| 539 | 1 # -*- coding: utf-8 -*- | 
|  | 2 """ | 
|  | 3 Created on Mon Jun 3 19:51:00 2019 | 
|  | 4 @author: Narger | 
|  | 5 """ | 
|  | 6 | 
|  | 7 import sys | 
|  | 8 import argparse | 
|  | 9 import os | 
|  | 10 import numpy as np | 
|  | 11 import pandas as pd | 
|  | 12 from sklearn.datasets import make_blobs | 
|  | 13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | 
|  | 14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | 
|  | 15 import matplotlib | 
|  | 16 matplotlib.use('agg') | 
|  | 17 import matplotlib.pyplot as plt | 
|  | 18 import scipy.cluster.hierarchy as shc | 
|  | 19 import matplotlib.cm as cm | 
|  | 20 from typing import Optional, Dict, List | 
|  | 21 | 
|  | 22 ################################# process args ############################### | 
|  | 23 def process_args(args_in :List[str] = None) -> argparse.Namespace: | 
|  | 24     """ | 
|  | 25     Processes command-line arguments. | 
|  | 26 | 
|  | 27     Args: | 
|  | 28         args (list): List of command-line arguments. | 
|  | 29 | 
|  | 30     Returns: | 
|  | 31         Namespace: An object containing parsed arguments. | 
|  | 32     """ | 
|  | 33     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 34                                      description = 'process some value\'s' + | 
|  | 35                                      ' genes to create class.') | 
|  | 36 | 
|  | 37     parser.add_argument('-ol', '--out_log', | 
|  | 38                         help = "Output log") | 
|  | 39 | 
|  | 40     parser.add_argument('-in', '--input', | 
|  | 41                         type = str, | 
|  | 42                         help = 'input dataset') | 
|  | 43 | 
|  | 44     parser.add_argument('-cy', '--cluster_type', | 
|  | 45                         type = str, | 
|  | 46                         choices = ['kmeans', 'dbscan', 'hierarchy'], | 
|  | 47                         default = 'kmeans', | 
|  | 48                         help = 'choose clustering algorythm') | 
|  | 49 | 
|  | 50     parser.add_argument('-sc', '--scaling', | 
|  | 51                         type = str, | 
|  | 52                         choices = ['true', 'false'], | 
|  | 53                         default = 'true', | 
|  | 54                         help = 'choose if you want to scaling the data') | 
|  | 55 | 
|  | 56     parser.add_argument('-k1', '--k_min', | 
|  | 57                         type = int, | 
|  | 58                         default = 2, | 
|  | 59                         help = 'choose minimun cluster number to be generated') | 
|  | 60 | 
|  | 61     parser.add_argument('-k2', '--k_max', | 
|  | 62                         type = int, | 
|  | 63                         default = 7, | 
|  | 64                         help = 'choose maximum cluster number to be generated') | 
|  | 65 | 
|  | 66     parser.add_argument('-el', '--elbow', | 
|  | 67                         type = str, | 
|  | 68                         default = 'false', | 
|  | 69                         choices = ['true', 'false'], | 
|  | 70                         help = 'choose if you want to generate an elbow plot for kmeans') | 
|  | 71 | 
|  | 72     parser.add_argument('-si', '--silhouette', | 
|  | 73                         type = str, | 
|  | 74                         default = 'false', | 
|  | 75                         choices = ['true', 'false'], | 
|  | 76                         help = 'choose if you want silhouette plots') | 
|  | 77 | 
|  | 78     parser.add_argument('-td', '--tool_dir', | 
|  | 79                         type = str, | 
|  | 80                         required = True, | 
|  | 81                         help = 'your tool directory') | 
|  | 82 | 
|  | 83     parser.add_argument('-ms', '--min_samples', | 
|  | 84                         type = int, | 
|  | 85                         help = 'min samples for dbscan (optional)') | 
|  | 86 | 
|  | 87     parser.add_argument('-ep', '--eps', | 
|  | 88                         type = float, | 
|  | 89                         help = 'eps for dbscan (optional)') | 
