406
|
1 import os
|
|
2 import csv
|
|
3 import cobra
|
|
4 import pickle
|
|
5 import argparse
|
|
6 import pandas as pd
|
|
7 import utils.general_utils as utils
|
|
8 import utils.rule_parsing as rulesUtils
|
|
9 from typing import Optional, Tuple, Union, List, Dict
|
|
10 import utils.reaction_parsing as reactionUtils
|
|
11
|
|
12 ARGS : argparse.Namespace
|
|
13 def process_args(args: List[str] = None) -> argparse.Namespace:
|
|
14 """
|
|
15 Parse command-line arguments for CustomDataGenerator.
|
|
16 """
|
|
17
|
|
18 parser = argparse.ArgumentParser(
|
|
19 usage="%(prog)s [options]",
|
|
20 description="Generate custom data from a given model"
|
|
21 )
|
|
22
|
|
23 parser.add_argument("--out_log", type=str, required=True,
|
|
24 help="Output log file")
|
|
25
|
|
26 parser.add_argument("--model", type=str,
|
|
27 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
|
|
28 parser.add_argument("--input", type=str,
|
|
29 help="Custom model file (JSON or XML)")
|
|
30 parser.add_argument("--name", type=str, required=True,
|
|
31 help="Model name (default or custom)")
|
|
32
|
|
33 parser.add_argument("--medium_selector", type=str, required=True,
|
|
34 help="Medium selection option")
|
|
35
|
|
36 parser.add_argument("--gene_format", type=str, default="Default",
|
|
37 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
|
|
38
|
|
39 parser.add_argument("--out_tabular", type=str,
|
|
40 help="Output file for the merged dataset (CSV or XLSX)")
|
|
41
|
|
42 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
|
|
43 help="Tool directory (passed from Galaxy as $__tool_directory__)")
|
|
44
|
|
45
|
|
46 return parser.parse_args(args)
|
|
47
|
|
48 ################################- INPUT DATA LOADING -################################
|
|
49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
|
|
50 """
|
|
51 Loads a custom model from a file, either in JSON or XML format.
|
|
52
|
|
53 Args:
|
|
54 file_path : The path to the file containing the custom model.
|
|
55 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
|
|
56
|
|
57 Raises:
|
|
58 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
|
|
59
|
|
60 Returns:
|
|
61 cobra.Model : the model, if successfully opened.
|
|
62 """
|
|
63 ext = ext if ext else file_path.ext
|
|
64 try:
|
|
65 if ext is utils.FileFormat.XML:
|
|
66 return cobra.io.read_sbml_model(file_path.show())
|
|
67
|
|
68 if ext is utils.FileFormat.JSON:
|
|
69 return cobra.io.load_json_model(file_path.show())
|
|
70
|
|
71 except Exception as e: raise utils.DataErr(file_path, e.__str__())
|
|
72 raise utils.DataErr(file_path,
|
|
73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
|
|
74
|
|
75
|
|
76
|
|
77
|
|
78 ###############################- FILE SAVING -################################
|
|
79 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
|
|
80 """
|
|
81 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
|
|
82
|
|
83 Args:
|
|
84 data : the data to be written to the file.
|
|
85 file_path : the path to the .csv file.
|
|
86 fieldNames : the names of the fields (columns) in the .csv file.
|
|
87
|
|
88 Returns:
|
|
89 None
|
|
90 """
|
|
91 with open(file_path.show(), 'w', newline='') as csvfile:
|
|
92 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
93 writer.writeheader()
|
|
94
|
|
95 for key, value in data.items():
|
|
96 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
97
|
|
98 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
|
|
99 """
|
|
100 Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
|
|
101
|
|
102 Args:
|
|
103 data : the data to be written to the file.
|
|
104 file_path : the path to the .csv file.
|
|
105 fieldNames : the names of the fields (columns) in the .csv file.
