comparison COBRAxy/custom_data_generator_beta.py @ 414:5086145cfb96 draft

Uploaded
author francesco_lapi
date Mon, 08 Sep 2025 21:54:14 +0000
parents 6b015d3184ab
children 919b5b71a61c
comparison
equal deleted inserted replaced
413:7a3ccf066b2c 414:5086145cfb96
70 70
71 except Exception as e: raise utils.DataErr(file_path, e.__str__()) 71 except Exception as e: raise utils.DataErr(file_path, e.__str__())
72 raise utils.DataErr(file_path, 72 raise utils.DataErr(file_path,
73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") 73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
74 74
75 75 ################################- DATA GENERATION -################################
76 ReactionId = str
77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
78 """
79 Generates a dictionary mapping reaction ids to rules from the model.
80
81 Args:
82 model : the model to derive data from.
83 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
84
85 Returns:
86 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
87 Dict[ReactionId, str] : the generated dictionary of raw rules.
88 """
89 # Is the below approach convoluted? yes
90 # Ok but is it inefficient? probably
91 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
92 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
93 ruleExtractor = (lambda reaction :
94 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
95
96 return {
97 reaction.id : ruleExtractor(reaction)
98 for reaction in model.reactions
99 if reaction.gene_reaction_rule }
100
101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
102 """
103 Generates a dictionary mapping reaction ids to reaction formulas from the model.
104
105 Args:
106 model : the model to derive data from.
107 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
108
109 Returns:
110 Dict[ReactionId, str] : the generated dictionary.
111 """
112
113 unparsedReactions = {
114 reaction.id : reaction.reaction
115 for reaction in model.reactions
116 if reaction.reaction
117 }
118
119 if not asParsed: return unparsedReactions
120
121 return reactionUtils.create_reaction_dict(unparsedReactions)
122
123 def get_medium(model:cobra.Model) -> pd.DataFrame:
124 trueMedium=[]
125 for r in model.reactions:
126 positiveCoeff=0
127 for m in r.metabolites:
128 if r.get_coefficient(m.id)>0:
129 positiveCoeff=1;
130 if (positiveCoeff==0 and r.lower_bound<0):
131 trueMedium.append(r.id)
132
133 df_medium = pd.DataFrame()
134 df_medium["reaction"] = trueMedium
135 return df_medium
136
137 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
138
139 rxns = []
140 for reaction in model.reactions:
141 rxns.append(reaction.id)
142
143 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
144
145 for reaction in model.reactions:
146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
147 return bounds
148
149
150
151 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
152 """
153 Generates a DataFrame containing compartment information for each reaction.
154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
155
156 Args:
157 model: the COBRA model to extract compartment data from.
158
159 Returns:
160 pd.DataFrame: DataFrame with ReactionID and compartment columns
161 """
162 pathway_data = []
163
164 # First pass: determine the maximum number of pathways any reaction has
165 max_pathways = 0
166 reaction_pathways = {}
167
168 for reaction in model.reactions:
169 # Get unique pathways from all metabolites in the reaction
170 if type(reaction.annotation['pathways']) == list:
171 reaction_pathways[reaction.id] = reaction.annotation['pathways']
172 max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
173 else:
174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
175
176 # Create column names for pathways
177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
178
179 # Second pass: create the data
180 for reaction_id, pathways in reaction_pathways.items():
181 row = {"ReactionID": reaction_id}
182
183 # Fill pathway columns
184 for i in range(max_pathways):
185 col_name = pathway_columns[i]
186 if i < len(pathways):
187 row[col_name] = pathways[i]
188 else:
189 row[col_name] = None # or "" if you prefer empty strings
190
191 pathway_data.append(row)
192
193 return pd.DataFrame(pathway_data)
76 194
77 195
78 ###############################- FILE SAVING -################################ 196 ###############################- FILE SAVING -################################
79 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: 197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
80 """ 198 """
176 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": 294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default":
177 295
178 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) 296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
179 297
180 # generate data 298 # generate data
181 rules = utils.generate_rules(model, asParsed = False) 299 rules = generate_rules(model, asParsed = False)
182 reactions = utils.generate_reactions(model, asParsed = False) 300 reactions = generate_reactions(model, asParsed = False)
183 bounds = utils.generate_bounds(model) 301 bounds = generate_bounds(model)
184 medium = utils.get_medium(model) 302 medium = get_medium(model)
185 if ARGS.name == "ENGRO2": 303 if ARGS.name == "ENGRO2":
186 compartments = utils.generate_compartments(model) 304 compartments = generate_compartments(model)
187 305
188 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) 306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
189 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) 307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
190 308
191 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) 309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})