changeset 540:7d5b35c715e8 draft

Uploaded
author francesco_lapi
date Sat, 25 Oct 2025 15:08:19 +0000
parents 2fb97466e404
children fa93040a75af
files COBRAxy/src/exportMetabolicModel.py COBRAxy/src/exportMetabolicModel.xml COBRAxy/src/importMetabolicModel.py COBRAxy/src/importMetabolicModel.xml COBRAxy/src/metabolicModel2Tabular.py COBRAxy/src/metabolicModel2Tabular.xml COBRAxy/src/tabular2MetabolicModel.py COBRAxy/src/tabular2MetabolicModel.xml COBRAxy/src/test/test_marea.py
diffstat 9 files changed, 706 insertions(+), 706 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/COBRAxy/src/exportMetabolicModel.py	Sat Oct 25 15:08:19 2025 +0000
@@ -0,0 +1,117 @@
+"""
+Convert a tabular (CSV/TSV/Tabular) description of a COBRA model into a COBRA file.
+
+Supported output formats: SBML, JSON, MATLAB (.mat), YAML.
+The script logs to a user-provided file for easier debugging in Galaxy.
+"""
+
+import os
+import cobra
+import argparse
+from typing import List
+import logging
+import utils.model_utils as modelUtils
+
+ARGS : argparse.Namespace
+def process_args(args: List[str] = None) -> argparse.Namespace:
+    """
+    Parse command-line arguments for the CSV-to-COBRA conversion tool.
+
+    Returns:
+        argparse.Namespace: Parsed arguments.
+    """
+    parser = argparse.ArgumentParser(
+    usage="%(prog)s [options]",
+    description="Convert a tabular/CSV file to a COBRA model"
+    )
+
+
+    parser.add_argument("--out_log", type=str, required=True,
+    help="Output log file")
+
+
+    parser.add_argument("--input", type=str, required=True,
+    help="Input tabular file (CSV/TSV)")
+
+
+    parser.add_argument("--format", type=str, required=True, choices=["sbml", "json", "mat", "yaml"],
+    help="Model format (SBML, JSON, MATLAB, YAML)")
+
+
+    parser.add_argument("--output", type=str, required=True,
+    help="Output model file path")
+
+    parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
+    help="Tool directory (passed from Galaxy as $__tool_directory__)")
+
+
+    return parser.parse_args(args)
+
+
+###############################- ENTRY POINT -################################
+
+def main(args: List[str] = None) -> None:
+    """
+    Entry point: parse arguments, build the COBRA model from a CSV/TSV file,
+    and save it in the requested format.
+
+    Returns:
+        None
+    """
+    global ARGS
+    ARGS = process_args(args)
+
+    # configure logging to the requested log file (overwrite each run)
+    logging.basicConfig(filename=ARGS.out_log,
+                        level=logging.DEBUG,
+                        format='%(asctime)s %(levelname)s: %(message)s',
+                        filemode='w')
+
+    logging.info('Starting fromCSVtoCOBRA tool')
+    logging.debug('Args: input=%s format=%s output=%s tool_dir=%s', ARGS.input, ARGS.format, ARGS.output, ARGS.tool_dir)
+
+    try:
+        # Basic sanity checks
+        if not os.path.exists(ARGS.input):
+            logging.error('Input file not found: %s', ARGS.input)
+
+        out_dir = os.path.dirname(os.path.abspath(ARGS.output))
+        
+        if out_dir and not os.path.isdir(out_dir):
+            try:
+                os.makedirs(out_dir, exist_ok=True)
+                logging.info('Created missing output directory: %s', out_dir)
+            except Exception as e:
+                logging.exception('Cannot create output directory: %s', out_dir)
+
+        model = modelUtils.build_cobra_model_from_csv(ARGS.input)
+        
+        
+        logging.info('Created model with name: %s (ID: %s)', model.name, model.id)
+
+        # Save model in requested format - Galaxy handles the filename
+        if ARGS.format == "sbml":
+            cobra.io.write_sbml_model(model, ARGS.output)
+        elif ARGS.format == "json":
+            cobra.io.save_json_model(model, ARGS.output)
