Mercurial > repos > bimib > cobraxy
comparison COBRAxy/src/marea.py @ 539:2fb97466e404 draft
Uploaded
| author | francesco_lapi | 
|---|---|
| date | Sat, 25 Oct 2025 14:55:13 +0000 | 
| parents | |
| children | fcdbc81feb45 | 
   comparison
  equal
  deleted
  inserted
  replaced
| 538:fd53d42348bd | 539:2fb97466e404 | 
|---|---|
| 1 """ | |
| 2 MAREA: Enrichment and map styling for RAS/RPS data. | |
| 3 | |
| 4 This module compares groups of samples using RAS (Reaction Activity Scores) and/or | |
| 5 RPS (Reaction Propensity Scores), computes statistics (p-values, z-scores, fold change), | |
| 6 and applies visual styling to an SVG metabolic map (with optional PDF/PNG export). | |
| 7 """ | |
| 8 from __future__ import division | |
| 9 import csv | |
| 10 from enum import Enum | |
| 11 import re | |
| 12 import sys | |
| 13 import numpy as np | |
| 14 import pandas as pd | |
| 15 import itertools as it | |
| 16 import scipy.stats as st | |
| 17 import lxml.etree as ET | |
| 18 import math | |
| 19 import utils.general_utils as utils | |
| 20 from PIL import Image | |
| 21 import os | |
| 22 import argparse | |
| 23 import pyvips | |
| 24 from typing import Tuple, Union, Optional, List, Dict | |
| 25 import copy | |
| 26 | |
| 27 from pydeseq2.dds import DeseqDataSet | |
| 28 from pydeseq2.default_inference import DefaultInference | |
| 29 from pydeseq2.ds import DeseqStats | |
| 30 | |
| 31 ERRORS = [] | |
| 32 ########################## argparse ########################################## | |
| 33 ARGS :argparse.Namespace | |
| 34 def process_args(args:List[str] = None) -> argparse.Namespace: | |
| 35 """ | |
| 36 Parse command-line arguments exposed by the Galaxy frontend for this module. | |
| 37 | |
| 38 Args: | |
| 39 args: Optional list of arguments, defaults to sys.argv when None. | |
| 40 | |
| 41 Returns: | |
| 42 Namespace: Parsed arguments. | |
| 43 """ | |
| 44 parser = argparse.ArgumentParser( | |
| 45 usage = "%(prog)s [options]", | |
| 46 description = "process some value's genes to create a comparison's map.") | |
| 47 | |
| 48 #General: | |
| 49 parser.add_argument( | |
| 50 '-td', '--tool_dir', | |
| 51 type = str, | |
| 52 required = True, | |
| 53 help = 'your tool directory') | |
| 54 | |
| 55 parser.add_argument('-on', '--control', type = str) | |
| 56 parser.add_argument('-ol', '--out_log', help = "Output log") | |
| 57 | |
| 58 #Computation details: | |
| 59 parser.add_argument( | |
| 60 '-co', '--comparison', | |
| 61 type = str, | |
| 62 default = 'manyvsmany', | |
| 63 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
| 64 | |
| 65 parser.add_argument( | |
| 66 '-te' ,'--test', | |
| 67 type = str, | |
| 68 default = 'ks', | |
| 69 choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw', 'DESeq'], | |
| 70 help = 'Statistical test to use (default: %(default)s)') | |
| 71 | |
| 72 parser.add_argument( | |
| 73 '-pv' ,'--pValue', | |
| 74 type = float, | |
| 75 default = 0.1, | |
| 76 help = 'P-Value threshold (default: %(default)s)') | |
| 77 | |
| 78 parser.add_argument( | |
| 79 '-adj' ,'--adjusted', | |
| 80 type = utils.Bool("adjusted"), default = False, | |
| 81 help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') | |
| 82 | |
| 83 parser.add_argument( | |
| 84 '-fc', '--fChange', | |
| 85 type = float, | |
| 86 default = 1.5, | |
| 87 help = 'Fold-Change threshold (default: %(default)s)') | |
| 88 | |
| 89 parser.add_argument( | |
| 90 "-ne", "--net", | |
| 91 type = utils.Bool("net"), default = False, | |
| 92 help = "choose if you want net enrichment for RPS") | |
| 93 | |
| 94 parser.add_argument( | |
| 95 '-op', '--option', | |
| 96 type = str, | |
| 97 choices = ['datasets', 'dataset_class'], | |
| 98 help='dataset or dataset and class') | |
| 99 | |
| 100 #RAS: | |
| 101 parser.add_argument( | |
| 102 "-ra", "--using_RAS", | |
| 103 type = utils.Bool("using_RAS"), default = True, | |
| 104 help = "choose whether to use RAS datasets.") | |
| 105 | |
| 106 parser.add_argument( | |
| 107 '-id', '--input_data', | |
| 108 type = str, | |
| 109 help = 'input dataset') | |
| 110 | |
| 111 parser.add_argument( | |
| 112 '-ic', '--input_class', | |
| 113 type = str, | |
| 114 help = 'sample group specification') | |
| 115 | |
| 116 parser.add_argument( | |
| 117 '-ids', '--input_datas', | |
| 118 type = str, | |
| 119 nargs = '+', | |
| 120 help = 'input datasets') | |
| 121 | |
| 122 parser.add_argument( | |
| 123 '-na', '--names', | |
| 124 type = str, | |
| 125 nargs = '+', | |
| 126 help = 'input names') | |
| 127 | |
| 128 #RPS: | |
| 129 parser.add_argument( | |
| 130 "-rp", "--using_RPS", | |
| 131 type = utils.Bool("using_RPS"), default = False, | |
| 132 help = "choose whether to use RPS datasets.") | |
| 133 | |
| 134 parser.add_argument( | |
| 135 '-idr', '--input_data_rps', | |
| 136 type = str, | |
| 137 help = 'input dataset rps') | |
| 138 | |
| 139 parser.add_argument( | |
| 140 '-icr', '--input_class_rps', | |
| 141 type = str, | |
| 142 help = 'sample group specification rps') | |
| 143 | |
| 144 parser.add_argument( | |
| 145 '-idsr', '--input_datas_rps', | |
| 146 type = str, | |
| 147 nargs = '+', | |
| 148 help = 'input datasets rps') | |
| 149 | |
| 150 parser.add_argument( | |
| 151 '-nar', '--names_rps', | |
| 152 type = str, | |
