| 539 | 1 """ | 
|  | 2 MAREA: Enrichment and map styling for RAS/RPS data. | 
|  | 3 | 
|  | 4 This module compares groups of samples using RAS (Reaction Activity Scores) and/or | 
|  | 5 RPS (Reaction Propensity Scores), computes statistics (p-values, z-scores, fold change), | 
|  | 6 and applies visual styling to an SVG metabolic map (with optional PDF/PNG export). | 
|  | 7 """ | 
|  | 8 from __future__ import division | 
|  | 9 import csv | 
|  | 10 from enum import Enum | 
|  | 11 import re | 
|  | 12 import sys | 
|  | 13 import numpy as np | 
|  | 14 import pandas as pd | 
|  | 15 import itertools as it | 
|  | 16 import scipy.stats as st | 
|  | 17 import lxml.etree as ET | 
|  | 18 import math | 
|  | 19 import utils.general_utils as utils | 
|  | 20 from PIL import Image | 
|  | 21 import os | 
|  | 22 import argparse | 
|  | 23 import pyvips | 
|  | 24 from typing import Tuple, Union, Optional, List, Dict | 
|  | 25 import copy | 
|  | 26 | 
|  | 27 from pydeseq2.dds import DeseqDataSet | 
|  | 28 from pydeseq2.default_inference import DefaultInference | 
|  | 29 from pydeseq2.ds import DeseqStats | 
|  | 30 | 
|  | 31 ERRORS = [] | 
|  | 32 ########################## argparse ########################################## | 
|  | 33 ARGS :argparse.Namespace | 
|  | 34 def process_args(args:List[str] = None) -> argparse.Namespace: | 
|  | 35     """ | 
|  | 36     Parse command-line arguments exposed by the Galaxy frontend for this module. | 
|  | 37 | 
|  | 38     Args: | 
|  | 39     args: Optional list of arguments, defaults to sys.argv when None. | 
|  | 40 | 
|  | 41     Returns: | 
|  | 42     Namespace: Parsed arguments. | 
|  | 43     """ | 
|  | 44     parser = argparse.ArgumentParser( | 
|  | 45         usage = "%(prog)s [options]", | 
|  | 46         description = "process some value's genes to create a comparison's map.") | 
|  | 47 | 
|  | 48     #General: | 
|  | 49     parser.add_argument( | 
|  | 50         '-td', '--tool_dir', | 
|  | 51         type = str, | 
|  | 52         required = True, | 
|  | 53         help = 'your tool directory') | 
|  | 54 | 
|  | 55     parser.add_argument('-on', '--control', type = str) | 
|  | 56     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 57 | 
|  | 58     #Computation details: | 
|  | 59     parser.add_argument( | 
|  | 60         '-co', '--comparison', | 
|  | 61         type = str, | 
|  | 62         default = 'manyvsmany', | 
|  | 63         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
|  | 64 | 
|  | 65     parser.add_argument( | 
|  | 66         '-te' ,'--test', | 
|  | 67         type = str, | 
|  | 68         default = 'ks', | 
|  | 69         choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw', 'DESeq'], | 
|  | 70         help = 'Statistical test to use (default: %(default)s)') | 
|  | 71 | 
|  | 72     parser.add_argument( | 
|  | 73         '-pv' ,'--pValue', | 
|  | 74         type = float, | 
|  | 75         default = 0.1, | 
|  | 76         help = 'P-Value threshold (default: %(default)s)') | 
|  | 77 | 
|  | 78     parser.add_argument( | 
|  | 79         '-adj' ,'--adjusted', | 
|  | 80         type = utils.Bool("adjusted"), default = False, | 
|  | 81         help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') | 
|  | 82 | 
|  | 83     parser.add_argument( | 
|  | 84         '-fc', '--fChange', | 
|  | 85         type = float, | 
|  | 86         default = 1.5, | 
|  | 87         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 88 | 
|  | 89     parser.add_argument( | 
|  | 90         "-ne", "--net", | 
|  | 91         type = utils.Bool("net"), default = False, | 
|  | 92         help = "choose if you want net enrichment for RPS") | 
|  | 93 | 
|  | 94     parser.add_argument( | 
|  | 95         '-op', '--option', | 
|  | 96         type = str, | 
|  | 97         choices = ['datasets', 'dataset_class'], | 
|  | 98         help='dataset or dataset and class') | 
|  | 99 | 
|  | 100     #RAS: | 
|  | 101     parser.add_argument( | 
|  | 102         "-ra", "--using_RAS", | 
|  | 103         type = utils.Bool("using_RAS"), default = True, | 
|  | 104         help = "choose whether to use RAS datasets.") | 
|  | 105 | 
|  | 106     parser.add_argument( | 
|  | 107         '-id', '--input_data', | 
|  | 108         type = str, | 
|  | 109         help = 'input dataset') | 
|  | 110 | 
|  | 111     parser.add_argument( | 
|  | 112         '-ic', '--input_class', | 
|  | 113         type = str, | 
|  | 114         help = 'sample group specification') | 
|  | 115 | 
|  | 116     parser.add_argument( | 
|  | 117         '-ids', '--input_datas', | 
|  | 118         type = str, | 
|  | 119         nargs = '+', | 
|  | 120         help = 'input datasets') | 
|  | 121 | 
|  | 122     parser.add_argument( | 
|  | 123         '-na', '--names', | 
|  | 124         type = str, | 
|  | 125         nargs = '+', | 
|  | 126         help = 'input names') | 
|  | 127 | 
|  | 128     #RPS: | 
|  | 129     parser.add_argument( | 
|  | 130         "-rp", "--using_RPS", | 
|  | 131         type = utils.Bool("using_RPS"), default = False, | 
|  | 132         help = "choose whether to use RPS datasets.") | 
|  | 133 | 
|  | 134     parser.add_argument( | 
|  | 135         '-idr', '--input_data_rps', | 
|  | 136         type = str, | 
|  | 137         help = 'input dataset rps') | 
|  | 138 | 
|  | 139     parser.add_argument( | 
|  | 140         '-icr', '--input_class_rps', | 
|  | 141         type = str, | 
|  | 142         help = 'sample group specification rps') | 
|  | 143 | 
|  | 144     parser.add_argument( | 
|  | 145         '-idsr', '--input_datas_rps', | 
|  | 146         type = str, | 
|  | 147         nargs = '+', | 
|  | 148         help = 'input datasets rps') | 
|  | 149 | 
|  | 150     parser.add_argument( | 
|  | 151         '-nar', '--names_rps', | 
|  | 152         type = str, | 
|  | 153         nargs = '+', | 
|  | 154         help = 'input names rps') | 
|  | 155 | 
|  | 156     #Output: | 
|  | 157     parser.add_argument( | 
|  | 158         "-gs", "--generate_svg", | 
|  | 159         type = utils.Bool("generate_svg"), default = True, | 
|  | 160         help = "choose whether to use RAS datasets.") | 