+        elif ARGS.format == "mat":
+            cobra.io.save_matlab_model(model, ARGS.output)
+        elif ARGS.format == "yaml":
+            cobra.io.save_yaml_model(model, ARGS.output)
+        else:
+            logging.error('Unknown format requested: %s', ARGS.format)
+            raise ValueError(f"Unknown format: {ARGS.format}")
+
+
+        logging.info('Model successfully written to %s (format=%s)', ARGS.output, ARGS.format)
+        print(f"Model created successfully in {ARGS.format.upper()} format")
+
+    except Exception as e:
+        # Log full traceback to the out_log so Galaxy users/admins can see what happened
+        logging.exception('Unhandled exception in fromCSVtoCOBRA')
+        print(f"ERROR: {str(e)}")
+        raise
+
+
+if __name__ == '__main__':
+    main()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/COBRAxy/src/exportMetabolicModel.xml	Sat Oct 25 15:08:19 2025 +0000
@@ -0,0 +1,82 @@
+<tool id="exportMetabolicModel" name="Export Metabolic Model" version="1.0.0">
+    <description>Export a tabular model to file format (SBML, JSON, MAT or YAML)</description>
+
+    <!-- Python dependencies required for COBRApy -->
+    <requirements>
+        <requirement type="package" version="0.29.0">cobra</requirement>
+        <requirement type="package" version="1.24.4">numpy</requirement>
+        <requirement type="package" version="2.0.3">pandas</requirement>
+        <requirement type="package" version="5.2.2">lxml</requirement>
+    </requirements>
+
+    <!-- Import shared macros if available -->
+    <macros>
+        <import>marea_macros.xml</import>
+    </macros>
+
+    <!-- Command to run the Python script -->
+    <command detect_errors="exit_code"><![CDATA[
+        python $__tool_directory__/exportMetabolicModel.py
+            --tool_dir $__tool_directory__
+            --input $input 
+            --format $format
+            --output $output
+            --out_log $log
+    ]]></command>
+
+    <!-- Tool inputs -->
+    <inputs>
+        <param name="input" type="data" format="tabular,csv,tsv" label="Model tabular:"/>
+        <param name="model_name" type="text" value="Converted_Model" label="Output model name:" help="Name for the created COBRA model"/>
+        <param name="format" type="select" label="Output format">
+            <option value="sbml" selected="true">SBML (.xml)</option>
+            <option value="json">JSON (.json)</option>
+            <option value="mat">MATLAB (.mat)</option>
+            <option value="yaml">YAML (.yml)</option>
+        </param>
+    </inputs>
+
+    <!-- Tool outputs -->
+    <outputs>
+        <data name="log" format="txt" label="Tabular to Model Conversion - Log" />
+        <data name="output" format="xml" label="${model_name}.${format}">
+            <change_format>
+                <when input="format" value="sbml" format="xml"/>
+                <when input="format" value="json" format="json"/>
+                <when input="format" value="mat" format="mat"/>
+                <when input="format" value="yaml" format="yaml"/>
+            </change_format>
+        </data>
+    </outputs>
+
+    <!-- Help section -->
+    <help><![CDATA[
+This tool exports a tabular dataset into a standard metabolic model file formats using COBRApy.
+
+**Input**
+- A tabular/CSV/TSV file describing the metabolic properties of the model (reactions, metabolites, and genes), as generated by the Import Metabolic Model tool.
+
+The possible columns are:
+    - ReactionID: unique identifier of the reactions
+    - Formula: chemical equation showing the metabolites involved in the reaction and their stoichiometric coefficients.
+    - GPR: gene-protein-reaction association, expressed as a logical rule describing how genes contribute to catalyzing the reaction.
+    - lower bound: minimum allowable flux value for the reaction.