| 153 nargs = '+', | |
| 154 help = 'input names rps') | |
| 155 | |
| 156 #Output: | |
| 157 parser.add_argument( | |
| 158 "-gs", "--generate_svg", | |
| 159 type = utils.Bool("generate_svg"), default = True, | |
| 160 help = "choose whether to use RAS datasets.") | |
| 161 | |
| 162 parser.add_argument( | |
| 163 "-gp", "--generate_pdf", | |
| 164 type = utils.Bool("generate_pdf"), default = True, | |
| 165 help = "choose whether to use RAS datasets.") | |
| 166 | |
| 167 parser.add_argument( | |
| 168 '-cm', '--custom_map', | |
| 169 type = str, | |
| 170 help='custom map to use') | |
| 171 | |
| 172 parser.add_argument( | |
| 173 '-idop', '--output_path', | |
| 174 type = str, | |
| 175 default='result', | |
| 176 help = 'output path for maps') | |
| 177 | |
| 178 parser.add_argument( | |
| 179 '-mc', '--choice_map', | |
| 180 type = utils.Model, default = utils.Model.HMRcore, | |
| 181 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
| 182 | |
| 183 args :argparse.Namespace = parser.parse_args(args) | |
| 184 if args.using_RAS and not args.using_RPS: args.net = False | |
| 185 | |
| 186 return args | |
| 187 | |
| 188 ############################ dataset input #################################### | |
| 189 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 190 """ | |
| 191 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
| 192 | |
| 193 Args: | |
| 194 data : filepath of a dataset (from frontend input params or literals upon calling) | |
| 195 name : name associated with the dataset (from frontend input params or literals upon calling) | |
| 196 | |
| 197 Returns: | |
| 198 pd.DataFrame : dataset in a runtime operable shape | |
| 199 | |
| 200 Raises: | |
| 201 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
| 202 """ | |
| 203 try: | |
| 204 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 205 except pd.errors.EmptyDataError: | |
| 206 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 207 if len(dataset.columns) < 2: | |
| 208 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 209 return dataset | |
| 210 | |
| 211 ############################ map_methods ###################################### | |
| 212 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
| 213 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
| 214 """ | |
| 215 Calculates the fold change between two gene expression values. | |
| 216 | |
| 217 Args: | |
| 218 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
| 219 | |
| 220 Returns: | |
| 221 FoldChange : | |
| 222 0 : when both input values are 0 | |
| 223 "-INF" : when avg1 is 0 | |
| 224 "INF" : when avg2 is 0 | |
| 225 float : for any other combination of values | |
| 226 """ | |
| 227 if avg1 == 0 and avg2 == 0: | |
| 228 return 0 | |
| 229 | |
| 230 if avg1 == 0: | |
| 231 return '-INF' # TODO: maybe fix | |
| 232 | |
| 233 if avg2 == 0: | |
| 234 return 'INF' | |
| 235 | |
| 236 # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
| 237 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
| 238 | |
| 239 # TODO: I would really like for this one to get the Thanos treatment | |
| 240 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
| 241 """ | |
| 242 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
| 243 | |
| 244 Args: | |
| 245 l : current style string of an SVG element | |
| 246 col : new value for the "stroke" style property | |
| 247 width : new value for the "stroke-width" style property | |
| 248 dash : new value for the "stroke-dasharray" style property | |
| 249 | |
| 250 Returns: | |
| 251 str : the fixed style string | |
| 252 """ | |
| 253 tmp = l.split(';') | |
| 254 flag_col = False | |
| 255 flag_width = False | |
| 256 flag_dash = False | |
| 257 for i in range(len(tmp)): | |
| 258 if tmp[i].startswith('stroke:'): | |
| 259 tmp[i] = 'stroke:' + col | |
| 260 flag_col = True | |
| 261 if tmp[i].startswith('stroke-width:'): | |
| 262 tmp[i] = 'stroke-width:' + width | |
| 263 flag_width = True | |
| 264 if tmp[i].startswith('stroke-dasharray:'): | |
| 265 tmp[i] = 'stroke-dasharray:' + dash | |
| 266 flag_dash = True | |
| 267 if not flag_col: | |
| 268 tmp.append('stroke:' + col) | |
| 269 if not flag_width: | |
| 270 tmp.append('stroke-width:' + width) | |
| 271 if not flag_dash: | |
| 272 tmp.append('stroke-dasharray:' + dash) | |
| 273 return ';'.join(tmp) | |
| 274 | |
| 275 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
| 276 """ | |
| 277 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
| 278 | |
| 279 Args: | |
| 280 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
| 281 core_map : SVG map to modify | |
| 282 threshold_P_V : threshold for a p-value to be considered significant | |
| 283 threshold_F_C : threshold for a fold change value to be considered significant | |
| 284 max_z_score : highest z-score (absolute value) | |
| 285 | |
| 286 Returns: | |
| 287 ET.ElementTree : the modified core_map | |
| 288 | |
| 289 Side effects: | |
| 290 core_map : mut | |
| 291 """ | |
| 292 maxT = 12 | |
| 293 minT = 2 | |
| 294 grey = '#BEBEBE' | |
| 295 blue = '#6495ed' | |
| 296 red = '#ecac68' | |
| 297 for el in core_map.iter(): | |
| 298 el_id = str(el.get('id')) | |
| 299 if el_id.startswith('R_'): | |
| 300 tmp = d.get(el_id[2:]) | |
| 301 if tmp != None: | |