|  | 161 | 
|  | 162     parser.add_argument( | 
|  | 163         "-gp", "--generate_pdf", | 
|  | 164         type = utils.Bool("generate_pdf"), default = True, | 
|  | 165         help = "choose whether to use RAS datasets.") | 
|  | 166 | 
|  | 167     parser.add_argument( | 
|  | 168         '-cm', '--custom_map', | 
|  | 169         type = str, | 
|  | 170         help='custom map to use') | 
|  | 171 | 
|  | 172     parser.add_argument( | 
|  | 173         '-idop', '--output_path', | 
|  | 174         type = str, | 
|  | 175         default='result', | 
|  | 176         help = 'output path for maps') | 
|  | 177 | 
|  | 178     parser.add_argument( | 
|  | 179         '-mc',  '--choice_map', | 
|  | 180         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 181         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 182 | 
|  | 183     args :argparse.Namespace = parser.parse_args(args) | 
|  | 184     if args.using_RAS and not args.using_RPS: args.net = False | 
|  | 185 | 
|  | 186     return args | 
|  | 187 | 
|  | 188 ############################ dataset input #################################### | 
|  | 189 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 190     """ | 
|  | 191     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 192 | 
|  | 193     Args: | 
|  | 194         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 195         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 196 | 
|  | 197     Returns: | 
|  | 198         pd.DataFrame : dataset in a runtime operable shape | 
|  | 199 | 
|  | 200     Raises: | 
|  | 201         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 202     """ | 
|  | 203     try: | 
|  | 204         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 205     except pd.errors.EmptyDataError: | 
|  | 206         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 207     if len(dataset.columns) < 2: | 
|  | 208         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 209     return dataset | 
|  | 210 | 
|  | 211 ############################ map_methods ###################################### | 
|  | 212 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 213 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 214     """ | 
|  | 215     Calculates the fold change between two gene expression values. | 
|  | 216 | 
|  | 217     Args: | 
|  | 218         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 219 | 
|  | 220     Returns: | 
|  | 221         FoldChange : | 
|  | 222             0 : when both input values are 0 | 
|  | 223             "-INF" : when avg1 is 0 | 
|  | 224             "INF" : when avg2 is 0 | 
|  | 225             float : for any other combination of values | 
|  | 226     """ | 
|  | 227     if avg1 == 0 and avg2 == 0: | 
|  | 228         return 0 | 
|  | 229 | 
|  | 230     if avg1 == 0: | 
|  | 231         return '-INF' # TODO: maybe fix | 
|  | 232 | 
|  | 233     if avg2 == 0: | 
|  | 234         return 'INF' | 
|  | 235 | 
|  | 236     # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 237     return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 238 | 
|  | 239 # TODO: I would really like for this one to get the Thanos treatment | 
|  | 240 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | 
|  | 241     """ | 
|  | 242     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | 
|  | 243 | 
|  | 244     Args: | 
|  | 245         l : current style string of an SVG element | 
|  | 246         col : new value for the "stroke" style property | 
|  | 247         width : new value for the "stroke-width" style property | 
|  | 248         dash : new value for the "stroke-dasharray" style property | 
|  | 249 | 
|  | 250     Returns: | 
|  | 251         str : the fixed style string | 
|  | 252     """ | 
|  | 253     tmp = l.split(';') | 
|  | 254     flag_col = False | 
|  | 255     flag_width = False | 
|  | 256     flag_dash = False | 
|  | 257     for i in range(len(tmp)): | 
|  | 258         if tmp[i].startswith('stroke:'): | 
|  | 259             tmp[i] = 'stroke:' + col | 
|  | 260             flag_col = True | 
|  | 261         if tmp[i].startswith('stroke-width:'): | 
|  | 262             tmp[i] = 'stroke-width:' + width | 
|  | 263             flag_width = True | 
|  | 264         if tmp[i].startswith('stroke-dasharray:'): | 
|  | 265             tmp[i] = 'stroke-dasharray:' + dash | 
|  | 266             flag_dash = True | 
|  | 267     if not flag_col: | 
|  | 268         tmp.append('stroke:' + col) | 
|  | 269     if not flag_width: | 
|  | 270         tmp.append('stroke-width:' + width) | 
|  | 271     if not flag_dash: | 
|  | 272         tmp.append('stroke-dasharray:' + dash) | 
|  | 273     return ';'.join(tmp) | 
|  | 274 | 
|  | 275 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | 
|  | 276     """ | 
|  | 277     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | 
|  | 278 | 
|  | 279     Args: | 
|  | 280         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 281         core_map : SVG map to modify | 
|  | 282         threshold_P_V : threshold for a p-value to be considered significant | 
|  | 283         threshold_F_C : threshold for a fold change value to be considered significant | 
|  | 284         max_z_score : highest z-score (absolute value) | 
|  | 285 | 
|  | 286     Returns: | 
|  | 287         ET.ElementTree : the modified core_map | 
|  | 288 | 
|  | 289     Side effects: | 
|  | 290         core_map : mut | 
|  | 291     """ | 
|  | 292     maxT = 12 | 
|  | 293     minT = 2 | 
|  | 294     grey = '#BEBEBE' | 
|  | 295     blue = '#6495ed' | 
|  | 296     red = '#ecac68' | 
|  | 297     for el in core_map.iter(): | 
|  | 298         el_id = str(el.get('id')) | 
|  | 299         if el_id.startswith('R_'): | 
|  | 300             tmp = d.get(el_id[2:]) | 
|  | 301             if tmp != None: | 
|  | 302                 p_val, f_c, z_score, avg1, avg2 = tmp | 
|  | 303 | 
|  | 304                 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue | 
|  | 305 | 
|  | 306                 if p_val <= threshold_P_V: # p-value is OK | 
|  | 307                     if not isinstance(f_c, str): # FC is finite | 