+    - upper bound: maximum allowable flux value for the reaction.
+    - Objective coefficient: coefficient used in the objective function (e.g., for pFBA or FVA analyses).
+    - Pathway_1,Pathway_2,etc.: possible pathways in which the reaction is involved.
+    - InMedium: TRUE if the reaction represents nutrient uptake from the medium, FALSE otherwise.
+
+Columns ReactionID and Formula are mandatory.
+
+**Output**
+- A COBRA model in the chosen format:  
+  - SBML (.xml)  
+  - JSON (.json)  
+  - MATLAB (.mat)  
+  - YAML (.yml)  
+
+**Notes**
+- The exact table structure (columns required) depends on how you want to encode reactions and metabolites.  
+- You can extend the Python script to parse specific column formats.  
+    ]]></help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/COBRAxy/src/importMetabolicModel.py	Sat Oct 25 15:08:19 2025 +0000
@@ -0,0 +1,349 @@
+"""
+Scripts to generate a tabular file of a metabolic model (built-in or custom).
+
+This script loads a COBRA model (built-in or custom), optionally applies
+medium and gene nomenclature settings, derives reaction-related metadata
+(GPR rules, formulas, bounds, objective coefficients, medium membership,
+and compartments for ENGRO2), and writes a tabular summary.
+"""
+
+import os
+import csv
+import cobra
+import argparse
+import pandas as pd
+import utils.general_utils as utils
+from typing import Optional, Tuple, List
+import utils.model_utils as modelUtils
+import logging
+from pathlib import Path
+
+
+ARGS : argparse.Namespace
+def process_args(args: List[str] = None) -> argparse.Namespace:
+    """
+    Parse command-line arguments.
+    """
+
+    parser = argparse.ArgumentParser(
+        usage="%(prog)s [options]",
+        description="Generate custom data from a given model"
+    )
+
+    parser.add_argument("--out_log", type=str, required=True,
+                        help="Output log file")
+
+    parser.add_argument("--model", type=str,
+                        help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
+    parser.add_argument("--input", type=str,
+                        help="Custom model file (JSON, XML, MAT, YAML)")
+    parser.add_argument("--name", nargs='*', required=True,
+                        help="Model name (default or custom)")
+    
+    parser.add_argument("--medium_selector", type=str, required=True,
+                        help="Medium selection option")
+
+    parser.add_argument("--gene_format", type=str, default="Default",
+                        help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
+    
+    parser.add_argument("--out_tabular", type=str,
+                        help="Output file for the merged dataset (CSV or XLSX)")
+    
+    parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
+                        help="Tool directory (passed from Galaxy as $__tool_directory__)")
+
+
+    return parser.parse_args(args)
+
+################################- INPUT DATA LOADING -################################
+def detect_file_format(file_path: str) -> utils.FileFormat:
+    """
+    Detect file format by examining file content and extension.
+    Handles Galaxy .dat files by looking at content.
+    """
+    try:
+        with open(file_path, 'r') as f:
+            first_lines = ''.join([f.readline() for _ in range(5)])
+        
+        # Check for XML (SBML)
+        if '<?xml' in first_lines or '<sbml' in first_lines:
+            return utils.FileFormat.XML
+        
+        # Check for JSON
+        if first_lines.strip().startswith('{'):
+            return utils.FileFormat.JSON
+            
+        # Check for YAML
+        if any(line.strip().endswith(':') for line in first_lines.split('\n')[:3]):
+            return utils.FileFormat.YML
+            
+    except:
+        pass
+    
+    # Fall back to extension-based detection
+    if file_path.endswith('.xml') or file_path.endswith('.sbml'):
+        return utils.FileFormat.XML
+    elif file_path.endswith('.json'):
+        return utils.FileFormat.JSON
+    elif file_path.endswith('.mat'):
+        return utils.FileFormat.MAT
+    elif file_path.endswith('.yml') or file_path.endswith('.yaml'):
+        return utils.FileFormat.YML
+    
+    # Default to XML for unknown extensions
+    return utils.FileFormat.XML
+
+def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
+    """
+    Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
+
+    Args:
+        file_path : The path to the file containing the custom model.