| 302 p_val, f_c, z_score, avg1, avg2 = tmp | |
| 303 | |
| 304 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue | |
| 305 | |
| 306 if p_val <= threshold_P_V: # p-value is OK | |
| 307 if not isinstance(f_c, str): # FC is finite | |
| 308 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # FC is not OK | |
| 309 col = grey | |
| 310 width = str(minT) | |
| 311 else: # FC is OK | |
| 312 if f_c < 0: | |
| 313 col = blue | |
| 314 elif f_c > 0: | |
| 315 col = red | |
| 316 width = str( | |
| 317 min( | |
| 318 max(abs(z_score * maxT) / max_z_score, minT), | |
| 319 maxT)) | |
| 320 | |
| 321 else: # FC is infinite | |
| 322 if f_c == '-INF': | |
| 323 col = blue | |
| 324 elif f_c == 'INF': | |
| 325 col = red | |
| 326 width = str(maxT) | |
| 327 dash = 'none' | |
| 328 else: # p-value is not OK | |
| 329 dash = '5,5' | |
| 330 col = grey | |
| 331 width = str(minT) | |
| 332 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
| 333 return core_map | |
| 334 | |
| 335 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
| 336 """ | |
| 337 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
| 338 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
| 339 | |
| 340 Args: | |
| 341 reactionId (str): exact ID of the requested element. | |
| 342 metabMap (ET.ElementTree): metabolic map containing the element. | |
| 343 | |
| 344 Returns: | |
| 345 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
| 346 """ | |
| 347 return utils.Result.Ok( | |
| 348 f"//*[@id=\"{reactionId}\"]").map( | |
| 349 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
| 350 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
| 351 | |
| 352 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
| 353 """Append/override stroke-related styles on a given SVG element.""" | |
| 354 currentStyles :str = element.get("style", "") | |
| 355 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
| 356 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
| 357 | |
| 358 element.set("style", currentStyles + styleStr) | |
| 359 | |
| 360 class ReactionDirection(Enum): | |
| 361 Unknown = "" | |
| 362 Direct = "_F" | |
| 363 Inverse = "_B" | |
| 364 | |
| 365 @classmethod | |
| 366 def fromDir(cls, s :str) -> "ReactionDirection": | |
| 367 # vvv as long as there's so few variants I actually condone the if spam: | |
| 368 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
| 369 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
| 370 return ReactionDirection.Unknown | |
| 371 | |
| 372 @classmethod | |
| 373 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
| 374 return ReactionDirection.fromDir(reactionId[-2:]) | |
| 375 | |
| 376 def getArrowBodyElementId(reactionId :str) -> str: | |
| 377 """Return the SVG element id for a reaction arrow body, normalizing direction tags.""" | |
| 378 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 379 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
| 380 return f"R_{reactionId}" | |
| 381 | |
| 382 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
| 383 """ | |
| 384 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
| 385 | |
| 386 Args: | |
| 387 reactionId : the provided reaction ID. | |
| 388 | |
| 389 Returns: | |
| 390 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
| 391 """ | |
| 392 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 393 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: | |
| 394 return reactionId[:-3:-1] + reactionId[:-2], "" # ^^^ Invert _F to F_ | |
| 395 | |
| 396 return f"F_{reactionId}", f"B_{reactionId}" | |
| 397 | |
| 398 class ArrowColor(Enum): | |
| 399 """ | |
| 400 Encodes possible arrow colors based on their meaning in the enrichment process. | |
| 401 """ | |
| 402 Invalid = "#BEBEBE" # gray, fold-change under treshold or not significant p-value | |
| 403 Transparent = "#ffffff00" # transparent, to make some arrow segments disappear | |
| 404 UpRegulated = "#ecac68" # orange, up-regulated reaction | |
| 405 DownRegulated = "#6495ed" # lightblue, down-regulated reaction | |
| 406 | |
| 407 UpRegulatedInv = "#FF0000" # bright red for reversible with conflicting directions | |
| 408 | |
| 409 DownRegulatedInv = "#0000FF" # bright blue for reversible with conflicting directions | |
| 410 | |
| 411 @classmethod | |
| 412 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
| 413 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
| 414 return colors[useAltColor] | |
| 415 | |
| 416 def __str__(self) -> str: return self.value | |
| 417 | |
| 418 class Arrow: | |
| 419 """ | |
| 420 Models the properties of a reaction arrow that change based on enrichment. | |
| 421 """ | |
| 422 MIN_W = 2 | |
| 423 MAX_W = 12 | |
| 424 | |
| 425 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
| 426 """ | |
| 427 (Private) Initializes an instance of Arrow. | |
| 428 | |
| 429 Args: | |
| 430 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
| 431 col : color of the arrow. | |
| 432 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
| 433 | |
| 434 Returns: | |
| 435 None : practically, a Arrow instance. | |
| 436 """ | |
| 437 self.w = width | |
| 438 self.col = col | |
| 439 self.dash = isDashed | |
| 440 | |
| 441 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
| 442 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