|  | 90 | 
|  | 91     parser.add_argument('-bc', '--best_cluster', | 
|  | 92                         type = str, | 
|  | 93                         help = 'output of best cluster tsv') | 
|  | 94 | 
|  | 95     parser.add_argument( | 
|  | 96         '-idop', '--output_path', | 
|  | 97         type = str, | 
|  | 98         default='clustering/', | 
|  | 99         help = 'output path for maps') | 
|  | 100 | 
|  | 101     args_in = parser.parse_args(args_in) | 
|  | 102     return args_in | 
|  | 103 | 
|  | 104 ########################### warning ########################################### | 
|  | 105 def warning(s :str) -> None: | 
|  | 106     """ | 
|  | 107     Log a warning message to an output log file and print it to the console. | 
|  | 108 | 
|  | 109     Args: | 
|  | 110         s (str): The warning message to be logged and printed. | 
|  | 111 | 
|  | 112     Returns: | 
|  | 113       None | 
|  | 114     """ | 
|  | 115 | 
|  | 116     with open(args.out_log, 'a') as log: | 
|  | 117         log.write(s + "\n\n") | 
|  | 118     print(s) | 
|  | 119 | 
|  | 120 ########################## read dataset ###################################### | 
|  | 121 def read_dataset(dataset :str) -> pd.DataFrame: | 
|  | 122     """ | 
|  | 123     Read dataset from a CSV file and return it as a Pandas DataFrame. | 
|  | 124 | 
|  | 125     Args: | 
|  | 126         dataset (str): the path to the dataset to convert into a DataFrame | 
|  | 127 | 
|  | 128     Returns: | 
|  | 129         pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | 
|  | 130 | 
|  | 131     Raises: | 
|  | 132         pandas.errors.EmptyDataError: If the dataset file is empty. | 
|  | 133         sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | 
|  | 134     """ | 
|  | 135     try: | 
|  | 136         dataset = pd.read_csv(dataset, sep = '\t', header = 0) | 
|  | 137     except pd.errors.EmptyDataError: | 
|  | 138         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 139     if len(dataset.columns) < 2: | 
|  | 140         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 141     return dataset | 
|  | 142 | 
|  | 143 ############################ rewrite_input ################################### | 
|  | 144 def rewrite_input(dataset :Dict) -> Dict[str, List[Optional[float]]]: | 
|  | 145     """ | 
|  | 146     Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | 
|  | 147 | 
|  | 148     Args: | 
|  | 149         dataset (pandas.DataFrame): The dataset to be rewritten. | 
|  | 150 | 
|  | 151     Returns: | 
|  | 152         dict: The rewritten dataset as a dictionary of lists. | 
|  | 153     """ | 
|  | 154     #Riscrivo il dataset come dizionario di liste, | 
|  | 155     #non come dizionario di dizionari | 
|  | 156     #dataset.pop('Reactions', None) | 
|  | 157 | 
|  | 158     for key, val in dataset.items(): | 
|  | 159         l = [] | 
|  | 160         for i in val: | 
|  | 161             if i == 'None': | 
|  | 162                 l.append(None) | 
|  | 163             else: | 
|  | 164                 l.append(float(i)) | 
|  | 165 | 
|  | 166         dataset[key] = l | 
|  | 167 | 
|  | 168     return dataset | 
|  | 169 | 
|  | 170 ############################## write to csv ################################## | 
|  | 171 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | 
|  | 172     """ | 
|  | 173     Write dataset and predicted labels to a CSV file. | 
|  | 174 | 
|  | 175     Args: | 
|  | 176         dataset (pandas.DataFrame): The dataset to be written. | 
|  | 177         labels (list): The predicted labels for each data point. | 
|  | 178         name (str): The name of the output CSV file. | 
|  | 179 | 
|  | 180     Returns: | 
|  | 181         None | 
|  | 182     """ | 
|  | 183     #labels = predict | 
|  | 184     predict = [x+1 for x in labels] | 
|  | 185 | 
|  | 186     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 187 | 
|  | 188     dest = name | 
|  | 189     classe.to_csv(dest, sep = '\t', index = False, | 