|  | 308                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # FC is not OK | 
|  | 309                             col = grey | 
|  | 310                             width = str(minT) | 
|  | 311                         else: # FC is OK | 
|  | 312                             if f_c < 0: | 
|  | 313                                 col = blue | 
|  | 314                             elif f_c > 0: | 
|  | 315                                 col = red | 
|  | 316                             width = str( | 
|  | 317                                 min( | 
|  | 318                                     max(abs(z_score * maxT) / max_z_score, minT), | 
|  | 319                                     maxT)) | 
|  | 320 | 
|  | 321                     else: # FC is infinite | 
|  | 322                         if f_c == '-INF': | 
|  | 323                             col = blue | 
|  | 324                         elif f_c == 'INF': | 
|  | 325                             col = red | 
|  | 326                         width = str(maxT) | 
|  | 327                     dash = 'none' | 
|  | 328                 else: # p-value is not OK | 
|  | 329                     dash = '5,5' | 
|  | 330                     col = grey | 
|  | 331                     width = str(minT) | 
|  | 332                 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | 
|  | 333     return core_map | 
|  | 334 | 
|  | 335 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 336     """ | 
|  | 337     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 338     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 339 | 
|  | 340     Args: | 
|  | 341         reactionId (str): exact ID of the requested element. | 
|  | 342         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 343 | 
|  | 344     Returns: | 
|  | 345         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 346     """ | 
|  | 347     return utils.Result.Ok( | 
|  | 348         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 349         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 350         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 351 | 
|  | 352 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 353     """Append/override stroke-related styles on a given SVG element.""" | 
|  | 354     currentStyles :str = element.get("style", "") | 
|  | 355     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 356         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 357 | 
|  | 358     element.set("style", currentStyles + styleStr) | 
|  | 359 | 
|  | 360 class ReactionDirection(Enum): | 
|  | 361     Unknown = "" | 
|  | 362     Direct  = "_F" | 
|  | 363     Inverse = "_B" | 
|  | 364 | 
|  | 365     @classmethod | 
|  | 366     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 367         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 368         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 369         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 370         return ReactionDirection.Unknown | 
|  | 371 | 
|  | 372     @classmethod | 
|  | 373     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 374         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 375 | 
|  | 376 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 377     """Return the SVG element id for a reaction arrow body, normalizing direction tags.""" | 
|  | 378     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 379     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 380     return f"R_{reactionId}" | 
|  | 381 | 
|  | 382 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 383     """ | 
|  | 384     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 385 | 
|  | 386     Args: | 
|  | 387         reactionId : the provided reaction ID. | 
|  | 388 | 
|  | 389     Returns: | 
|  | 390         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 391     """ | 
|  | 392     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 393     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: | 
|  | 394         return reactionId[:-3:-1] + reactionId[:-2], "" # ^^^ Invert _F to F_ | 
|  | 395 | 
|  | 396     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 397 | 
|  | 398 class ArrowColor(Enum): | 
|  | 399     """ | 
|  | 400     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 401     """ | 
|  | 402     Invalid       = "#BEBEBE" # gray, fold-change under treshold or not significant p-value | 
|  | 403     Transparent   = "#ffffff00" # transparent, to make some arrow segments disappear | 
|  | 404     UpRegulated   = "#ecac68" # orange, up-regulated reaction | 
|  | 405     DownRegulated = "#6495ed" # lightblue, down-regulated reaction | 
|  | 406 | 
|  | 407     UpRegulatedInv = "#FF0000"  # bright red for reversible with conflicting directions | 
|  | 408 | 
|  | 409     DownRegulatedInv = "#0000FF"  # bright blue for reversible with conflicting directions | 
|  | 410 | 
|  | 411     @classmethod | 
|  | 412     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 413         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 414         return colors[useAltColor] | 
|  | 415 | 
|  | 416     def __str__(self) -> str: return self.value | 
|  | 417 | 
|  | 418 class Arrow: | 
|  | 419     """ | 
|  | 420     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 421     """ | 
|  | 422     MIN_W = 2 | 
|  | 423     MAX_W = 12 | 
|  | 424 | 
|  | 425     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 426         """ | 
|  | 427         (Private) Initializes an instance of Arrow. | 
|  | 428 | 
|  | 429         Args: | 
|  | 430             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 431             col : color of the arrow. | 
|  | 432             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 433 | 
|  | 434         Returns: | 
|  | 435             None : practically, a Arrow instance. | 
|  | 436         """ | 
|  | 437         self.w    = width | 
|  | 438         self.col  = col | 
|  | 439         self.dash = isDashed | 
|  | 440 | 