| 443 ERRORS.append(reactionId) | |
| 444 | |
| 445 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
| 446 # If direction is irrelevant (e.g., RAS), style only the arrow body | |
| 447 if not mindReactionDir: | |
| 448 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
| 449 | |
| 450 # Now we style the arrow head(s): | |
| 451 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
| 452 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 453 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 454 | |
| 455 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
| 456 """ | |
| 457 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
| 458 | |
| 459 Returns: | |
| 460 str : the styles string. | |
| 461 """ | |
| 462 width = self.w | |
| 463 if downSizedForTips: width *= 0.8 | |
| 464 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
| 465 | |
| 466 # Default arrows used for different significance states | |
| 467 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
| 468 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
| 469 TRANSPARENT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Transparent) # Who cares how big it is if it's transparent | |
| 470 | |
| 471 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
| 472 """ | |
| 473 Applies RPS enrichment results to the provided metabolic map. | |
| 474 | |
| 475 Args: | |
| 476 rpsEnrichmentRes : RPS enrichment results. | |
| 477 metabMap : the metabolic map to edit. | |
| 478 maxNumericZScore : biggest finite z-score value found. | |
| 479 | |
| 480 Side effects: | |
| 481 metabMap : mut | |
| 482 | |
| 483 Returns: | |
| 484 None | |
| 485 """ | |
| 486 for reactionId, values in rpsEnrichmentRes.items(): | |
| 487 pValue = values[0] | |
| 488 foldChange = values[1] | |
| 489 z_score = values[2] | |
| 490 | |
| 491 if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): continue | |
| 492 | |
| 493 if isinstance(foldChange, str): foldChange = float(foldChange) | |
| 494 if pValue > ARGS.pValue: # pValue above tresh: dashed arrow | |
| 495 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
| 496 continue | |
| 497 | |
| 498 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
| 499 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
| 500 continue | |
| 501 | |
| 502 width = Arrow.MAX_W | |
| 503 if not math.isinf(z_score): | |
| 504 try: width = min( | |
| 505 max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | |
| 506 Arrow.MAX_W) | |
| 507 | |
| 508 except ZeroDivisionError: pass | |
| 509 | |
| 510 if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
| 511 Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
| 512 continue | |
| 513 | |
| 514 reactionId = reactionId[:-3] # Remove "_RV" | |
| 515 | |
| 516 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
| 517 if inversionScore == 2: foldChange *= -1 | |
| 518 | |
| 519 # If the score is 1 (opposite signs) we use alternative colors vvv | |
| 520 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
| 521 | |
| 522 # vvv These 2 if statements can both be true and can both happen | |
| 523 if ARGS.net: # style arrow head(s): | |
| 524 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
| 525 | |
| 526 if not ARGS.using_RAS: # style arrow body | |
| 527 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
| 528 | |
| 529 ############################ split class ###################################### | |
| 530 def split_class(classes :pd.DataFrame, dataset_values :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
| 531 """ | |
| 532 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
| 533 | |
| 534 Args: | |
| 535 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
| 536 dataset_values : a :dict containing :float data | |
| 537 | |
| 538 Returns: | |
| 539 dict : the dict with data grouped by class | |
| 540 | |
| 541 Side effects: | |
| 542 classes : mut | |
| 543 """ | |
| 544 class_pat :Dict[str, List[List[float]]] = {} | |
| 545 for i in range(len(classes)): | |
| 546 classe :str = classes.iloc[i, 1] | |
| 547 if pd.isnull(classe): continue | |
| 548 | |
| 549 l :List[List[float]] = [] | |
| 550 sample_ids: List[str] = [] | |
| 551 | |
| 552 for j in range(i, len(classes)): | |
| 553 if classes.iloc[j, 1] == classe: | |
| 554 pat_id :str = classes.iloc[j, 0] # sample name | |
| 555 values = dataset_values.get(pat_id, None) # the column of values for that sample | |
| 556 if values != None: | |
| 557 l.append(values) | |
| 558 sample_ids.append(pat_id) | |
| 559 classes.iloc[j, 1] = None # TODO: problems? | |
| 560 | |
| 561 if l: | |
| 562 class_pat[classe] = { | |
| 563 "values": list(map(list, zip(*l))), # transpose | |
| 564 "samples": sample_ids | |
| 565 } | |
| 566 continue | |
| 567 | |
| 568 utils.logWarning( | |
| 569 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
| 570 | |
| 571 return class_pat | |
| 572 | |
| 573 ############################ conversion ############################################## | |
| 574 # Conversion from SVG to PNG | |
| 575 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
| 576 """ | |
| 577 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
| 578 | |
| 579 Args: | |
| 580 svg_path : path to SVG file | |
| 581 png_path : path for new PNG file | |