|  | 190                       header = ['Patient_ID', 'Class']) | 
|  | 191 | 
|  | 192 ########################### trova il massimo in lista ######################## | 
|  | 193 def max_index (lista :List[int]) -> int: | 
|  | 194     """ | 
|  | 195     Find the index of the maximum value in a list. | 
|  | 196 | 
|  | 197     Args: | 
|  | 198         lista (list): The list in which we search for the index of the maximum value. | 
|  | 199 | 
|  | 200     Returns: | 
|  | 201         int: The index of the maximum value in the list. | 
|  | 202     """ | 
|  | 203     best = -1 | 
|  | 204     best_index = 0 | 
|  | 205     for i in range(len(lista)): | 
|  | 206         if lista[i] > best: | 
|  | 207             best = lista [i] | 
|  | 208             best_index = i | 
|  | 209 | 
|  | 210     return best_index | 
|  | 211 | 
|  | 212 ################################ kmeans ##################################### | 
|  | 213 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | 
|  | 214     """ | 
|  | 215     Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | 
|  | 216     The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | 
|  | 217 | 
|  | 218     Args: | 
|  | 219         k_min (int): The minimum number of clusters to consider. | 
|  | 220         k_max (int): The maximum number of clusters to consider. | 
|  | 221         dataset (pandas.DataFrame): The dataset to perform clustering on. | 
|  | 222         elbow (str): Whether to generate an elbow plot for kmeans ('True' or 'False'). | 
|  | 223         silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | 
|  | 224         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 225 | 
|  | 226     Returns: | 
|  | 227         None | 
|  | 228     """ | 
|  | 229     if not os.path.exists(args.output_path): | 
|  | 230         os.makedirs(args.output_path) | 
|  | 231 | 
|  | 232 | 
|  | 233     if elbow == 'true': | 
|  | 234         elbow = True | 
|  | 235     else: | 
|  | 236         elbow = False | 
|  | 237 | 
|  | 238     if silhouette == 'true': | 
|  | 239         silhouette = True | 
|  | 240     else: | 
|  | 241         silhouette = False | 
|  | 242 | 
|  | 243     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 244     distortions = [] | 
|  | 245     scores = [] | 
|  | 246     all_labels = [] | 
|  | 247 | 
|  | 248     clusterer = KMeans(n_clusters=1, random_state=10) | 
|  | 249     distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 250 | 
|  | 251 | 
|  | 252     for n_clusters in range_n_clusters: | 
|  | 253         clusterer = KMeans(n_clusters=n_clusters, random_state=10) | 
|  | 254         cluster_labels = clusterer.fit_predict(dataset) | 
|  | 255 | 
|  | 256         all_labels.append(cluster_labels) | 
|  | 257         if n_clusters == 1: | 
|  | 258             silhouette_avg = 0 | 
|  | 259         else: | 
|  | 260             silhouette_avg = silhouette_score(dataset, cluster_labels) | 
|  | 261         scores.append(silhouette_avg) | 
|  | 262         distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 263 | 
|  | 264     best = max_index(scores) + k_min | 
|  | 265 | 
|  | 266     for i in range(len(all_labels)): | 
|  | 267         prefix = '' | 
|  | 268         if (i + k_min == best): | 
|  | 269             prefix = '_BEST' | 
|  | 270 | 
|  | 271         write_to_csv(dataset, all_labels[i], f'{args.output_path}/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | 
|  | 272 | 
|  | 273 | 
|  | 274         if (prefix == '_BEST'): | 
|  | 275             labels = all_labels[i] | 
|  | 276             predict = [x+1 for x in labels] | 
|  | 277             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 278             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 279 | 
|  | 280 | 
|  | 281 | 
|  | 282 | 
|  | 283         if silhouette: | 
|  | 284             silhouette_draw(dataset, all_labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 285 | 
|  | 286 | 
|  | 287     if elbow: | 
|  | 288         elbow_plot(distortions, k_min,k_max) | 