|  | 441     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 442         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 443             ERRORS.append(reactionId) | 
|  | 444 | 
|  | 445     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 446     # If direction is irrelevant (e.g., RAS), style only the arrow body | 
|  | 447         if not mindReactionDir: | 
|  | 448             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 449 | 
|  | 450         # Now we style the arrow head(s): | 
|  | 451         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 452         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 453         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 454 | 
|  | 455     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 456         """ | 
|  | 457         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 458 | 
|  | 459         Returns: | 
|  | 460             str : the styles string. | 
|  | 461         """ | 
|  | 462         width = self.w | 
|  | 463         if downSizedForTips: width *= 0.8 | 
|  | 464         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 465 | 
|  | 466 # Default arrows used for different significance states | 
|  | 467 INVALID_ARROW       = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 468 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 469 TRANSPARENT_ARROW   = Arrow(Arrow.MIN_W, ArrowColor.Transparent) # Who cares how big it is if it's transparent | 
|  | 470 | 
|  | 471 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 472     """ | 
|  | 473     Applies RPS enrichment results to the provided metabolic map. | 
|  | 474 | 
|  | 475     Args: | 
|  | 476         rpsEnrichmentRes : RPS enrichment results. | 
|  | 477         metabMap : the metabolic map to edit. | 
|  | 478         maxNumericZScore : biggest finite z-score value found. | 
|  | 479 | 
|  | 480     Side effects: | 
|  | 481         metabMap : mut | 
|  | 482 | 
|  | 483     Returns: | 
|  | 484         None | 
|  | 485     """ | 
|  | 486     for reactionId, values in rpsEnrichmentRes.items(): | 
|  | 487         pValue = values[0] | 
|  | 488         foldChange = values[1] | 
|  | 489         z_score = values[2] | 
|  | 490 | 
|  | 491         if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): continue | 
|  | 492 | 
|  | 493         if isinstance(foldChange, str): foldChange = float(foldChange) | 
|  | 494         if pValue > ARGS.pValue: # pValue above tresh: dashed arrow | 
|  | 495             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 496             continue | 
|  | 497 | 
|  | 498         if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 499             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 500             continue | 
|  | 501 | 
|  | 502         width = Arrow.MAX_W | 
|  | 503         if not math.isinf(z_score): | 
|  | 504             try: width = min( | 
|  | 505                 max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | 
|  | 506                 Arrow.MAX_W) | 
|  | 507 | 
|  | 508             except ZeroDivisionError: pass | 
|  | 509 | 
|  | 510         if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
|  | 511             Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 512             continue | 
|  | 513 | 
|  | 514         reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 515 | 
|  | 516         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 517         if inversionScore == 2: foldChange *= -1 | 
|  | 518 | 
|  | 519         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 520         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 521 | 
|  | 522         # vvv These 2 if statements can both be true and can both happen | 
|  | 523         if ARGS.net: # style arrow head(s): | 
|  | 524             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 525 | 
|  | 526         if not ARGS.using_RAS: # style arrow body | 
|  | 527             arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 528 | 
|  | 529 ############################ split class ###################################### | 
|  | 530 def split_class(classes :pd.DataFrame, dataset_values :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 531     """ | 
|  | 532     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 533 | 
|  | 534     Args: | 
|  | 535         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 536         dataset_values : a :dict containing :float data | 
|  | 537 | 
|  | 538     Returns: | 
|  | 539         dict : the dict with data grouped by class | 
|  | 540 | 
|  | 541     Side effects: | 
|  | 542         classes : mut | 
|  | 543     """ | 
|  | 544     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 545     for i in range(len(classes)): | 
|  | 546         classe :str = classes.iloc[i, 1] | 
|  | 547         if pd.isnull(classe): continue | 
|  | 548 | 
|  | 549         l :List[List[float]] = [] | 
|  | 550         sample_ids: List[str] = [] | 
|  | 551 | 
|  | 552         for j in range(i, len(classes)): | 
|  | 553             if classes.iloc[j, 1] == classe: | 
|  | 554                 pat_id :str = classes.iloc[j, 0] # sample name | 
|  | 555                 values = dataset_values.get(pat_id, None) # the column of values for that sample | 
|  | 556                 if values != None: | 
|  | 557                     l.append(values) | 
|  | 558                     sample_ids.append(pat_id) | 
|  | 559                 classes.iloc[j, 1] = None # TODO: problems? | 
|  | 560 | 
|  | 561         if l: | 
|  | 562             class_pat[classe] = { | 
|  | 563                 "values": list(map(list, zip(*l))),  # transpose | 
|  | 564                 "samples": sample_ids | 
|  | 565             } | 
|  | 566             continue | 
|  | 567 | 
|  | 568         utils.logWarning( | 
|  | 569             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 570 | 
|  | 571     return class_pat | 
|  | 572 | 
|  | 573 ############################ conversion ############################################## | 
|  | 574 # Conversion from SVG to PNG | 
|  | 575 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 576     """ | 
|  | 577     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 578 | 
