| 
406
 | 
     1 import argparse
 | 
| 
 | 
     2 import utils.general_utils as utils
 | 
| 
416
 | 
     3 from typing import Optional, Dict, Set, List, Tuple, Union
 | 
| 
406
 | 
     4 import os
 | 
| 
 | 
     5 import numpy as np
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import cobra
 | 
| 
407
 | 
     8 from cobra import Model, Reaction, Metabolite
 | 
| 
 | 
     9 import re
 | 
| 
406
 | 
    10 import sys
 | 
| 
 | 
    11 import csv
 | 
| 
 | 
    12 from joblib import Parallel, delayed, cpu_count
 | 
| 
414
 | 
    13 import utils.rule_parsing  as rulesUtils
 | 
| 
416
 | 
    14 import utils.reaction_utils as reactionUtils
 | 
| 
406
 | 
    15 
 | 
| 
407
 | 
    16 # , medium
 | 
| 
 | 
    17 
 | 
| 
406
 | 
    18 ################################# process args ###############################
 | 
| 
 | 
    19 def process_args(args :List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    20     """
 | 
| 
 | 
    21     Processes command-line arguments.
 | 
| 
 | 
    22 
 | 
| 
 | 
    23     Args:
 | 
| 
 | 
    24         args (list): List of command-line arguments.
 | 
| 
 | 
    25 
 | 
| 
 | 
    26     Returns:
 | 
| 
 | 
    27         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    28     """
 | 
| 
 | 
    29     parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
 | 
| 
 | 
    30                                      description = 'process some value\'s')
 | 
| 
 | 
    31     
 | 
| 
 | 
    32     
 | 
| 
407
 | 
    33     parser.add_argument("-mo", "--model_upload", type = str,
 | 
| 
406
 | 
    34         help = "path to input file with custom rules, if provided")
 | 
| 
 | 
    35 
 | 
| 
 | 
    36     parser.add_argument('-ol', '--out_log', 
 | 
| 
 | 
    37                         help = "Output log")
 | 
| 
 | 
    38     
 | 
| 
 | 
    39     parser.add_argument('-td', '--tool_dir',
 | 
| 
 | 
    40                         type = str,
 | 
| 
 | 
    41                         required = True,
 | 
| 
 | 
    42                         help = 'your tool directory')
 | 
| 
 | 
    43     
 | 
| 
 | 
    44     parser.add_argument('-ir', '--input_ras',
 | 
| 
 | 
    45                         type=str,
 | 
| 
 | 
    46                         required = False,
 | 
| 
 | 
    47                         help = 'input ras')
 | 
| 
 | 
    48     
 | 
| 
 | 
    49     parser.add_argument('-rn', '--name',
 | 
| 
 | 
    50                 type=str,
 | 
| 
 | 
    51                 help = 'ras class names')
 | 
| 
 | 
    52     
 | 
| 
 | 
    53     parser.add_argument('-rs', '--ras_selector',
 | 
| 
 | 
    54                         required = True,
 | 
| 
 | 
    55                         type=utils.Bool("using_RAS"),
 | 
| 
 | 
    56                         help = 'ras selector')
 | 
| 
 | 
    57 
 | 
| 
 | 
    58     parser.add_argument('-cc', '--cell_class',
 | 
| 
 | 
    59                     type = str,
 | 
| 
 | 
    60                     help = 'output of cell class')
 | 
| 
 | 
    61     parser.add_argument(
 | 
| 
 | 
    62         '-idop', '--output_path', 
 | 
| 
 | 
    63         type = str,
 | 
| 
 | 
    64         default='ras_to_bounds/',
 | 
| 
 | 
    65         help = 'output path for maps')
 | 
| 
 | 
    66     
 | 
| 
411
 | 
    67     parser.add_argument('-sm', '--save_models',
 | 
| 
 | 
    68                     type=utils.Bool("save_models"),
 | 
| 
 | 
    69                     default=False,
 | 
| 
 | 
    70                     help = 'whether to save models with applied bounds')
 | 
| 
 | 
    71     
 | 
| 
 | 
    72     parser.add_argument('-smp', '--save_models_path',
 | 
| 
 | 
    73                         type = str,
 | 
| 
 | 
    74                         default='saved_models/',
 | 
| 
 | 
    75                         help = 'output path for saved models')
 | 
| 
 | 
    76     
 | 
| 
 | 
    77     parser.add_argument('-smf', '--save_models_format',
 | 
| 
 | 
    78                         type = str,
 | 
| 
 | 
    79                         default='csv',
 | 
| 
 | 
    80                         help = 'format for saved models (csv, xml, json, mat, yaml, tabular)')
 | 
| 
 | 
    81 
 | 
| 
406
 | 
    82     
 | 
| 
 | 
    83     ARGS = parser.parse_args(args)
 | 
| 
 | 
    84     return ARGS
 | 
| 
 | 
    85 
 | 
| 
 | 
    86 ########################### warning ###########################################
 | 
| 
 | 
    87 def warning(s :str) -> None:
 | 
| 
 | 
    88     """