+        ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
+
+    Raises:
+        DataErr : if the file is in an invalid format or cannot be opened for whatever reason.    
+    
+    Returns:
+        cobra.Model : the model, if successfully opened.
+    """
+    ext = ext if ext else file_path.ext
+    try:
+        if ext is utils.FileFormat.XML:
+            return cobra.io.read_sbml_model(file_path.show())
+        
+        if ext is utils.FileFormat.JSON:
+            return cobra.io.load_json_model(file_path.show())
+
+        if ext is utils.FileFormat.MAT:
+            return cobra.io.load_matlab_model(file_path.show())
+
+        if ext is utils.FileFormat.YML:
+            return cobra.io.load_yaml_model(file_path.show())
+
+    except Exception as e: raise utils.DataErr(file_path, e.__str__())
+    raise utils.DataErr(
+        file_path,
+        f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
+    )
+
+
+###############################- FILE SAVING -################################
+def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
+    """
+    Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
+
+    Args:
+        data : the data to be written to the file.
+        file_path : the path to the .csv file.
+        fieldNames : the names of the fields (columns) in the .csv file.
+    
+    Returns:
+        None
+    """
+    with open(file_path.show(), 'w', newline='') as csvfile:
+        writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
+        writer.writeheader()
+
+        for key, value in data.items():
+            writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
+
+def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
+    """
+    Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
+
+    Args:
+        data : the data to be written to the file.
+        file_path : the path to the .csv file.
+        fieldNames : the names of the fields (columns) in the .csv file.
+    
+    Returns:
+        None
+    """
+    with open(file_path, 'w', newline='') as csvfile:
+        writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
+        writer.writeheader()
+
+        for key, value in data.items():
+            writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
+
+def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
+    """
+    Save a pandas DataFrame as a tab-separated file, creating directories as needed.
+
+    Args:
+        df: The DataFrame to write.
+        path: Destination file path (will be written as TSV).
+
+    Raises:
+        DataErr: If writing the output fails for any reason.
+
+    Returns:
+        None
+    """
+    try:
+        os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
+        df.to_csv(path, sep="\t", index=False)
+    except Exception as e:
+        raise utils.DataErr(path, f"failed writing tabular output: {e}")
+    
+def is_placeholder(gid) -> bool:
+    """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
+    if gid is None:
+        return True
+    s = str(gid).strip().lower()
+    return s in {"0", "", "na", "nan"}  # lowercase for simple matching
+
+def sample_valid_gene_ids(genes, limit=10):
+    """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
+    out = []
+    for g in genes:
+        gid = getattr(g, "id", getattr(g, "gene_id", g))
+        if not is_placeholder(gid):
+            out.append(str(gid))
+            if len(out) >= limit:
+                break
+    return out
+
+
+###############################- ENTRY POINT -################################
+def main(args:List[str] = None) -> None:
+    """
+    Initialize and generate custom data based on the frontend input arguments.