|  | 579     Args: | 
|  | 580         svg_path : path to SVG file | 
|  | 581         png_path : path for new PNG file | 
|  | 582         dpi : dots per inch of the generated PNG | 
|  | 583         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 584         size : final effective width of the generated PNG | 
|  | 585 | 
|  | 586     Returns: | 
|  | 587         None | 
|  | 588     """ | 
|  | 589     if size: | 
|  | 590         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 591         scale = size / image.width | 
|  | 592         image = image.resize(scale) | 
|  | 593     else: | 
|  | 594         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 595 | 
|  | 596     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 597     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 598 | 
|  | 599     if white_background.bands != image.bands: | 
|  | 600         white_background = white_background.extract_band(0) | 
|  | 601 | 
|  | 602     composite_image = white_background.composite2(image, 'over') | 
|  | 603     composite_image.write_to_file(png_path.show()) | 
|  | 604 | 
|  | 605 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 606     """ | 
|  | 607     Converts the SVG map at the provided path to PDF. | 
|  | 608 | 
|  | 609     Args: | 
|  | 610         file_svg : path to SVG file | 
|  | 611         file_png : path to PNG file | 
|  | 612         file_pdf : path to new PDF file | 
|  | 613 | 
|  | 614     Returns: | 
|  | 615         None | 
|  | 616     """ | 
|  | 617     svg_to_png_with_background(file_svg, file_png) | 
|  | 618     try: | 
|  | 619         image = Image.open(file_png.show()) | 
|  | 620         image = image.convert("RGB") | 
|  | 621         image.save(file_pdf.show(), "PDF", resolution=100.0) | 
|  | 622         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 623 | 
|  | 624     except Exception as e: | 
|  | 625         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 626 | 
|  | 627 ############################ map ############################################## | 
|  | 628 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 629     """ | 
|  | 630     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 631     "result/" folder, used by this tool for output files in collections. | 
|  | 632 | 
|  | 633     Args: | 
|  | 634         dataset1Name : _description_ | 
|  | 635         dataset2Name : _description_. Defaults to "rest". | 
|  | 636         details : _description_ | 
|  | 637         ext : _description_ | 
|  | 638 | 
|  | 639     Returns: | 
|  | 640         utils.FilePath : _description_ | 
|  | 641     """ | 
|  | 642     return utils.FilePath( | 
|  | 643         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 644         ext, | 
|  | 645         prefix = ARGS.output_path) | 
|  | 646 | 
|  | 647 FIELD_NOT_AVAILABLE = '/' | 
|  | 648 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 649     fieldsAmt = len(fieldNames) | 
|  | 650     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 651         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 652         writer.writeheader() | 
|  | 653 | 
|  | 654         for row in rows: | 
|  | 655             sizeMismatch = fieldsAmt - len(row) | 
|  | 656             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 657             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 658 | 
|  | 659 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] | 
|  | 660 def temp_thingsInCommon(tmp :OldEnrichedScores, core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | 
|  | 661     suffix = "RAS" if ras_enrichment else "RPS" | 
|  | 662     writeToCsv( | 
|  | 663         [ [reactId] + values for reactId, values in tmp.items() ], | 
|  | 664         ["ids", "P_Value", "fold change", "z-score", "average_1", "average_2"], | 
|  | 665         buildOutputPath(dataset1Name, dataset2Name, details = f"Tabular Result ({suffix})", ext = utils.FileFormat.TSV)) | 
|  | 666 | 
|  | 667     if ras_enrichment: | 
|  | 668         fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | 
|  | 669         return | 
|  | 670 | 
|  | 671     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 672     applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 673 | 
|  | 674 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 675     """ | 
|  | 676     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 677     from two datasets. The data is supposed to, in both datasets: | 
|  | 678     - be related to the same reaction ID; | 
|  | 679     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 680       same sample or cell line. | 
|  | 681 | 
|  | 682     Args: | 
|  | 683         dataset1Data : data from the 1st dataset. | 
|  | 684         dataset2Data : data from the 2nd dataset. | 
|  | 685 | 
|  | 686     Returns: | 
|  | 687         tuple: (P-value, Z-score) | 
|  | 688             - P-value from the selected test on the provided data. | 
|  | 689             - Z-score of the difference between means of the two datasets. | 
|  | 690     """ | 
|  | 691     match ARGS.test: | 
|  | 692         case "ks": | 
|  | 693             # Perform Kolmogorov-Smirnov test | 
|  | 694             _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 695         case "ttest_p": | 
|  | 696             # Datasets should have same size | 
|  | 697             if len(dataset1Data) != len(dataset2Data): | 
|  | 698                 raise ValueError("Datasets must have the same size for paired t-test.") | 
|  | 699             # Perform t-test for paired samples | 
|  | 700             _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | 
|  | 701         case "ttest_ind": | 
|  | 702             # Perform t-test for independent samples | 
|  | 703             _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | 
|  | 704         case "wilcoxon": | 
|  | 705             # Datasets should have same size | 
|  | 706             if len(dataset1Data) != len(dataset2Data): | 
|  | 707                 raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") | 
|  | 708             # Perform Wilcoxon signed-rank test | 
