| 406 | 1 import os | 
|  | 2 import csv | 
|  | 3 import cobra | 
|  | 4 import pickle | 
|  | 5 import argparse | 
|  | 6 import pandas as pd | 
|  | 7 import utils.general_utils as utils | 
|  | 8 import utils.rule_parsing  as rulesUtils | 
|  | 9 from typing import Optional, Tuple, Union, List, Dict | 
|  | 10 import utils.reaction_parsing as reactionUtils | 
|  | 11 | 
|  | 12 ARGS : argparse.Namespace | 
|  | 13 def process_args(args: List[str] = None) -> argparse.Namespace: | 
|  | 14     """ | 
|  | 15     Parse command-line arguments for CustomDataGenerator. | 
|  | 16     """ | 
|  | 17 | 
|  | 18     parser = argparse.ArgumentParser( | 
|  | 19         usage="%(prog)s [options]", | 
|  | 20         description="Generate custom data from a given model" | 
|  | 21     ) | 
|  | 22 | 
|  | 23     parser.add_argument("--out_log", type=str, required=True, | 
|  | 24                         help="Output log file") | 
|  | 25 | 
|  | 26     parser.add_argument("--model", type=str, | 
|  | 27                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | 
|  | 28     parser.add_argument("--input", type=str, | 
|  | 29                         help="Custom model file (JSON or XML)") | 
|  | 30     parser.add_argument("--name", type=str, required=True, | 
|  | 31                         help="Model name (default or custom)") | 
|  | 32 | 
|  | 33     parser.add_argument("--medium_selector", type=str, required=True, | 
|  | 34                         help="Medium selection option") | 
|  | 35 | 
|  | 36     parser.add_argument("--gene_format", type=str, default="Default", | 
|  | 37                         help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | 
|  | 38 | 
|  | 39     parser.add_argument("--out_tabular", type=str, | 
|  | 40                         help="Output file for the merged dataset (CSV or XLSX)") | 
|  | 41 | 
|  | 42     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | 
|  | 43                         help="Tool directory (passed from Galaxy as $__tool_directory__)") | 
|  | 44 | 
|  | 45 | 
|  | 46     return parser.parse_args(args) | 
|  | 47 | 
|  | 48 ################################- INPUT DATA LOADING -################################ | 
|  | 49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 50     """ | 
|  | 51     Loads a custom model from a file, either in JSON or XML format. | 
|  | 52 | 
|  | 53     Args: | 
|  | 54         file_path : The path to the file containing the custom model. | 
|  | 55         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 56 | 
|  | 57     Raises: | 
|  | 58         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 59 | 
|  | 60     Returns: | 
|  | 61         cobra.Model : the model, if successfully opened. | 
|  | 62     """ | 
|  | 63     ext = ext if ext else file_path.ext | 
|  | 64     try: | 
|  | 65         if ext is utils.FileFormat.XML: | 
|  | 66             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 67 | 
|  | 68         if ext is utils.FileFormat.JSON: | 
|  | 69             return cobra.io.load_json_model(file_path.show()) | 
|  | 70 | 
|  | 71     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
|  | 72     raise utils.DataErr(file_path, | 
|  | 73         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | 
|  | 74 | 
|  | 75 | 
|  | 76 | 
|  | 77 | 
|  | 78 ###############################- FILE SAVING -################################ | 
|  | 79 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
|  | 80     """ | 
|  | 81     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 
|  | 82 | 
|  | 83     Args: | 
|  | 84         data : the data to be written to the file. | 
|  | 85         file_path : the path to the .csv file. | 
|  | 86         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 87 | 
|  | 88     Returns: | 
|  | 89         None | 
|  | 90     """ | 
|  | 91     with open(file_path.show(), 'w', newline='') as csvfile: | 
|  | 92         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 93         writer.writeheader() | 
|  | 94 | 
|  | 95         for key, value in data.items(): | 
|  | 96             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 97 | 
|  | 98 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | 
|  | 99     """ | 
|  | 100     Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | 
|  | 101 | 
|  | 102     Args: | 
|  | 103         data : the data to be written to the file. | 
|  | 104         file_path : the path to the .csv file. | 
|  | 105         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 106 | 
|  | 107     Returns: | 
|  | 108         None | 
|  | 109     """ | 
|  | 110     with open(file_path, 'w', newline='') as csvfile: | 
|  | 111         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 112         writer.writeheader() | 
|  | 113 | 
|  | 114         for key, value in data.items(): | 
|  | 115             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 116 | 
|  | 117 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | 