 | 
| 
 | 
    89     Log a warning message to an output log file and print it to the console.
 | 
| 
 | 
    90 
 | 
| 
 | 
    91     Args:
 | 
| 
 | 
    92         s (str): The warning message to be logged and printed.
 | 
| 
 | 
    93     
 | 
| 
 | 
    94     Returns:
 | 
| 
 | 
    95       None
 | 
| 
 | 
    96     """
 | 
| 
411
 | 
    97     if ARGS.out_log:
 | 
| 
 | 
    98         with open(ARGS.out_log, 'a') as log:
 | 
| 
 | 
    99             log.write(s + "\n\n")
 | 
| 
406
 | 
   100     print(s)
 | 
| 
 | 
   101 
 | 
| 
 | 
   102 ############################ dataset input ####################################
 | 
| 
 | 
   103 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   104     """
 | 
| 
 | 
   105     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
   106 
 | 
| 
 | 
   107     Args:
 | 
| 
 | 
   108         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
   109         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
   110 
 | 
| 
 | 
   111     Returns:
 | 
| 
 | 
   112         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
   113 
 | 
| 
 | 
   114     Raises:
 | 
| 
 | 
   115         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
   116         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
   117     """
 | 
| 
 | 
   118     try:
 | 
| 
 | 
   119         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   120     except pd.errors.EmptyDataError:
 | 
| 
 | 
   121         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   122     if len(dataset.columns) < 2:
 | 
| 
 | 
   123         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   124     return dataset
 | 
| 
 | 
   125 
 | 
| 
 | 
   126 
 | 
| 
 | 
   127 def apply_ras_bounds(bounds, ras_row):
 | 
| 
 | 
   128     """
 | 
| 
 | 
   129     Adjust the bounds of reactions in the model based on RAS values.
 | 
| 
 | 
   130 
 | 
| 
 | 
   131     Args:
 | 
| 
 | 
   132         bounds (pd.DataFrame): Model bounds.
 | 
| 
 | 
   133         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   134     Returns:
 | 
| 
 | 
   135         new_bounds (pd.DataFrame): integrated bounds.
 | 
| 
 | 
   136     """
 | 
| 
 | 
   137     new_bounds = bounds.copy()
 | 
| 
 | 
   138     for reaction in ras_row.index:
 | 
| 
 | 
   139         scaling_factor = ras_row[reaction]
 | 
| 
 | 
   140         if not np.isnan(scaling_factor):
 | 
| 
 | 
   141             lower_bound=bounds.loc[reaction, "lower_bound"]
 | 
| 
 | 
   142             upper_bound=bounds.loc[reaction, "upper_bound"]
 | 
| 
 | 
   143             valMax=float((upper_bound)*scaling_factor)
 | 
| 
 | 
   144             valMin=float((lower_bound)*scaling_factor)
 | 
| 
 | 
   145             if upper_bound!=0 and lower_bound==0:
 | 
| 
 | 
   146                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   147             if upper_bound==0 and lower_bound!=0:
 | 
| 
 | 
   148                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   149             if upper_bound!=0 and lower_bound!=0:
 | 
| 
 | 
   150                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   151                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   152     return new_bounds
 | 
| 
 | 
   153 
 | 
| 
414
 | 
   154 ################################- DATA GENERATION -################################
 | 
| 
 | 
   155 ReactionId = str
 | 
| 
 | 
   156 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
 | 
| 
 | 
   157     """
 | 
| 
 | 
   158     Generates a dictionary mapping reaction ids to rules from the model.
 | 
| 
 | 
   159 
 | 
| 
 | 
   160     Args:
 | 
| 
 | 
   161         model : the model to derive data from.