|  | 709             np.random.seed(42) # Ensure reproducibility since zsplit method is used | 
|  | 710             _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method='zsplit') | 
|  | 711         case "mw": | 
|  | 712             # Perform Mann-Whitney U test | 
|  | 713             _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | 
|  | 714         case _: | 
|  | 715             p_value = np.nan # Default value if no valid test is selected | 
|  | 716 | 
|  | 717     # Calculate means and standard deviations | 
|  | 718     mean1 = np.mean(dataset1Data) | 
|  | 719     mean2 = np.mean(dataset2Data) | 
|  | 720     std1 = np.std(dataset1Data, ddof=1) | 
|  | 721     std2 = np.std(dataset2Data, ddof=1) | 
|  | 722 | 
|  | 723     n1 = len(dataset1Data) | 
|  | 724     n2 = len(dataset2Data) | 
|  | 725 | 
|  | 726     # Calculate Z-score | 
|  | 727     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 728 | 
|  | 729     return p_value, z_score | 
|  | 730 | 
|  | 731 | 
|  | 732 def DESeqPValue(comparisonResult :Dict[str, List[Union[float, FoldChange]]], dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> None: | 
|  | 733     """ | 
|  | 734     Computes the p-value for each reaction in the comparisonResult dictionary using DESeq2. | 
|  | 735 | 
|  | 736     Args: | 
|  | 737         comparisonResult : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 738         dataset1Data : data from the 1st dataset. | 
|  | 739         dataset2Data : data from the 2nd dataset. | 
|  | 740         ids : list of reaction IDs. | 
|  | 741 | 
|  | 742     Returns: | 
|  | 743         None : mutates the comparisonResult dictionary in place with the p-values. | 
|  | 744     """ | 
|  | 745 | 
|  | 746     # pyDESeq2 needs at least 2 replicates per sample so I check this | 
|  | 747     if len(dataset1Data[0]) < 2 or len(dataset2Data[0]) < 2: | 
|  | 748         raise ValueError("Datasets must have at least 2 replicates each") | 
|  | 749 | 
|  | 750     # pyDESeq2 is based on pandas, so we need to convert the data into a DataFrame and clean it from NaN values | 
|  | 751     dataframe1 = pd.DataFrame(dataset1Data, index=ids) | 
|  | 752     dataframe2 = pd.DataFrame(dataset2Data, index=ids) | 
|  | 753 | 
|  | 754     # pyDESeq2 requires datasets to be samples x reactions and integer values | 
|  | 755     dataframe1_clean = dataframe1.dropna(axis=0, how="any").T.astype(int) | 
|  | 756     dataframe2_clean = dataframe2.dropna(axis=0, how="any").T.astype(int) | 
|  | 757     dataframe1_clean.index = [f"ds1_rep{i+1}" for i in range(dataframe1_clean.shape[0])] | 
|  | 758     dataframe2_clean.index = [f"ds2_rep{j+1}" for j in range(dataframe2_clean.shape[0])] | 
|  | 759 | 
|  | 760     # pyDESeq2 works on a DataFrame with values and another with infos about how samples are split (like dataset class) | 
|  | 761     dataframe = pd.concat([dataframe1_clean, dataframe2_clean], axis=0) | 
|  | 762     metadata = pd.DataFrame({"dataset": (["dataset1"]*dataframe1_clean.shape[0] + ["dataset2"]*dataframe2_clean.shape[0])}, index=dataframe.index) | 
|  | 763 | 
|  | 764     # Ensure the index of the metadata matches the index of the dataframe | 
|  | 765     if not dataframe.index.equals(metadata.index): | 
|  | 766         raise ValueError("The index of the metadata DataFrame must match the index of the counts DataFrame.") | 
|  | 767 | 
|  | 768     # Prepare and run pyDESeq2 | 
|  | 769     inference = DefaultInference() | 
|  | 770     dds = DeseqDataSet(counts=dataframe, metadata=metadata, design="~dataset", inference=inference, quiet=True, low_memory=True) | 
|  | 771     dds.deseq2() | 
|  | 772     ds = DeseqStats(dds, contrast=["dataset", "dataset1", "dataset2"], inference=inference, quiet=True) | 
|  | 773     ds.summary() | 
|  | 774 | 
|  | 775     # Retrieve the p-values from the DESeq2 results | 
|  | 776     for reactId in ds.results_df.index: | 
|  | 777         comparisonResult[reactId][0] = ds.results_df["pvalue"][reactId] | 
|  | 778 | 
|  | 779 | 
|  | 780 # TODO: the net RPS computation should be done in the RPS module | 
|  | 781 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float, Dict[str, Tuple[np.ndarray, np.ndarray]]]: | 
|  | 782 | 
|  | 783     netRPS :Dict[str, Tuple[np.ndarray, np.ndarray]] = {} | 
|  | 784     comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} | 
|  | 785     count   = 0 | 
|  | 786     max_z_score = 0 | 
|  | 787 | 
|  | 788     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 789         reactId = ids[count] | 
|  | 790         count += 1 | 
|  | 791         if not reactId: continue | 
|  | 792 | 
|  | 793         try: #TODO: identify the source of these errors and minimize code in the try block | 
|  | 794             reactDir = ReactionDirection.fromReactionId(reactId) | 
|  | 795             # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | 
|  | 796             if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | 
|  | 797                 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | 
|  | 798                 except ValueError: continue # we look for the complementary id, if not found we skip | 
|  | 799 | 
|  | 800                 nets1 = np.subtract(l1, dataset1Data[position]) | 
|  | 801                 nets2 = np.subtract(l2, dataset2Data[position]) | 
|  | 802                 netRPS[reactId] = (nets1, nets2) | 
|  | 803 | 
|  | 804                 # Compute p-value and z-score for the RPS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 | 
|  | 805                 p_value, z_score = computePValue(nets1, nets2) | 
|  | 806                 avg1 = sum(nets1)   / len(nets1) | 
|  | 807                 avg2 = sum(nets2)   / len(nets2) | 
|  | 808                 net = fold_change(avg1, avg2) | 
|  | 809 | 
|  | 810                 if math.isnan(net): continue | 
|  | 811                 comparisonResult[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | 
|  | 812 | 
|  | 813                 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | 
|  | 814                 if ARGS.net: # If only using RPS, we cannot delete the inverse, as it's needed to color the arrows | 
|  | 815                     ids[position] = None | 