|  | 289 | 
|  | 290 | 
|  | 291 | 
|  | 292 | 
|  | 293 | 
|  | 294 ############################## elbow_plot #################################### | 
|  | 295 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | 
|  | 296     """ | 
|  | 297     Generate an elbow plot to visualize the distortion for different numbers of clusters. | 
|  | 298     The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | 
|  | 299     in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | 
|  | 300 | 
|  | 301     Args: | 
|  | 302         distortions (list): List of distortion values for different numbers of clusters. | 
|  | 303         k_min (int): The minimum number of clusters considered. | 
|  | 304         k_max (int): The maximum number of clusters considered. | 
|  | 305 | 
|  | 306     Returns: | 
|  | 307         None | 
|  | 308     """ | 
|  | 309     plt.figure(0) | 
|  | 310     x = list(range(k_min, k_max + 1)) | 
|  | 311     x.insert(0, 1) | 
|  | 312     plt.plot(x, distortions, marker = 'o') | 
|  | 313     plt.xlabel('Number of clusters (k)') | 
|  | 314     plt.ylabel('Distortion') | 
|  | 315     s = f'{args.output_path}/elbow_plot.png' | 
|  | 316     fig = plt.gcf() | 
|  | 317     fig.set_size_inches(18.5, 10.5, forward = True) | 
|  | 318     fig.savefig(s, dpi=100) | 
|  | 319 | 
|  | 320 | 
|  | 321 ############################## silhouette plot ############################### | 
|  | 322 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | 
|  | 323     """ | 
|  | 324     Generate a silhouette plot for the clustering results. | 
|  | 325     The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | 
|  | 326     The silhouette coefficient ranges from -1 to 1, where: | 
|  | 327     - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | 
|  | 328     - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | 
|  | 329     - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | 
|  | 330 | 
|  | 331     Args: | 
|  | 332         dataset (pandas.DataFrame): The dataset used for clustering. | 
|  | 333         labels (list): The cluster labels assigned to each data point. | 
|  | 334         n_clusters (int): The number of clusters. | 
|  | 335         path (str): The path to save the silhouette plot image. | 
|  | 336 | 
|  | 337     Returns: | 
|  | 338         None | 
|  | 339     """ | 
|  | 340     if n_clusters == 1: | 
|  | 341         return None | 
|  | 342 | 
|  | 343     silhouette_avg = silhouette_score(dataset, labels) | 
|  | 344     warning("For n_clusters = " + str(n_clusters) + | 
|  | 345           " The average silhouette_score is: " + str(silhouette_avg)) | 
|  | 346 | 
|  | 347     plt.close('all') | 
|  | 348     # Create a subplot with 1 row and 2 columns | 
|  | 349     fig, (ax1) = plt.subplots(1, 1) | 
|  | 350 | 
|  | 351     fig.set_size_inches(18, 7) | 
|  | 352 | 
|  | 353     # The 1st subplot is the silhouette plot | 
|  | 354     # The silhouette coefficient can range from -1, 1 but in this example all | 
|  | 355     # lie within [-0.1, 1] | 
|  | 356     ax1.set_xlim([-1, 1]) | 
|  | 357     # The (n_clusters+1)*10 is for inserting blank space between silhouette | 
|  | 358     # plots of individual clusters, to demarcate them clearly. | 
|  | 359     ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | 
|  | 360 | 
|  | 361     # Compute the silhouette scores for each sample | 
|  | 362     sample_silhouette_values = silhouette_samples(dataset, labels) | 
|  | 363 | 
|  | 364     y_lower = 10 | 
|  | 365     for i in range(n_clusters): | 
|  | 366         # Aggregate the silhouette scores for samples belonging to | 
|  | 367         # cluster i, and sort them | 
|  | 368         ith_cluster_silhouette_values = \ | 
|  | 369         sample_silhouette_values[labels == i] | 
|  | 370 | 
|  | 371         ith_cluster_silhouette_values.sort() | 
|  | 372 | 
|  | 373         size_cluster_i = ith_cluster_silhouette_values.shape[0] | 
|  | 374         y_upper = y_lower + size_cluster_i | 
|  | 375 | 