 | 
| 
 | 
   162         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
 | 
| 
 | 
   163 
 | 
| 
 | 
   164     Returns:
 | 
| 
 | 
   165         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
 | 
| 
 | 
   166         Dict[ReactionId, str] : the generated dictionary of raw rules.
 | 
| 
 | 
   167     """
 | 
| 
 | 
   168     # Is the below approach convoluted? yes
 | 
| 
 | 
   169     # Ok but is it inefficient? probably
 | 
| 
 | 
   170     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
 | 
| 
 | 
   171     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
 | 
| 
 | 
   172     ruleExtractor = (lambda reaction :
 | 
| 
 | 
   173         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
 | 
| 
 | 
   174 
 | 
| 
 | 
   175     return {
 | 
| 
 | 
   176         reaction.id : ruleExtractor(reaction)
 | 
| 
 | 
   177         for reaction in model.reactions
 | 
| 
 | 
   178         if reaction.gene_reaction_rule }
 | 
| 
 | 
   179 
 | 
| 
 | 
   180 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
 | 
| 
 | 
   181     """
 | 
| 
 | 
   182     Generates a dictionary mapping reaction ids to reaction formulas from the model.
 | 
| 
 | 
   183 
 | 
| 
 | 
   184     Args:
 | 
| 
 | 
   185         model : the model to derive data from.
 | 
| 
 | 
   186         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
 | 
| 
 | 
   187 
 | 
| 
 | 
   188     Returns:
 | 
| 
 | 
   189         Dict[ReactionId, str] : the generated dictionary.
 | 
| 
 | 
   190     """
 | 
| 
 | 
   191 
 | 
| 
 | 
   192     unparsedReactions = {
 | 
| 
 | 
   193         reaction.id : reaction.reaction
 | 
| 
 | 
   194         for reaction in model.reactions
 | 
| 
 | 
   195         if reaction.reaction 
 | 
| 
 | 
   196     }
 | 
| 
 | 
   197 
 | 
| 
 | 
   198     if not asParsed: return unparsedReactions
 | 
| 
 | 
   199     
 | 
| 
 | 
   200     return reactionUtils.create_reaction_dict(unparsedReactions)
 | 
| 
 | 
   201 
 | 
| 
 | 
   202 def get_medium(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   203     trueMedium=[]
 | 
| 
 | 
   204     for r in model.reactions:
 | 
| 
 | 
   205         positiveCoeff=0
 | 
| 
 | 
   206         for m in r.metabolites:
 | 
| 
 | 
   207             if r.get_coefficient(m.id)>0:
 | 
| 
 | 
   208                 positiveCoeff=1;
 | 
| 
 | 
   209         if (positiveCoeff==0 and r.lower_bound<0):
 | 
| 
 | 
   210             trueMedium.append(r.id)
 | 
| 
 | 
   211 
 | 
| 
 | 
   212     df_medium = pd.DataFrame()
 | 
| 
 | 
   213     df_medium["reaction"] = trueMedium
 | 
| 
 | 
   214     return df_medium
 | 
| 
 | 
   215 
 | 
| 
 | 
   216 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   217 
 | 
| 
 | 
   218     rxns = []
 | 
| 
 | 
   219     for reaction in model.reactions:
 | 
| 
 | 
   220         rxns.append(reaction.id)
 | 
| 
 | 
   221 
 | 
| 
 | 
   222     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
 | 
| 
 | 
   223 
 | 
| 
 | 
   224     for reaction in model.reactions:
 | 
| 
 | 
   225         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
 | 
| 
 | 
   226     return bounds
 | 
| 
 | 
   227 
 | 
| 
 | 
   228 
 | 
| 
 | 
   229 
 | 
| 
 | 
   230 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   231     """
 | 
| 
 | 
   232     Generates a DataFrame containing compartment information for each reaction.
 | 
| 
 | 
   233     Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
 | 
| 
 | 
   234     
 | 
| 
 | 
   235     Args:
 | 
| 
 | 
   236         model: the COBRA model to extract compartment data from.