|  | 118     try: | 
|  | 119         os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | 
|  | 120         df.to_csv(path, sep="\t", index=False) | 
|  | 121     except Exception as e: | 
|  | 122         raise utils.DataErr(path, f"failed writing tabular output: {e}") | 
|  | 123 | 
|  | 124 | 
|  | 125 ###############################- ENTRY POINT -################################ | 
|  | 126 def main(args:List[str] = None) -> None: | 
|  | 127     """ | 
|  | 128     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 129 | 
|  | 130     Returns: | 
|  | 131         None | 
|  | 132     """ | 
|  | 133     # get args from frontend (related xml) | 
|  | 134     global ARGS | 
|  | 135     ARGS = process_args(args) | 
|  | 136 | 
|  | 137 | 
|  | 138     if ARGS.input: | 
|  | 139         # load custom model | 
|  | 140         model = load_custom_model( | 
|  | 141             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
|  | 142     else: | 
|  | 143         # load built-in model | 
|  | 144 | 
|  | 145         try: | 
|  | 146             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2'] | 
|  | 147         except KeyError: | 
|  | 148             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | 
|  | 149 | 
|  | 150         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | 
|  | 151         try: | 
|  | 152             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
|  | 153         except Exception as e: | 
|  | 154             # Wrap/normalize load errors as DataErr for consistency | 
|  | 155             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | 
|  | 156 | 
|  | 157     # Determine final model name: explicit --name overrides, otherwise use the model id | 
|  | 158 | 
|  | 159     model_name = ARGS.name if ARGS.name else ARGS.model | 
|  | 160 | 
|  | 161     if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | 
|  | 162         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | 
|  | 163         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | 
|  | 164         medium = df_mediums[[ARGS.medium_selector]] | 
|  | 165         medium = medium[ARGS.medium_selector].to_dict() | 
|  | 166 | 
|  | 167         # Set all reactions to zero in the medium | 
|  | 168         for rxn_id, _ in model.medium.items(): | 
|  | 169             model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | 
|  | 170 | 
|  | 171         # Set medium conditions | 
|  | 172         for reaction, value in medium.items(): | 
|  | 173             if value is not None: | 
|  | 174                 model.reactions.get_by_id(reaction).lower_bound = -float(value) | 
|  | 175 | 
|  | 176     if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": | 
|  | 177 | 
|  | 178         model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) | 
|  | 179 | 
|  | 180     # generate data | 
| 411 | 181     rules = utils.generate_rules(model, asParsed = False) | 
|  | 182     reactions = utils.generate_reactions(model, asParsed = False) | 
|  | 183     bounds = utils.generate_bounds(model) | 
|  | 184     medium = utils.get_medium(model) | 
| 406 | 185     if ARGS.name == "ENGRO2": | 
| 411 | 186         compartments = utils.generate_compartments(model) | 
| 406 | 187 | 
|  | 188     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | 
|  | 189     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | 
|  | 190 | 
|  | 191     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | 
|  | 192     df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | 
|  | 193     df_medium["InMedium"] = True # flag per indicare la presenza nel medium | 
|  | 194 | 
|  | 195     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | 
|  | 196     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | 
|  | 197     if ARGS.name == "ENGRO2": | 
|  | 198         merged = merged.merge(compartments, on = "ReactionID", how = "outer") | 
|  | 199     merged = merged.merge(df_medium, on = "ReactionID", how = "left") | 
|  | 200 | 
|  | 201     merged["InMedium"] = merged["InMedium"].fillna(False) | 
|  | 202 | 
|  | 203     merged = merged.sort_values(by = "InMedium", ascending = False) | 
|  | 204 | 
|  | 205     #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | 
|  | 206 | 
|  | 207     #merged.to_csv(out_file, sep = '\t', index = False) | 
|  | 208 | 
|  | 209     #### | 
|  | 210 | 
|  | 211     if not ARGS.out_tabular: | 
|  | 212         raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | 
|  | 213     save_as_tabular_df(merged, ARGS.out_tabular) | 
|  | 214     expected = ARGS.out_tabular | 
|  | 215 | 
|  | 216     # verify output exists and non-empty | 
|  | 217     if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | 
|  | 218         raise utils.DataErr(expected, "Output non creato o vuoto") | 
|  | 219 | 
|  | 220     print("CustomDataGenerator: completed successfully") | 
|  | 221 | 
|  | 222 if __name__ == '__main__': | 
|  | 223     main() |