|  | 376         color = cm.nipy_spectral(float(i) / n_clusters) | 
|  | 377         ax1.fill_betweenx(np.arange(y_lower, y_upper), | 
|  | 378                           0, ith_cluster_silhouette_values, | 
|  | 379                                      facecolor=color, edgecolor=color, alpha=0.7) | 
|  | 380 | 
|  | 381         # Label the silhouette plots with their cluster numbers at the middle | 
|  | 382         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | 
|  | 383 | 
|  | 384         # Compute the new y_lower for next plot | 
|  | 385         y_lower = y_upper + 10  # 10 for the 0 samples | 
|  | 386 | 
|  | 387         ax1.set_title("The silhouette plot for the various clusters.") | 
|  | 388         ax1.set_xlabel("The silhouette coefficient values") | 
|  | 389         ax1.set_ylabel("Cluster label") | 
|  | 390 | 
|  | 391         # The vertical line for average silhouette score of all the values | 
|  | 392         ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | 
|  | 393 | 
|  | 394         ax1.set_yticks([])  # Clear the yaxis labels / ticks | 
|  | 395         ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | 
|  | 396 | 
|  | 397 | 
|  | 398         plt.suptitle(("Silhouette analysis for clustering on sample data " | 
|  | 399                           "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | 
|  | 400 | 
|  | 401 | 
|  | 402         plt.savefig(path, bbox_inches='tight') | 
|  | 403 | 
|  | 404 ######################## dbscan ############################################## | 
|  | 405 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | 
|  | 406     """ | 
|  | 407     Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | 
|  | 408 | 
|  | 409     Args: | 
|  | 410         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 411         eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | 
|  | 412         min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | 
|  | 413         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 414 | 
|  | 415     Returns: | 
|  | 416         None | 
|  | 417     """ | 
|  | 418     if not os.path.exists(args.output_path): | 
|  | 419         os.makedirs(args.output_path) | 
|  | 420 | 
|  | 421     if eps is not None: | 
|  | 422         clusterer = DBSCAN(eps = eps, min_samples = min_samples) | 
|  | 423     else: | 
|  | 424         clusterer = DBSCAN() | 
|  | 425 | 
|  | 426     clustering = clusterer.fit(dataset) | 
|  | 427 | 
|  | 428     core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | 
|  | 429     core_samples_mask[clustering.core_sample_indices_] = True | 
|  | 430     labels = clustering.labels_ | 
|  | 431 | 
|  | 432     # Number of clusters in labels, ignoring noise if present. | 
|  | 433     n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | 
|  | 434 | 
|  | 435 | 
|  | 436     labels = labels | 
|  | 437     predict = [x+1 for x in labels] | 
|  | 438     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 439     classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 440 | 
|  | 441 | 
|  | 442 ########################## hierachical ####################################### | 
|  | 443 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | 
|  | 444     """ | 
|  | 445     Perform hierarchical agglomerative clustering on the given dataset. | 
|  | 446 | 
|  | 447     Args: | 
|  | 448         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 449         k_min (int): The minimum number of clusters to consider. | 
|  | 450         k_max (int): The maximum number of clusters to consider. | 
|  | 451         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 452         silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | 
|  | 453 | 
|  | 454     Returns: | 
|  | 455         None | 
|  | 456     """ | 
|  | 457     if not os.path.exists(args.output_path): | 
|  | 458         os.makedirs(args.output_path) | 
|  | 459 | 
|  | 460     plt.figure(figsize=(10, 7)) | 
|  | 461     plt.title("Customer Dendograms") | 
|  | 462     shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | 