 | 
| 
 | 
   237         
 | 
| 
 | 
   238     Returns:
 | 
| 
 | 
   239         pd.DataFrame: DataFrame with ReactionID and compartment columns
 | 
| 
 | 
   240     """
 | 
| 
 | 
   241     pathway_data = []
 | 
| 
 | 
   242 
 | 
| 
 | 
   243     # First pass: determine the maximum number of pathways any reaction has
 | 
| 
 | 
   244     max_pathways = 0
 | 
| 
 | 
   245     reaction_pathways = {}
 | 
| 
 | 
   246 
 | 
| 
 | 
   247     for reaction in model.reactions:
 | 
| 
 | 
   248         # Get unique pathways from all metabolites in the reaction
 | 
| 
 | 
   249         if type(reaction.annotation['pathways']) == list:
 | 
| 
 | 
   250             reaction_pathways[reaction.id] = reaction.annotation['pathways']
 | 
| 
 | 
   251             max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
 | 
| 
 | 
   252         else:
 | 
| 
 | 
   253             reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
 | 
| 
 | 
   254 
 | 
| 
 | 
   255     # Create column names for pathways
 | 
| 
 | 
   256     pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
 | 
| 
 | 
   257 
 | 
| 
 | 
   258     # Second pass: create the data
 | 
| 
 | 
   259     for reaction_id, pathways in reaction_pathways.items():
 | 
| 
 | 
   260         row = {"ReactionID": reaction_id}
 | 
| 
 | 
   261         
 | 
| 
 | 
   262         # Fill pathway columns
 | 
| 
 | 
   263         for i in range(max_pathways):
 | 
| 
 | 
   264             col_name = pathway_columns[i]
 | 
| 
 | 
   265             if i < len(pathways):
 | 
| 
 | 
   266                 row[col_name] = pathways[i]
 | 
| 
 | 
   267             else:
 | 
| 
 | 
   268                 row[col_name] = None  # or "" if you prefer empty strings
 | 
| 
 | 
   269 
 | 
| 
 | 
   270         pathway_data.append(row)
 | 
| 
 | 
   271 
 | 
| 
 | 
   272     return pd.DataFrame(pathway_data)
 | 
| 
 | 
   273 
 | 
| 
411
 | 
   274 def save_model(model, filename, output_folder, file_format='csv'):
 | 
| 
 | 
   275     """
 | 
| 
 | 
   276     Save a COBRA model to file in the specified format.
 | 
| 
 | 
   277     
 | 
| 
 | 
   278     Args:
 | 
| 
 | 
   279         model (cobra.Model): The model to save.
 | 
| 
 | 
   280         filename (str): Base filename (without extension).
 | 
| 
 | 
   281         output_folder (str): Output directory.
 | 
| 
 | 
   282         file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv').
 | 
| 
 | 
   283     
 | 
| 
 | 
   284     Returns:
 | 
| 
 | 
   285         None
 | 
| 
 | 
   286     """
 | 
| 
 | 
   287     if not os.path.exists(output_folder):
 | 
| 
 | 
   288         os.makedirs(output_folder)
 | 
| 
 | 
   289     
 | 
| 
 | 
   290     try:
 | 
| 
 | 
   291         if file_format == 'tabular' or file_format == 'csv':
 | 
| 
 | 
   292             # Special handling for tabular format using utils functions
 | 
| 
 | 
   293             filepath = os.path.join(output_folder, f"{filename}.csv")
 | 
| 
 | 
   294             
 | 
| 
414
 | 
   295             rules = generate_rules(model, asParsed = False)
 | 
| 
 | 
   296             reactions = generate_reactions(model, asParsed = False)
 | 
| 
 | 
   297             bounds = generate_bounds(model)
 | 
| 
 | 
   298             medium = get_medium(model)
 | 
| 
411
 | 
   299             
 | 
| 
 | 
   300             try:
 | 
| 
 | 
   301                 compartments = utils.generate_compartments(model)
 | 
| 
 | 
   302             except:
 | 
| 
 | 
   303                 compartments = None
 | 
| 
 | 
   304 
 | 
| 
 | 
   305             df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
 | 
| 
 | 
   306             df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
 | 
| 
 | 