|
|
106
|
|
107 Returns:
|
|
108 None
|
|
109 """
|
|
110 with open(file_path, 'w', newline='') as csvfile:
|
|
111 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
112 writer.writeheader()
|
|
113
|
|
114 for key, value in data.items():
|
|
115 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
116
|
|
117 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
|
|
118 try:
|
|
119 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
|
|
120 df.to_csv(path, sep="\t", index=False)
|
|
121 except Exception as e:
|
|
122 raise utils.DataErr(path, f"failed writing tabular output: {e}")
|
|
123
|
|
124
|
|
125 ###############################- ENTRY POINT -################################
|
|
126 def main(args:List[str] = None) -> None:
|
|
127 """
|
|
128 Initializes everything and sets the program in motion based on the fronted input arguments.
|
|
129
|
|
130 Returns:
|
|
131 None
|
|
132 """
|
|
133 # get args from frontend (related xml)
|
|
134 global ARGS
|
|
135 ARGS = process_args(args)
|
|
136
|
|
137
|
|
138 if ARGS.input:
|
|
139 # load custom model
|
|
140 model = load_custom_model(
|
|
141 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
|
|
142 else:
|
|
143 # load built-in model
|
|
144
|
|
145 try:
|
|
146 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2']
|
|
147 except KeyError:
|
|
148 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
|
|
149
|
|
150 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
|
|
151 try:
|
|
152 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
|
|
153 except Exception as e:
|
|
154 # Wrap/normalize load errors as DataErr for consistency
|
|
155 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
|
|
156
|
|
157 # Determine final model name: explicit --name overrides, otherwise use the model id
|
|
158
|
|
159 model_name = ARGS.name if ARGS.name else ARGS.model
|
|
160
|
|
161 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
|
|
162 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
|
|
163 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
|
|
164 medium = df_mediums[[ARGS.medium_selector]]
|
|
165 medium = medium[ARGS.medium_selector].to_dict()
|
|
166
|
|
167 # Set all reactions to zero in the medium
|
|
168 for rxn_id, _ in model.medium.items():
|
|
169 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
|
|
170
|
|
171 # Set medium conditions
|
|
172 for reaction, value in medium.items():
|
|
173 if value is not None:
|
|
174 model.reactions.get_by_id(reaction).lower_bound = -float(value)
|
|
175
|
|
176 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default":
|
|
177
|
|
178 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
|
|
179
|
|
180 # generate data
|
411
|
181 rules = utils.generate_rules(model, asParsed = False)
|
|
182 reactions = utils.generate_reactions(model, asParsed = False)
|
|
183 bounds = utils.generate_bounds(model)
|
|
184 medium = utils.get_medium(model)
|
406
|
185 if ARGS.name == "ENGRO2":
|
411
|
186 compartments = utils.generate_compartments(model)
|
406
|
187
|
|
188 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
|
|
189 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
|
|
190
|
|
191 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
|
|
192 df_medium = medium.rename(columns = {"reaction": "ReactionID"})
|
|
193 df_medium["InMedium"] = True # flag per indicare la presenza nel medium
|
|
194
|
|
195 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
|
|
196 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
|
|
197 if ARGS.name == "ENGRO2":
|
|
198 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
|
|
199 merged = merged.merge(df_medium, on = "ReactionID", how = "left")
|
|
200
|
|
201 merged["InMedium"] = merged["InMedium"].fillna(False)
|
|
202
|
|
203 merged = merged.sort_values(by = "InMedium", ascending = False)
|
|
204
|
|
205 #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data")
|
|
206
|
|
207 #merged.to_csv(out_file, sep = '\t', index = False)
|
|
208
|
|
209 ####
|
|
210
|
|
211 if not ARGS.out_tabular:
|
|
212 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
|
|
213 save_as_tabular_df(merged, ARGS.out_tabular)
|
|
214 expected = ARGS.out_tabular
|
|
215
|
|
216 # verify output exists and non-empty
|
|
217 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
|
|
218 raise utils.DataErr(expected, "Output non creato o vuoto")
|
|
219
|
|
220 print("CustomDataGenerator: completed successfully")
|
|
221
|
|
222 if __name__ == '__main__':
|
|
223 main() |