reaction_rule }
+
+def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
+    """
+    Generates a dictionary mapping reaction ids to reaction formulas from the model.
+
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
+
+    Returns:
+        Dict[ReactionId, str] : the generated dictionary.
+    """
+
+    unparsedReactions = {
+        reaction.id : reaction.reaction
+        for reaction in model.reactions
+        if reaction.reaction 
+    }
+
+    if not asParsed: return unparsedReactions
+    
+    return reactionUtils.create_reaction_dict(unparsedReactions)
+
+def get_medium(model:cobra.Model) -> pd.DataFrame:
+    trueMedium=[]
+    for r in model.reactions:
+        positiveCoeff=0
+        for m in r.metabolites:
+            if r.get_coefficient(m.id)>0:
+                positiveCoeff=1;
+        if (positiveCoeff==0 and r.lower_bound<0):
+            trueMedium.append(r.id)
+
+    df_medium = pd.DataFrame()
+    df_medium["reaction"] = trueMedium
+    return df_medium
+
+def generate_bounds(model:cobra.Model) -> pd.DataFrame:
+
+    rxns = []
+    for reaction in model.reactions:
+        rxns.append(reaction.id)
+
+    bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
+
+    for reaction in model.reactions:
+        bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
+    return bounds
+
+
+
+def generate_compartments(model: cobra.Model) -> pd.DataFrame:
+    """
+    Generates a DataFrame containing compartment information for each reaction.
+    Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
+    
+    Args:
+        model: the COBRA model to extract compartment data from.
+        
+    Returns:
+        pd.DataFrame: DataFrame with ReactionID and compartment columns
+    """
+    pathway_data = []
+
+    # First pass: determine the maximum number of pathways any reaction has
+    max_pathways = 0
+    reaction_pathways = {}
+
+    for reaction in model.reactions:
+        # Get unique pathways from all metabolites in the reaction
+        if type(reaction.annotation['pathways']) == list:
+            reaction_pathways[reaction.id] = reaction.annotation['pathways']
+            max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
+        else:
+            reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
+
+    # Create column names for pathways
+    pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
+
+    # Second pass: create the data
+    for reaction_id, pathways in reaction_pathways.items():
+        row = {"ReactionID": reaction_id}
+        
+        # Fill pathway columns
+        for i in range(max_pathways):
+            col_name = pathway_columns[i]
+            if i < len(pathways):
+                row[col_name] = pathways[i]
+            else:
+                row[col_name] = None  # or "" if you prefer empty strings
+
+        pathway_data.append(row)
+
+    return pd.DataFrame(pathway_data)
+
 def save_model(model, filename, output_folder, file_format='csv'):
     """
     Save a COBRA model to file in the specified format.
@@ -170,10 +291,10 @@
             # Special handling for tabular format using utils functions
             filepath = os.path.join(output_folder, f"{filename}.csv")
             
-            rules = utils.generate_rules(model, asParsed = False)
-            reactions = utils.generate_reactions(model, asParsed = False)
-            bounds = utils.generate_bounds(model)
-            medium = utils.get_medium(model)
+            rules = generate_rules(model, asParsed = False)
+            reactions = generate_reactions(model, asParsed = False)
+            bounds = generate_bounds(model)
+            medium = get_medium(model)
             
             try:
                 compartments = utils.generate_compartments(model)
@@ -269,7 +390,7 @@
     
     pass
 
-def generate_bounds(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
+def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
     """
     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
     
@@ -369,12 +490,12 @@
         print(f"{key}: {value}")
 
     if(ARGS.ras_selector == True):
-        generate_bounds(model, ras=ras_combined, output_folder=ARGS.output_path,
+        generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path,
                        save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
                        save_models_format=ARGS.save_models_format)
         class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
     else:
-        generate_bounds(model, output_folder=ARGS.output_path,
+        generate_bounds_model(model, output_folder=ARGS.output_path,
                        save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
                        save_models_format=ARGS.save_models_format)
 
--- a/COBRAxy/utils/general_utils.py	Mon Sep 08 21:37:14 2025 +0000
+++ b/COBRAxy/utils/general_utils.py	Mon Sep 08 21:54:14 2025 +0000
@@ -17,11 +17,6 @@
 import gzip
 import bz2
 from io import StringIO
-import os
-sys.path.insert(0, os.path.dirname(__file__)) 
-import rule_parsing  as rulesUtils
-import reaction_parsing as reactionUtils
-
 
 
 