   307             df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
 | 
| 
 | 
   308             df_medium = medium.rename(columns = {"reaction": "ReactionID"})
 | 
| 
 | 
   309             df_medium["InMedium"] = True # flag per indicare la presenza nel medium
 | 
| 
 | 
   310 
 | 
| 
 | 
   311             merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
 | 
| 
 | 
   312             merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
 | 
| 
 | 
   313             
 | 
| 
 | 
   314             # Add compartments only if they exist and model name is ENGRO2
 | 
| 
 | 
   315             if compartments is not None and hasattr(ARGS, 'name') and ARGS.name == "ENGRO2": 
 | 
| 
 | 
   316                 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
 | 
| 
 | 
   317             
 | 
| 
 | 
   318             merged = merged.merge(df_medium, on = "ReactionID", how = "left")
 | 
| 
 | 
   319             merged["InMedium"] = merged["InMedium"].fillna(False)
 | 
| 
 | 
   320             merged = merged.sort_values(by = "InMedium", ascending = False)
 | 
| 
 | 
   321             
 | 
| 
 | 
   322             merged.to_csv(filepath, sep="\t", index=False)
 | 
| 
 | 
   323             
 | 
| 
 | 
   324         else:
 | 
| 
 | 
   325             # Standard COBRA formats
 | 
| 
 | 
   326             filepath = os.path.join(output_folder, f"{filename}.{file_format}")
 | 
| 
 | 
   327             
 | 
| 
 | 
   328             if file_format == 'xml':
 | 
| 
 | 
   329                 cobra.io.write_sbml_model(model, filepath)
 | 
| 
 | 
   330             elif file_format == 'json':
 | 
| 
 | 
   331                 cobra.io.save_json_model(model, filepath)
 | 
| 
 | 
   332             elif file_format == 'mat':
 | 
| 
 | 
   333                 cobra.io.save_matlab_model(model, filepath)
 | 
| 
 | 
   334             elif file_format == 'yaml':
 | 
| 
 | 
   335                 cobra.io.save_yaml_model(model, filepath)
 | 
| 
 | 
   336             else:
 | 
| 
 | 
   337                 raise ValueError(f"Unsupported format: {file_format}")
 | 
| 
 | 
   338         
 | 
| 
 | 
   339         print(f"Model saved: {filepath}")
 | 
| 
 | 
   340         
 | 
| 
 | 
   341     except Exception as e:
 | 
| 
 | 
   342         warning(f"Error saving model {filename}: {str(e)}")
 | 
| 
 | 
   343 
 | 
| 
 | 
   344 def apply_bounds_to_model(model, bounds):
 | 
| 
 | 
   345     """
 | 
| 
 | 
   346     Apply bounds from a DataFrame to a COBRA model.
 | 
| 
 | 
   347     
 | 
| 
 | 
   348     Args:
 | 
| 
 | 
   349         model (cobra.Model): The metabolic model to modify.
 | 
| 
 | 
   350         bounds (pd.DataFrame): DataFrame with reaction bounds.
 | 
| 
 | 
   351     
 | 
| 
 | 
   352     Returns:
 | 
| 
 | 
   353         cobra.Model: Modified model with new bounds.
 | 
| 
 | 
   354     """
 | 
| 
 | 
   355     model_copy = model.copy()
 | 
| 
 | 
   356     for reaction_id in bounds.index:
 | 
| 
 | 
   357         try:
 | 
| 
 | 
   358             reaction = model_copy.reactions.get_by_id(reaction_id)
 | 
| 
 | 
   359             reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"]
 | 
| 
 | 
   360             reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"]
 | 
| 
 | 
   361         except KeyError:
 | 
| 
 | 
   362             # Reaction not found in model, skip
 | 
| 
 | 
   363             continue
 | 
| 
 | 
   364     return model_copy
 | 
| 
 | 
   365 
 | 
| 
 | 
   366 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'):
 | 
| 
406
 | 
   367     """
 | 
| 
 | 
   368     Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
 | 
| 
 | 
   369 
 | 
| 
 | 
   370     Args:
 | 
| 
 | 
   371         cellName (str): The name of the RAS cell (used for naming the output file).