|  | 463     fig = plt.gcf() | 
|  | 464     fig.savefig(f'{args.output_path}/dendogram.png', dpi=200) | 
|  | 465 | 
|  | 466     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 467 | 
|  | 468     scores = [] | 
|  | 469     labels = [] | 
|  | 470 | 
|  | 471     n_classi = dataset.shape[0] | 
|  | 472 | 
|  | 473     for n_clusters in range_n_clusters: | 
|  | 474         cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | 
|  | 475         cluster.fit_predict(dataset) | 
|  | 476         cluster_labels = cluster.labels_ | 
|  | 477         labels.append(cluster_labels) | 
|  | 478         write_to_csv(dataset, cluster_labels, f'{args.output_path}/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | 
|  | 479 | 
|  | 480     best = max_index(scores) + k_min | 
|  | 481 | 
|  | 482     for i in range(len(labels)): | 
|  | 483         prefix = '' | 
|  | 484         if (i + k_min == best): | 
|  | 485             prefix = '_BEST' | 
|  | 486         if silhouette == 'true': | 
|  | 487             silhouette_draw(dataset, labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 488 | 
|  | 489     for i in range(len(labels)): | 
|  | 490         if (i + k_min == best): | 
|  | 491             labels = labels[i] | 
|  | 492             predict = [x+1 for x in labels] | 
|  | 493             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 494             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 495 | 
|  | 496 | 
|  | 497 ############################# main ########################################### | 
|  | 498 def main(args_in:List[str] = None) -> None: | 
|  | 499     """ | 
|  | 500     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 501 | 
|  | 502     Returns: | 
|  | 503         None | 
|  | 504     """ | 
|  | 505     global args | 
|  | 506     args = process_args(args_in) | 
|  | 507 | 
|  | 508     if not os.path.exists(args.output_path): | 
|  | 509         os.makedirs(args.output_path) | 
|  | 510 | 
|  | 511     #Data read | 
|  | 512 | 
|  | 513     X = read_dataset(args.input) | 
|  | 514     X = X.iloc[:, 1:] | 
|  | 515     X = pd.DataFrame.to_dict(X, orient='list') | 
|  | 516     X = rewrite_input(X) | 
|  | 517     X = pd.DataFrame.from_dict(X, orient = 'index') | 
|  | 518 | 
|  | 519     for i in X.columns: | 
|  | 520         if any(val is None or np.isnan(val) for val in X[i]): | 
|  | 521             X = X.drop(columns=[i]) | 
|  | 522 | 
|  | 523     if args.scaling == "true": | 
|  | 524         list_to_remove = [] | 
|  | 525         toll_std=1e-8 | 
|  | 526         for i in X.columns: | 
|  | 527             mean_i = X[i].mean() | 
|  | 528             std_i = X[i].std() | 
|  | 529             if std_i >toll_std: | 
|  | 530                 #scaling with mean 0 and std 1 | 
|  | 531                 X[i] = (X[i]-mean_i)/std_i | 
|  | 532             else: | 
|  | 533                 #remove feature because std = 0 during clustering | 
|  | 534                 list_to_remove.append(i) | 
|  | 535         if len(list_to_remove)>0: | 
|  | 536             X = X.drop(columns=list_to_remove) | 
|  | 537 | 
|  | 538     if args.k_max != None: | 
|  | 539        numero_classi = X.shape[0] | 
|  | 540        while args.k_max >= numero_classi: | 
|  | 541           err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | 
|  | 542           warning(err) | 
|  | 543           args.k_max = args.k_max - 1 | 
|  | 544 | 
|  | 545 | 
|  | 546     if args.cluster_type == 'kmeans': | 
|  | 547         kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | 
|  | 548 | 
|  | 549     if args.cluster_type == 'dbscan': | 
|  | 550         dbscan(X, args.eps, args.min_samples, args.best_cluster) | 
|  | 551 | 
|  | 552     if args.cluster_type == 'hierarchy': | 
|  | 553         hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | 
|  | 554 | 
|  | 555 ############################################################################## | 
|  | 556 if __name__ == "__main__": | 
|  | 557     main() |