@@ -780,38 +775,40 @@
     
     # Seconda passata: aggiungi le reazioni
     reactions_added = 0
+    reactions_skipped = 0
     
     for idx, row in df.iterrows():
-        reaction_id = str(row['ReactionID']).strip()
-        reaction_formula = str(row['Reaction']).strip()
-        
-        # Salta reazioni senza formula
-        if not reaction_formula or reaction_formula == 'nan':
-            raise ValueError(f"Formula della reazione mancante {reaction_id}")
-
-        # Crea la reazione
-        reaction = Reaction(reaction_id)
-        reaction.name = reaction_id
-        
-        # Imposta bounds
-        reaction.lower_bound = float(row['lower_bound']) if pd.notna(row['lower_bound']) else -1000.0
-        reaction.upper_bound = float(row['upper_bound']) if pd.notna(row['upper_bound']) else 1000.0
-        
-        # Aggiungi gene rule se presente
-        if pd.notna(row['Rule']) and str(row['Rule']).strip():
-            reaction.gene_reaction_rule = str(row['Rule']).strip()
-        
-        # Parse della formula della reazione
         try:
-            parse_reaction_formula(reaction, reaction_formula, metabolites_dict)
-        except Exception as e:
-            print(f"Errore nel parsing della reazione {reaction_id}: {e}")
-            reactions_skipped += 1
-            continue
-        
-        # Aggiungi la reazione al modello
-        model.add_reactions([reaction])
-        reactions_added += 1
+            reaction_id = str(row['ReactionID']).strip()
+            reaction_formula = str(row['Reaction']).strip()
+            
+            # Salta reazioni senza formula
+            if not reaction_formula or reaction_formula == 'nan':
+                raise ValueError(f"Formula della reazione mancante {reaction_id}")
+            
+            # Crea la reazione
+            reaction = Reaction(reaction_id)
+            reaction.name = reaction_id
+            
+            # Imposta bounds
+            reaction.lower_bound = float(row['lower_bound']) if pd.notna(row['lower_bound']) else -1000.0
+            reaction.upper_bound = float(row['upper_bound']) if pd.notna(row['upper_bound']) else 1000.0
+            
+            # Aggiungi gene rule se presente
+            if pd.notna(row['Rule']) and str(row['Rule']).strip():
+                reaction.gene_reaction_rule = str(row['Rule']).strip()
+            
+            # Parse della formula della reazione
+            try:
+                parse_reaction_formula(reaction, reaction_formula, metabolites_dict)
+            except Exception as e:
+                print(f"Errore nel parsing della reazione {reaction_id}: {e}")
+                reactions_skipped += 1
+                continue
+            
+            # Aggiungi la reazione al modello
+            model.add_reactions([reaction])
+            reactions_added += 1
             
     
     print(f"Aggiunte {reactions_added} reazioni, saltate {reactions_skipped} reazioni")
@@ -979,124 +976,3 @@
         validation['status'] = f"Error: {e}"
     
     return validation
-
-
-################################- DATA GENERATION -################################
-ReactionId = str
-def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
-    """
-    Generates a dictionary mapping reaction ids to rules from the model.
-
-    Args:
-        model : the model to derive data from.
-        asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
-
-    Returns:
-        Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
-        Dict[ReactionId, str] : the generated dictionary of raw rules.
-    """
-    # Is the below approach convoluted? yes
-    # Ok but is it inefficient? probably
-    # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
-    _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
-    ruleExtractor = (lambda reaction :
-        rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
-
-    return {
-        reaction.id : ruleExtractor(reaction)
-        for reaction in model.reactions
-        if reaction.gene_reaction_rule }
-
-def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
-    """
-    Generates a dictionary mapping reaction ids to reaction formulas from the model.
-
-    Args:
-        model : the model to derive data from.
-        asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
-
-    Returns:
-        Dict[ReactionId, str] : the generated dictionary.
-    """
-
-    unparsedReactions = {
-        reaction.id : reaction.reaction
-        for reaction in model.reactions
-        if reaction.reaction 
-    }
-
-    if not asParsed: return unparsedReactions
-    
-    return reactionUtils.create_reaction_dict(unparsedReactions)
-
-def get_medium(model:cobra.Model) -> pd.DataFrame:
-    trueMedium=[]
-    for r in model.reactions:
-        positiveCoeff=0
-        for m in r.metabolites:
-            if r.get_coefficient(m.id)>0:
-                positiveCoeff=1;
-        if (positiveCoeff==0 and r.lower_bound<0):
-            trueMedium.append(r.id)
-
-    df_medium = pd.DataFrame()
-    df_medium["reaction"] = trueMedium
-    return df_medium
-
-def generate_bounds(model:cobra.Model) -> pd.DataFrame:
-
-    rxns = []
-    for reaction in model.reactions:
-        rxns.append(reaction.id)
-
-    bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
-
-    for reaction in model.reactions:
-        bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
-    return bounds
-
-
-
-def generate_compartments(model: cobra.Model) -> pd.DataFrame:
-    """
-    Generates a DataFrame containing compartment information for each reaction.
-    Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
-    
-    Args:
-        model: the COBRA model to extract compartment data from.
-        
-    Returns:
-        pd.DataFrame: DataFrame with ReactionID and compartment columns
-    """
-    pathway_data = []
-
-    # First pass: determine the maximum number of pathways any reaction has
-    max_pathways = 0
-    reaction_pathways = {}
-
-    for reaction in model.reactions:
-        # Get unique pathways from all metabolites in the reaction
-        if type(reaction.annotation['pathways']) == list:
-            reaction_pathways[reaction.id] = reaction.annotation['pathways']
-            max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
-        else:
-            reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
-
-    # Create column names for pathways
-    pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
-
-    # Second pass: create the data
-    for reaction_id, pathways in reaction_pathways.items():
-        row = {"ReactionID": reaction_id}
-        
-        # Fill pathway columns
-        for i in range(max_pathways):
-            col_name = pathway_columns[i]
-            if i < len(pathways):
-                row[col_name] = pathways[i]
-            else:
-                row[col_name] = None  # or "" if you prefer empty strings
-
-        pathway_data.append(row)
-
-    return pd.DataFrame(pathway_data)
\ No newline at end of file