 | 
| 
 | 
   372         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   373         model (cobra.Model): The metabolic model to be modified.
 | 
| 
 | 
   374         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
 | 
| 
 | 
   375         output_folder (str): Folder path where the output CSV file will be saved.
 | 
| 
411
 | 
   376         save_models (bool): Whether to save models with applied bounds.
 | 
| 
 | 
   377         save_models_path (str): Path where to save models.
 | 
| 
 | 
   378         save_models_format (str): Format for saved models.
 | 
| 
406
 | 
   379     
 | 
| 
 | 
   380     Returns:
 | 
| 
 | 
   381         None
 | 
| 
 | 
   382     """
 | 
| 
 | 
   383     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
 | 
| 
 | 
   384     new_bounds = apply_ras_bounds(bounds, ras_row)
 | 
| 
 | 
   385     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
 | 
| 
411
 | 
   386     
 | 
| 
 | 
   387     # Save model if requested
 | 
| 
 | 
   388     if save_models:
 | 
| 
 | 
   389         modified_model = apply_bounds_to_model(model, new_bounds)
 | 
| 
 | 
   390         save_model(modified_model, cellName, save_models_path, save_models_format)
 | 
| 
 | 
   391     
 | 
| 
406
 | 
   392     pass
 | 
| 
 | 
   393 
 | 
| 
414
 | 
   394 def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
 | 
| 
406
 | 
   395     """
 | 
| 
 | 
   396     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
 | 
| 
 | 
   397     
 | 
| 
 | 
   398     Args:
 | 
| 
 | 
   399         model (cobra.Model): The metabolic model for which bounds will be generated.
 | 
| 
 | 
   400         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
 | 
| 
 | 
   401         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
 | 
| 
411
 | 
   402         save_models (bool): Whether to save models with applied bounds.
 | 
| 
 | 
   403         save_models_path (str): Path where to save models.
 | 
| 
 | 
   404         save_models_format (str): Format for saved models.
 | 
| 
406
 | 
   405 
 | 
| 
 | 
   406     Returns:
 | 
| 
 | 
   407         pd.DataFrame: DataFrame containing the bounds of reactions in the model.
 | 
| 
 | 
   408     """
 | 
| 
407
 | 
   409     rxns_ids = [rxn.id for rxn in model.reactions]            
 | 
| 
406
 | 
   410             
 | 
| 
 | 
   411     # Perform Flux Variability Analysis (FVA) on this medium
 | 
| 
 | 
   412     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
 | 
| 
 | 
   413     
 | 
| 
 | 
   414     # Set FVA bounds
 | 
| 
 | 
   415     for reaction in rxns_ids:
 | 
| 
 | 
   416         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
 | 
| 
 | 
   417         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
 | 
| 
 | 
   418 
 | 
| 
 | 
   419     if ras is not None:
 | 
| 
411
 | 
   420         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(
 | 
| 
 | 
   421             cellName, ras_row, model, rxns_ids, output_folder, 
 | 
| 
 | 
   422             save_models, save_models_path, save_models_format
 | 
| 
 | 
   423         ) for cellName, ras_row in ras.iterrows())
 | 
| 
406
 | 
   424     else:
 | 
| 
 | 
   425         bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
 | 
| 
 | 
   426         newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids))
 | 
| 
 | 
   427         newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
 | 
| 
411
 | 
   428 
 | 
| 
 | 
   429         # Save model if requested
 | 
| 
 | 
   430         if save_models:
 | 
| 
 | 
   431             modified_model = apply_bounds_to_model(model, newBounds)
 | 
| 
 | 
   432             save_model(modified_model, "model_with_bounds", save_models_path, save_models_format)
 | 
| 
 | 
   433     
 | 
| 
406
 | 
   434     pass
 | 
| 
 | 
   435 
 | 
| 
 | 
   436 ############################# main ###########################################
 | 
| 
 | 
   437 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   438     """
 | 
| 
 | 
   439     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   440 
 | 
| 
 | 
   441     Returns:
 | 
| 
 | 
   442         None
 | 
| 
 | 
   443     """
 | 
| 
 | 
   444     if not os.path.exists('ras_to_bounds'):
 | 
| 
 | 
   445         os.makedirs('ras_to_bounds')
 | 
| 
 | 
   446 
 | 
| 
 | 
   447     global ARGS
 | 
| 
 | 
   448     ARGS = process_args(args)
 | 
| 
 | 
   449 
 | 
| 
 | 
   450     if(ARGS.ras_selector == True):
 | 
| 
 | 
   451         ras_file_list = ARGS.input_ras.split(",")
 | 
| 
 | 
   452         ras_file_names = ARGS.name.split(",")
 | 
| 
 | 
   453         if len(ras_file_names) != len(set(ras_file_names)):
 | 
| 
 | 
   454             error_message = "Duplicated file names in the uploaded RAS matrices."