| 582 dpi : dots per inch of the generated PNG | |
| 583 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
| 584 size : final effective width of the generated PNG | |
| 585 | |
| 586 Returns: | |
| 587 None | |
| 588 """ | |
| 589 if size: | |
| 590 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
| 591 scale = size / image.width | |
| 592 image = image.resize(scale) | |
| 593 else: | |
| 594 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
| 595 | |
| 596 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
| 597 white_background = white_background.affine([scale, 0, 0, scale]) | |
| 598 | |
| 599 if white_background.bands != image.bands: | |
| 600 white_background = white_background.extract_band(0) | |
| 601 | |
| 602 composite_image = white_background.composite2(image, 'over') | |
| 603 composite_image.write_to_file(png_path.show()) | |
| 604 | |
| 605 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
| 606 """ | |
| 607 Converts the SVG map at the provided path to PDF. | |
| 608 | |
| 609 Args: | |
| 610 file_svg : path to SVG file | |
| 611 file_png : path to PNG file | |
| 612 file_pdf : path to new PDF file | |
| 613 | |
| 614 Returns: | |
| 615 None | |
| 616 """ | |
| 617 svg_to_png_with_background(file_svg, file_png) | |
| 618 try: | |
| 619 image = Image.open(file_png.show()) | |
| 620 image = image.convert("RGB") | |
| 621 image.save(file_pdf.show(), "PDF", resolution=100.0) | |
| 622 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
| 623 | |
| 624 except Exception as e: | |
| 625 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
| 626 | |
| 627 ############################ map ############################################## | |
| 628 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
| 629 """ | |
| 630 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
| 631 "result/" folder, used by this tool for output files in collections. | |
| 632 | |
| 633 Args: | |
| 634 dataset1Name : _description_ | |
| 635 dataset2Name : _description_. Defaults to "rest". | |
| 636 details : _description_ | |
| 637 ext : _description_ | |
| 638 | |
| 639 Returns: | |
| 640 utils.FilePath : _description_ | |
| 641 """ | |
| 642 return utils.FilePath( | |
| 643 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
| 644 ext, | |
| 645 prefix = ARGS.output_path) | |
| 646 | |
| 647 FIELD_NOT_AVAILABLE = '/' | |
| 648 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
| 649 fieldsAmt = len(fieldNames) | |
| 650 with open(outPath.show(), "w", newline = "") as fd: | |
| 651 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
| 652 writer.writeheader() | |
| 653 | |
| 654 for row in rows: | |
| 655 sizeMismatch = fieldsAmt - len(row) | |
| 656 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
| 657 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
| 658 | |
| 659 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] | |
| 660 def temp_thingsInCommon(tmp :OldEnrichedScores, core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | |
| 661 suffix = "RAS" if ras_enrichment else "RPS" | |
| 662 writeToCsv( | |
| 663 [ [reactId] + values for reactId, values in tmp.items() ], | |
| 664 ["ids", "P_Value", "fold change", "z-score", "average_1", "average_2"], | |
| 665 buildOutputPath(dataset1Name, dataset2Name, details = f"Tabular Result ({suffix})", ext = utils.FileFormat.TSV)) | |
| 666 | |
| 667 if ras_enrichment: | |
| 668 fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | |
| 669 return | |
| 670 | |
| 671 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
| 672 applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | |
| 673 | |
| 674 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
| 675 """ | |
| 676 Computes the statistical significance score (P-value) of the comparison between coherent data | |
| 677 from two datasets. The data is supposed to, in both datasets: | |
| 678 - be related to the same reaction ID; | |
| 679 - be ordered by sample, such that the item at position i in both lists is related to the | |
| 680 same sample or cell line. | |
| 681 | |
| 682 Args: | |
| 683 dataset1Data : data from the 1st dataset. | |
| 684 dataset2Data : data from the 2nd dataset. | |
| 685 | |
| 686 Returns: | |
| 687 tuple: (P-value, Z-score) | |
| 688 - P-value from the selected test on the provided data. | |
| 689 - Z-score of the difference between means of the two datasets. | |
| 690 """ | |
| 691 match ARGS.test: | |
| 692 case "ks": | |
| 693 # Perform Kolmogorov-Smirnov test | |
| 694 _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
| 695 case "ttest_p": | |
| 696 # Datasets should have same size | |
| 697 if len(dataset1Data) != len(dataset2Data): | |
| 698 raise ValueError("Datasets must have the same size for paired t-test.") | |
| 699 # Perform t-test for paired samples | |
| 700 _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | |
| 701 case "ttest_ind": | |
| 702 # Perform t-test for independent samples | |
| 703 _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | |
| 704 case "wilcoxon": | |
| 705 # Datasets should have same size | |
| 706 if len(dataset1Data) != len(dataset2Data): | |
| 707 raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") | |
| 708 # Perform Wilcoxon signed-rank test | |
| 709 np.random.seed(42) # Ensure reproducibility since zsplit method is used | |