|  | 816                     continue | 
|  | 817 | 
|  | 818             # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | 
|  | 819             # Compute p-value and z-score for the RAS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 | 
|  | 820             p_value, z_score = computePValue(l1, l2) | 
|  | 821             avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | 
|  | 822             # vvv TODO: Check numpy version compatibility | 
|  | 823             if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
|  | 824             comparisonResult[reactId] = [float(p_value), avg, z_score, sum(l1) / len(l1), sum(l2) / len(l2)] | 
|  | 825 | 
|  | 826         except (TypeError, ZeroDivisionError): continue | 
|  | 827 | 
|  | 828     if ARGS.test == "DESeq": | 
|  | 829         # Compute p-values using DESeq2 | 
|  | 830         DESeqPValue(comparisonResult, dataset1Data, dataset2Data, ids) | 
|  | 831 | 
|  | 832     # Apply multiple testing correction if set by the user | 
|  | 833     if ARGS.adjusted: | 
|  | 834 | 
|  | 835         # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN | 
|  | 836         validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] | 
|  | 837         # Unpack the valid p-values | 
|  | 838         reactIds, pValues = zip(*validPValues) | 
|  | 839         # Adjust the p-values using the Benjamini-Hochberg method | 
|  | 840         adjustedPValues = st.false_discovery_control(pValues) | 
|  | 841         # Update the comparisonResult dictionary with the adjusted p-values | 
|  | 842         for reactId , adjustedPValue in zip(reactIds, adjustedPValues): | 
|  | 843             comparisonResult[reactId][0] = adjustedPValue | 
|  | 844 | 
|  | 845     return comparisonResult, max_z_score, netRPS | 
|  | 846 | 
|  | 847 def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> Tuple[List[Tuple[str, str, dict, float]], dict]: | 
|  | 848     """ | 
|  | 849     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 850     provided metabolic map. | 
|  | 851 | 
|  | 852     Args: | 
|  | 853         class_pat : the clustered data. | 
|  | 854         ids : ids for data association. | 
|  | 855         fromRAS : whether the data to enrich consists of RAS scores. | 
|  | 856 | 
|  | 857     Returns: | 
|  | 858         tuple: A tuple containing: | 
|  | 859         - List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary and max z-score. | 
|  | 860         - dict : net RPS values for each dataset's reactions | 
|  | 861 | 
|  | 862     Raises: | 
|  | 863         sys.exit : if there are less than 2 classes for comparison | 
|  | 864     """ | 
|  | 865     class_pat = {k.strip(): v for k, v in class_pat.items()} | 
|  | 866     if (not class_pat) or (len(class_pat.keys()) < 2): | 
|  | 867         sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 868 | 
|  | 869     # { datasetName : { reactId : netRPS, ... }, ... } | 
|  | 870     netRPSResults :Dict[str, Dict[str, np.ndarray]] = {} | 
|  | 871     enrichment_results = [] | 
|  | 872 | 
|  | 873     if ARGS.comparison == "manyvsmany": | 
|  | 874         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 875             comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
|  | 876             enrichment_results.append((i, j, comparisonDict, max_z_score)) | 
|  | 877             netRPSResults[i] = { reactId : net[0] for reactId, net in netRPS.items() } | 
|  | 878             netRPSResults[j] = { reactId : net[1] for reactId, net in netRPS.items() } | 
|  | 879 | 
|  | 880     elif ARGS.comparison == "onevsrest": | 
|  | 881         for single_cluster in class_pat.keys(): | 
|  | 882             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | 
|  | 883             comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
|  | 884             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | 
|  | 885             netRPSResults[single_cluster] = { reactId : net[0] for reactId, net in netRPS.items() } | 
|  | 886             netRPSResults["rest"]         = { reactId : net[1] for reactId, net in netRPS.items() } | 
|  | 887 | 
|  | 888     elif ARGS.comparison == "onevsmany": | 
|  | 889         controlItems = class_pat.get(ARGS.control) | 
|  | 890         for otherDataset in class_pat.keys(): | 
|  | 891             if otherDataset == ARGS.control: | 
|  | 892                 continue | 
|  | 893 | 
|  | 894             #comparisonDict, max_z_score, netRPS = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
|  | 895             comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) | 
|  | 896             #enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | 
|  | 897             enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) | 
|  | 898             netRPSResults[otherDataset] = { reactId : net[0] for reactId, net in netRPS.items() } | 
|  | 899             netRPSResults[ARGS.control] = { reactId : net[1] for reactId, net in netRPS.items() } | 
|  | 900 | 
|  | 901     return enrichment_results, netRPSResults | 
|  | 902 | 
|  | 903 def createOutputMaps(dataset1Name: str, dataset2Name: str, core_map: ET.ElementTree) -> None: | 
|  | 904     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | 
|  | 905     utils.writeSvg(svgFilePath, core_map) | 
|  | 906 | 
|  | 907     if ARGS.generate_pdf: | 
|  | 908         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | 
|  | 909         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | 
|  | 910         svg_to_png_with_background(svgFilePath, pngPath) | 
|  | 911         try: | 
|  | 912             image = Image.open(pngPath.show()) | 
|  | 913             image = image.convert("RGB") | 
|  | 914             image.save(pdfPath.show(), "PDF", resolution=100.0) | 
|  | 915             print(f'PDF file {pdfPath.filePath} successfully generated.') | 
|  | 916 | 
|  | 917         except Exception as e: | 
|  | 918             raise utils.DataErr(pdfPath.show(), f'Error generating PDF file: {e}') | 
|  | 919 | 
|  | 920     if not ARGS.generate_svg: | 
|  | 921         os.remove(svgFilePath.show()) | 
|  | 922 | 
|  | 923 ClassPat = Dict[str, List[List[float]]] | 