 | 
| 
 | 
   455             warning(error_message)
 | 
| 
 | 
   456             raise ValueError(error_message)
 | 
| 
 | 
   457             pass
 | 
| 
 | 
   458         ras_class_names = []
 | 
| 
 | 
   459         for file in ras_file_names:
 | 
| 
 | 
   460             ras_class_names.append(file.rsplit(".", 1)[0])
 | 
| 
 | 
   461         ras_list = []
 | 
| 
 | 
   462         class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
 | 
| 
 | 
   463         for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
 | 
| 
 | 
   464             ras = read_dataset(ras_matrix, "ras dataset")
 | 
| 
 | 
   465             ras.replace("None", None, inplace=True)
 | 
| 
 | 
   466             ras.set_index("Reactions", drop=True, inplace=True)
 | 
| 
 | 
   467             ras = ras.T
 | 
| 
 | 
   468             ras = ras.astype(float)
 | 
| 
 | 
   469             if(len(ras_file_list)>1):
 | 
| 
 | 
   470                 #append class name to patient id (dataframe index)
 | 
| 
 | 
   471                 ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index]
 | 
| 
 | 
   472             else:
 | 
| 
 | 
   473                 ras.index = [f"{idx}" for idx in ras.index]
 | 
| 
 | 
   474             ras_list.append(ras)
 | 
| 
 | 
   475             for patient_id in ras.index:
 | 
| 
 | 
   476                 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
 | 
| 
 | 
   477         
 | 
| 
 | 
   478         
 | 
| 
 | 
   479         # Concatenate all ras DataFrames into a single DataFrame
 | 
| 
 | 
   480         ras_combined = pd.concat(ras_list, axis=0)
 | 
| 
 | 
   481         # Normalize the RAS values by max RAS
 | 
| 
 | 
   482         ras_combined = ras_combined.div(ras_combined.max(axis=0))
 | 
| 
 | 
   483         ras_combined.dropna(axis=1, how='all', inplace=True)
 | 
| 
 | 
   484 
 | 
| 
408
 | 
   485     model = utils.build_cobra_model_from_csv(ARGS.model_upload)
 | 
| 
407
 | 
   486 
 | 
| 
408
 | 
   487     validation = utils.validate_model(model)
 | 
| 
406
 | 
   488 
 | 
| 
407
 | 
   489     print("\n=== VALIDAZIONE MODELLO ===")
 | 
| 
 | 
   490     for key, value in validation.items():
 | 
| 
 | 
   491         print(f"{key}: {value}")
 | 
| 
 | 
   492 
 | 
| 
406
 | 
   493     if(ARGS.ras_selector == True):
 | 
| 
414
 | 
   494         generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path,
 | 
| 
411
 | 
   495                        save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
 | 
| 
 | 
   496                        save_models_format=ARGS.save_models_format)
 | 
| 
 | 
   497         class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
 | 
| 
406
 | 
   498     else:
 | 
| 
414
 | 
   499         generate_bounds_model(model, output_folder=ARGS.output_path,
 | 
| 
411
 | 
   500                        save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
 | 
| 
 | 
   501                        save_models_format=ARGS.save_models_format)
 | 
| 
406
 | 
   502 
 | 
| 
 | 
   503     pass
 | 
| 
 | 
   504         
 | 
| 
 | 
   505 ##############################################################################
 | 
| 
 | 
   506 if __name__ == "__main__":
 | 
| 
 | 
   507     main() |