| 710 _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method='zsplit') | |
| 711 case "mw": | |
| 712 # Perform Mann-Whitney U test | |
| 713 _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | |
| 714 case _: | |
| 715 p_value = np.nan # Default value if no valid test is selected | |
| 716 | |
| 717 # Calculate means and standard deviations | |
| 718 mean1 = np.mean(dataset1Data) | |
| 719 mean2 = np.mean(dataset2Data) | |
| 720 std1 = np.std(dataset1Data, ddof=1) | |
| 721 std2 = np.std(dataset2Data, ddof=1) | |
| 722 | |
| 723 n1 = len(dataset1Data) | |
| 724 n2 = len(dataset2Data) | |
| 725 | |
| 726 # Calculate Z-score | |
| 727 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
| 728 | |
| 729 return p_value, z_score | |
| 730 | |
| 731 | |
| 732 def DESeqPValue(comparisonResult :Dict[str, List[Union[float, FoldChange]]], dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> None: | |
| 733 """ | |
| 734 Computes the p-value for each reaction in the comparisonResult dictionary using DESeq2. | |
| 735 | |
| 736 Args: | |
| 737 comparisonResult : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
| 738 dataset1Data : data from the 1st dataset. | |
| 739 dataset2Data : data from the 2nd dataset. | |
| 740 ids : list of reaction IDs. | |
| 741 | |
| 742 Returns: | |
| 743 None : mutates the comparisonResult dictionary in place with the p-values. | |
| 744 """ | |
| 745 | |
| 746 # pyDESeq2 needs at least 2 replicates per sample so I check this | |
| 747 if len(dataset1Data[0]) < 2 or len(dataset2Data[0]) < 2: | |
| 748 raise ValueError("Datasets must have at least 2 replicates each") | |
| 749 | |
| 750 # pyDESeq2 is based on pandas, so we need to convert the data into a DataFrame and clean it from NaN values | |
| 751 dataframe1 = pd.DataFrame(dataset1Data, index=ids) | |
| 752 dataframe2 = pd.DataFrame(dataset2Data, index=ids) | |
| 753 | |
| 754 # pyDESeq2 requires datasets to be samples x reactions and integer values | |
| 755 dataframe1_clean = dataframe1.dropna(axis=0, how="any").T.astype(int) | |
| 756 dataframe2_clean = dataframe2.dropna(axis=0, how="any").T.astype(int) | |
| 757 dataframe1_clean.index = [f"ds1_rep{i+1}" for i in range(dataframe1_clean.shape[0])] | |
| 758 dataframe2_clean.index = [f"ds2_rep{j+1}" for j in range(dataframe2_clean.shape[0])] | |
| 759 | |
| 760 # pyDESeq2 works on a DataFrame with values and another with infos about how samples are split (like dataset class) | |
| 761 dataframe = pd.concat([dataframe1_clean, dataframe2_clean], axis=0) | |
| 762 metadata = pd.DataFrame({"dataset": (["dataset1"]*dataframe1_clean.shape[0] + ["dataset2"]*dataframe2_clean.shape[0])}, index=dataframe.index) | |
| 763 | |
| 764 # Ensure the index of the metadata matches the index of the dataframe | |
| 765 if not dataframe.index.equals(metadata.index): | |
| 766 raise ValueError("The index of the metadata DataFrame must match the index of the counts DataFrame.") | |
| 767 | |
| 768 # Prepare and run pyDESeq2 | |
| 769 inference = DefaultInference() | |
| 770 dds = DeseqDataSet(counts=dataframe, metadata=metadata, design="~dataset", inference=inference, quiet=True, low_memory=True) | |
| 771 dds.deseq2() | |
| 772 ds = DeseqStats(dds, contrast=["dataset", "dataset1", "dataset2"], inference=inference, quiet=True) | |
| 773 ds.summary() | |
| 774 | |
| 775 # Retrieve the p-values from the DESeq2 results | |
| 776 for reactId in ds.results_df.index: | |
| 777 comparisonResult[reactId][0] = ds.results_df["pvalue"][reactId] | |
| 778 | |
| 779 | |
| 780 # TODO: the net RPS computation should be done in the RPS module | |
| 781 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float, Dict[str, Tuple[np.ndarray, np.ndarray]]]: | |
| 782 | |
| 783 netRPS :Dict[str, Tuple[np.ndarray, np.ndarray]] = {} | |
| 784 comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} | |
| 785 count = 0 | |
| 786 max_z_score = 0 | |
| 787 | |
| 788 for l1, l2 in zip(dataset1Data, dataset2Data): | |
| 789 reactId = ids[count] | |
| 790 count += 1 | |
| 791 if not reactId: continue | |
| 792 | |
| 793 try: #TODO: identify the source of these errors and minimize code in the try block | |
| 794 reactDir = ReactionDirection.fromReactionId(reactId) | |
| 795 # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | |
| 796 if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | |
| 797 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | |
| 798 except ValueError: continue # we look for the complementary id, if not found we skip | |
| 799 | |
| 800 nets1 = np.subtract(l1, dataset1Data[position]) | |
| 801 nets2 = np.subtract(l2, dataset2Data[position]) | |
| 802 netRPS[reactId] = (nets1, nets2) | |
| 803 | |
| 804 # Compute p-value and z-score for the RPS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 | |
| 805 p_value, z_score = computePValue(nets1, nets2) | |
| 806 avg1 = sum(nets1) / len(nets1) | |
| 807 avg2 = sum(nets2) / len(nets2) | |
| 808 net = fold_change(avg1, avg2) | |
| 809 | |
| 810 if math.isnan(net): continue | |
| 811 comparisonResult[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | |
| 812 | |
| 813 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | |
| 814 if ARGS.net: # If only using RPS, we cannot delete the inverse, as it's needed to color the arrows | |