|  | 924 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat, Dict[str, List[str]]]: | 
|  | 925     columnNames :Dict[str, List[str]] = {} # { datasetName : [ columnName, ... ], ... } | 
|  | 926     class_pat :ClassPat = {} | 
|  | 927     if ARGS.option == 'datasets': | 
|  | 928         num = 1 | 
|  | 929         for path, name in zip(datasetsPaths, names): | 
|  | 930             name = str(name) | 
|  | 931             if name == 'Dataset': | 
|  | 932                 name += '_' + str(num) | 
|  | 933 | 
|  | 934             values, ids = getDatasetValues(path, name) | 
|  | 935             if values != None: | 
|  | 936                 class_pat[name]   = list(map(list, zip(*values.values()))) # TODO: ??? | 
|  | 937                 columnNames[name] = ["Reactions", *values.keys()] | 
|  | 938 | 
|  | 939             num += 1 | 
|  | 940 | 
|  | 941     elif ARGS.option == "dataset_class": | 
|  | 942         classes = read_dataset(classPath, "class") | 
|  | 943         classes = classes.astype(str) | 
|  | 944 | 
|  | 945         values, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
|  | 946         if values != None: | 
|  | 947             class_pat_with_samples_id = split_class(classes, values) | 
|  | 948 | 
|  | 949             for clas, values_and_samples_id in class_pat_with_samples_id.items(): | 
|  | 950                 class_pat[clas] = values_and_samples_id["values"] | 
|  | 951                 columnNames[clas] = ["Reactions", *values_and_samples_id["samples"]] | 
|  | 952 | 
|  | 953     return ids, class_pat, columnNames | 
|  | 954 | 
|  | 955 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 956     """ | 
|  | 957     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 958 | 
|  | 959     Args: | 
|  | 960         datasetPath : path to the dataset | 
|  | 961         datasetName (str): dataset name, used in error reporting | 
|  | 962 | 
|  | 963     Returns: | 
|  | 964         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 965     """ | 
|  | 966     dataset = read_dataset(datasetPath, datasetName) | 
|  | 967     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 968 | 
|  | 969     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 970     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 971 | 
|  | 972 ############################ MAIN ############################################# | 
|  | 973 def main(args:List[str] = None) -> None: | 
|  | 974     """ | 
|  | 975     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 976 | 
|  | 977     Returns: | 
|  | 978         None | 
|  | 979 | 
|  | 980     Raises: | 
|  | 981         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 982     """ | 
|  | 983     global ARGS | 
|  | 984     ARGS = process_args(args) | 
|  | 985 | 
|  | 986     # Create output folder | 
|  | 987     if not os.path.isdir(ARGS.output_path): | 
|  | 988         os.makedirs(ARGS.output_path, exist_ok=True) | 
|  | 989 | 
|  | 990     core_map: ET.ElementTree = ARGS.choice_map.getMap( | 
|  | 991         ARGS.tool_dir, | 
|  | 992         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
|  | 993 | 
|  | 994     # Prepare enrichment results containers | 
|  | 995     ras_results = [] | 
|  | 996     rps_results = [] | 
|  | 997 | 
|  | 998     # Compute RAS enrichment if requested | 
|  | 999     if ARGS.using_RAS: | 
|  | 1000         ids_ras, class_pat_ras, _ = getClassesAndIdsFromDatasets( | 
|  | 1001             ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | 
|  | 1002         ras_results, _ = computeEnrichment(class_pat_ras, ids_ras, fromRAS=True) | 
|  | 1003 | 
|  | 1004 | 
|  | 1005     # Compute RPS enrichment if requested | 
|  | 1006     if ARGS.using_RPS: | 
|  | 1007         ids_rps, class_pat_rps, columnNames = getClassesAndIdsFromDatasets( | 
|  | 1008             ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | 
|  | 1009 | 
|  | 1010         rps_results, netRPS = computeEnrichment(class_pat_rps, ids_rps, fromRAS=False) | 
|  | 1011 | 
|  | 1012     # Organize by comparison pairs | 
|  | 1013     comparisons: Dict[Tuple[str, str], Dict[str, Tuple]] = {} | 
|  | 1014     for i, j, comparison_data, max_z_score in ras_results: | 
|  | 1015         comparisons[(i, j)] = {'ras': (comparison_data, max_z_score), 'rps': None} | 
|  | 1016 | 
|  | 1017     for i, j, comparison_data, max_z_score,  in rps_results: | 
|  | 1018         comparisons.setdefault((i, j), {}).update({'rps': (comparison_data, max_z_score)}) | 
|  | 1019 | 
|  | 1020     # For each comparison, create a styled map with RAS bodies and RPS heads | 
|  | 1021     for (i, j), res in comparisons.items(): | 
|  | 1022         map_copy = copy.deepcopy(core_map) | 
|  | 1023 | 
|  | 1024         # Apply RAS styling to arrow bodies | 
|  | 1025         if res.get('ras'): | 
|  | 1026             tmp_ras, max_z_ras = res['ras'] | 
|  | 1027             temp_thingsInCommon(tmp_ras, map_copy, max_z_ras, i, j, ras_enrichment=True) | 
|  | 1028 | 
|  | 1029         # Apply RPS styling to arrow heads | 
|  | 1030         if res.get('rps'): | 
|  | 1031             tmp_rps, max_z_rps = res['rps'] | 
|  | 1032 | 
|  | 1033             temp_thingsInCommon(tmp_rps, map_copy, max_z_rps, i, j, ras_enrichment=False) | 
|  | 1034 | 
|  | 1035         # Output both SVG and PDF/PNG as configured | 
|  | 1036         createOutputMaps(i, j, map_copy) | 
|  | 1037 | 
|  | 1038     # Add net RPS output file | 
|  | 1039     if ARGS.net or not ARGS.using_RAS: | 
|  | 1040         for datasetName, rows in netRPS.items(): | 
|  | 1041             writeToCsv( | 
|  | 1042                 [[reactId, *netValues] for reactId, netValues in rows.items()], | 
|  | 1043                 columnNames.get(datasetName, ["Reactions"]), | 
|  | 1044                 utils.FilePath( | 
|  | 1045                     "Net_RPS_" + datasetName, | 
|  | 1046                     ext = utils.FileFormat.CSV, | 
|  | 1047                     prefix = ARGS.output_path)) | 
|  | 1048 | 
|  | 1049     print('Execution succeeded') | 
|  | 1050 ############################################################################### | 
|  | 1051 if __name__ == "__main__": | 
|  | 1052     main() |