| 815 ids[position] = None | |
| 816 continue | |
| 817 | |
| 818 # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | |
| 819 # Compute p-value and z-score for the RAS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 | |
| 820 p_value, z_score = computePValue(l1, l2) | |
| 821 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
| 822 # vvv TODO: Check numpy version compatibility | |
| 823 if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
| 824 comparisonResult[reactId] = [float(p_value), avg, z_score, sum(l1) / len(l1), sum(l2) / len(l2)] | |
| 825 | |
| 826 except (TypeError, ZeroDivisionError): continue | |
| 827 | |
| 828 if ARGS.test == "DESeq": | |
| 829 # Compute p-values using DESeq2 | |
| 830 DESeqPValue(comparisonResult, dataset1Data, dataset2Data, ids) | |
| 831 | |
| 832 # Apply multiple testing correction if set by the user | |
| 833 if ARGS.adjusted: | |
| 834 | |
| 835 # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN | |
| 836 validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] | |
| 837 # Unpack the valid p-values | |
| 838 reactIds, pValues = zip(*validPValues) | |
| 839 # Adjust the p-values using the Benjamini-Hochberg method | |
| 840 adjustedPValues = st.false_discovery_control(pValues) | |
| 841 # Update the comparisonResult dictionary with the adjusted p-values | |
| 842 for reactId , adjustedPValue in zip(reactIds, adjustedPValues): | |
| 843 comparisonResult[reactId][0] = adjustedPValue | |
| 844 | |
| 845 return comparisonResult, max_z_score, netRPS | |
| 846 | |
| 847 def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> Tuple[List[Tuple[str, str, dict, float]], dict]: | |
| 848 """ | |
| 849 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
| 850 provided metabolic map. | |
| 851 | |
| 852 Args: | |
| 853 class_pat : the clustered data. | |
| 854 ids : ids for data association. | |
| 855 fromRAS : whether the data to enrich consists of RAS scores. | |
| 856 | |
| 857 Returns: | |
| 858 tuple: A tuple containing: | |
| 859 - List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary and max z-score. | |
| 860 - dict : net RPS values for each dataset's reactions | |
| 861 | |
| 862 Raises: | |
| 863 sys.exit : if there are less than 2 classes for comparison | |
| 864 """ | |
| 865 class_pat = {k.strip(): v for k, v in class_pat.items()} | |
| 866 if (not class_pat) or (len(class_pat.keys()) < 2): | |
| 867 sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
| 868 | |
| 869 # { datasetName : { reactId : netRPS, ... }, ... } | |
| 870 netRPSResults :Dict[str, Dict[str, np.ndarray]] = {} | |
| 871 enrichment_results = [] | |
| 872 | |
| 873 if ARGS.comparison == "manyvsmany": | |
| 874 for i, j in it.combinations(class_pat.keys(), 2): | |
| 875 comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
| 876 enrichment_results.append((i, j, comparisonDict, max_z_score)) | |
| 877 netRPSResults[i] = { reactId : net[0] for reactId, net in netRPS.items() } | |
| 878 netRPSResults[j] = { reactId : net[1] for reactId, net in netRPS.items() } | |
| 879 | |
| 880 elif ARGS.comparison == "onevsrest": | |
| 881 for single_cluster in class_pat.keys(): | |
| 882 rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | |
| 883 comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
| 884 enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | |
| 885 netRPSResults[single_cluster] = { reactId : net[0] for reactId, net in netRPS.items() } | |
| 886 netRPSResults["rest"] = { reactId : net[1] for reactId, net in netRPS.items() } | |
| 887 | |
| 888 elif ARGS.comparison == "onevsmany": | |
| 889 controlItems = class_pat.get(ARGS.control) | |
| 890 for otherDataset in class_pat.keys(): | |
| 891 if otherDataset == ARGS.control: | |
| 892 continue | |
| 893 | |
| 894 #comparisonDict, max_z_score, netRPS = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
| 895 comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) | |
| 896 #enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | |
| 897 enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) | |
| 898 netRPSResults[otherDataset] = { reactId : net[0] for reactId, net in netRPS.items() } | |
| 899 netRPSResults[ARGS.control] = { reactId : net[1] for reactId, net in netRPS.items() } | |
| 900 | |
| 901 return enrichment_results, netRPSResults | |
| 902 | |
| 903 def createOutputMaps(dataset1Name: str, dataset2Name: str, core_map: ET.ElementTree) -> None: | |
| 904 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | |
| 905 utils.writeSvg(svgFilePath, core_map) | |
| 906 | |
| 907 if ARGS.generate_pdf: | |
| 908 pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | |
| 909 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | |
| 910 svg_to_png_with_background(svgFilePath, pngPath) | |
| 911 try: | |
| 912 image = Image.open(pngPath.show()) | |
| 913 image = image.convert("RGB") | |
| 914 image.save(pdfPath.show(), "PDF", resolution=100.0) | |
| 915 print(f'PDF file {pdfPath.filePath} successfully generated.') | |
| 916 | |
| 917 except Exception as e: | |
| 918 raise utils.DataErr(pdfPath.show(), f'Error generating PDF file: {e}') | |
| 919 | |
| 920 if not ARGS.generate_svg: | |
| 921 os.remove(svgFilePath.show()) | |
| 922 | |
| 923 ClassPat = Dict[str, List[List[float]]] | |
| 924 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat, Dict[str, List[str]]]: | |
| 925 columnNames :Dict[str, List[str]] = {} # { datasetName : [ columnName, ... ], ... } | |
| 926 class_pat :ClassPat = {} | |
| 927 if ARGS.option == 'datasets': | |
| 928 num = 1 | |
| 929 for path, name in zip(datasetsPaths, names): | |
| 930 name = str(name) | |
| 931 if name == 'Dataset': | |
| 932 name += '_' + str(num) | |
| 933 | |
| 934 values, ids = getDatasetValues(path, name) | |
| 935 if values != None: | |
| 936 class_pat[name] = list(map(list, zip(*values.values()))) # TODO: ??? | |
| 937 columnNames[name] = ["Reactions", *values.keys()] | |
| 938 | |
| 939 num += 1 | |
| 940 | |
| 941 elif ARGS.option == "dataset_class": | |
| 942 classes = read_dataset(classPath, "class") | |
| 943 classes = classes.astype(str) | |
| 944 | |
| 945 values, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
| 946 if values != None: | |
| 947 class_pat_with_samples_id = split_class(classes, values) | |
| 948 | |
| 949 for clas, values_and_samples_id in class_pat_with_samples_id.items(): | |
| 950 class_pat[clas] = values_and_samples_id["values"] | |
| 951 columnNames[clas] = ["Reactions", *values_and_samples_id["samples"]] | |
| 952 | |
| 953 return ids, class_pat, columnNames | |
| 954 | |
| 955 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
| 956 """ | |
| 957 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
| 958 | |
| 959 Args: | |
| 960 datasetPath : path to the dataset | |
| 961 datasetName (str): dataset name, used in error reporting | |
| 962 | |
| 963 Returns: | |
| 964 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
| 965 """ | |
| 966 dataset = read_dataset(datasetPath, datasetName) | |
| 967 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
| 968 | |
| 969 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
| 970 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
| 971 | |
| 972 ############################ MAIN ############################################# | |
| 973 def main(args:List[str] = None) -> None: | |
| 974 """ | |
| 975 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 976 | |
| 977 Returns: | |
| 978 None | |
| 979 | |
| 980 Raises: | |
| 981 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
| 982 """ | |
| 983 global ARGS | |
| 984 ARGS = process_args(args) | |
| 985 | |
| 986 # Create output folder | |
| 987 if not os.path.isdir(ARGS.output_path): | |
| 988 os.makedirs(ARGS.output_path, exist_ok=True) | |
| 989 | |
| 990 core_map: ET.ElementTree = ARGS.choice_map.getMap( | |
| 991 ARGS.tool_dir, | |
| 992 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
| 993 | |
| 994 # Prepare enrichment results containers | |
| 995 ras_results = [] | |
| 996 rps_results = [] | |
| 997 | |
| 998 # Compute RAS enrichment if requested | |
| 999 if ARGS.using_RAS: | |
| 1000 ids_ras, class_pat_ras, _ = getClassesAndIdsFromDatasets( | |
| 1001 ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | |
| 1002 ras_results, _ = computeEnrichment(class_pat_ras, ids_ras, fromRAS=True) | |
| 1003 | |
| 1004 | |
| 1005 # Compute RPS enrichment if requested | |
| 1006 if ARGS.using_RPS: | |
| 1007 ids_rps, class_pat_rps, columnNames = getClassesAndIdsFromDatasets( | |
| 1008 ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | |
| 1009 | |
| 1010 rps_results, netRPS = computeEnrichment(class_pat_rps, ids_rps, fromRAS=False) | |
| 1011 | |
| 1012 # Organize by comparison pairs | |
| 1013 comparisons: Dict[Tuple[str, str], Dict[str, Tuple]] = {} | |
| 1014 for i, j, comparison_data, max_z_score in ras_results: | |
| 1015 comparisons[(i, j)] = {'ras': (comparison_data, max_z_score), 'rps': None} | |
| 1016 | |
| 1017 for i, j, comparison_data, max_z_score, in rps_results: | |
| 1018 comparisons.setdefault((i, j), {}).update({'rps': (comparison_data, max_z_score)}) | |
| 1019 | |
| 1020 # For each comparison, create a styled map with RAS bodies and RPS heads | |
| 1021 for (i, j), res in comparisons.items(): | |
| 1022 map_copy = copy.deepcopy(core_map) | |
| 1023 | |
| 1024 # Apply RAS styling to arrow bodies | |
| 1025 if res.get('ras'): | |
| 1026 tmp_ras, max_z_ras = res['ras'] | |
| 1027 temp_thingsInCommon(tmp_ras, map_copy, max_z_ras, i, j, ras_enrichment=True) | |
| 1028 | |
| 1029 # Apply RPS styling to arrow heads | |
| 1030 if res.get('rps'): | |
| 1031 tmp_rps, max_z_rps = res['rps'] | |
| 1032 | |
| 1033 temp_thingsInCommon(tmp_rps, map_copy, max_z_rps, i, j, ras_enrichment=False) | |
| 1034 | |
| 1035 # Output both SVG and PDF/PNG as configured | |
| 1036 createOutputMaps(i, j, map_copy) | |
| 1037 | |
| 1038 # Add net RPS output file | |
| 1039 if ARGS.net or not ARGS.using_RAS: | |
| 1040 for datasetName, rows in netRPS.items(): | |
| 1041 writeToCsv( | |
| 1042 [[reactId, *netValues] for reactId, netValues in rows.items()], | |
| 1043 columnNames.get(datasetName, ["Reactions"]), | |
| 1044 utils.FilePath( | |
| 1045 "Net_RPS_" + datasetName, | |
| 1046 ext = utils.FileFormat.CSV, | |
| 1047 prefix = ARGS.output_path)) | |
| 1048 | |
| 1049 print('Execution succeeded') | |
| 1050 ############################################################################### | |
| 1051 if __name__ == "__main__": | |
| 1052 main() | 