+    
+    Returns:
+        None
+    """
+    # Parse args from frontend (Galaxy XML)
+    global ARGS
+    ARGS = process_args(args)
+
+    # Convert name from list to string (handles names with spaces)
+    if isinstance(ARGS.name, list):
+        ARGS.name = ' '.join(ARGS.name)
+
+    if ARGS.input:
+        # Load a custom model from file with auto-detected format
+        detected_format = detect_file_format(ARGS.input)
+        model = load_custom_model(utils.FilePath.fromStrPath(ARGS.input), detected_format)
+    else:
+        # Load a built-in model
+        if not ARGS.model:
+            raise utils.ArgsErr("model", "either --model or --input must be provided", "None")
+
+        try:
+            model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2']
+        except KeyError:
+            raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
+
+        # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
+        try:
+            model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
+        except Exception as e:
+            # Wrap/normalize load errors as DataErr for consistency
+            raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
+
+    # Determine final model name: explicit --name overrides, otherwise use the model id
+    
+    if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
+        df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
+        #ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") medium.csv uses underscores now
+        medium = df_mediums[[ARGS.medium_selector]]
+        medium = medium[ARGS.medium_selector].to_dict()
+
+        # Reset all medium reactions lower bound to zero
+        for rxn_id, _ in model.medium.items():
+            model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
+        
+        # Apply selected medium uptake bounds (negative for uptake)
+        for reaction, value in medium.items():
+            if value is not None:
+                model.reactions.get_by_id(reaction).lower_bound = -float(value)
+
+    # Initialize translation_issues dictionary
+    translation_issues = {}
+    
+    if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
+        logging.basicConfig(level=logging.INFO)
+        logger = logging.getLogger(__name__)
+
+        model, translation_issues = modelUtils.translate_model_genes(
+            model=model,
+            mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
+            target_nomenclature=ARGS.gene_format,
+            source_nomenclature='HGNC_symbol',
+            logger=logger
+        )
+
+    if ARGS.input and ARGS.gene_format != "Default":
+        logging.basicConfig(level=logging.INFO)
+        logger = logging.getLogger(__name__)
+
+        # Take a small, clean sample of gene IDs (skipping placeholders like 0)
+        ids_sample = sample_valid_gene_ids(model.genes, limit=10)
+        if not ids_sample:
+            raise utils.DataErr(
+                "Custom_model",
+                "No valid gene IDs found (many may be placeholders like 0)."
+            )
+
+        # Detect source nomenclature on the sample
+        types = []
+        for gid in ids_sample:
+            try:
+                t = modelUtils.gene_type(gid, "Custom_model")
+            except Exception as e:
+                # Keep it simple: skip problematic IDs
+                logger.debug(f"gene_type failed for {gid}: {e}")
+                t = None
+            if t:
+                types.append(t)
+
+        if not types:
+            raise utils.DataErr(
+                "Custom_model",
+                "Could not detect a known gene nomenclature from the sample."
+            )
+
+        unique_types = set(types)
+        if len(unique_types) > 1:
+            raise utils.DataErr(
+                "Custom_model",
+                "Mixed or inconsistent gene nomenclatures detected. "
+                "Please unify them before converting."
+            )
+
+        source_nomenclature = types[0]
+
+        # Convert only if needed
+        if source_nomenclature != ARGS.gene_format:
+            model, translation_issues = modelUtils.translate_model_genes(
+                model=model,
+                mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
+                target_nomenclature=ARGS.gene_format,
+                source_nomenclature=source_nomenclature,
+                logger=logger
+            )
+
+    # generate data using unified function
+    if not ARGS.out_tabular:
+        raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
+    
+    merged = modelUtils.export_model_to_tabular(
+        model=model,
+        output_path=ARGS.out_tabular,
+        translation_issues=translation_issues,
+        include_objective=True,
+        save_function=save_as_tabular_df
+    )
+    expected = ARGS.out_tabular
+
+    # verify output exists and non-empty
+    if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
+        raise utils.DataErr(expected, "Output not created or empty")
+
+    print("Completed successfully")
+
+if __name__ == '__main__':
+
+    main()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/COBRAxy/src/importMetabolicModel.xml	Sat Oct 25 15:08:19 2025 +0000
@@ -0,0 +1,154 @@
+<tool id="importMetabolicModel" name="Import Metabolic Model" version="2.0.0">
+
+	<requirements>
+        <requirement type="package" version="1.24.4">numpy</requirement>
+        <requirement type="package" version="2.0.3">pandas</requirement>
+		<requirement type="package" version="0.29.0">cobra</requirement>
+        <requirement type="package" version="5.2.2">lxml</requirement>
+	</requirements>
+
+    <macros>
+        <import>marea_macros.xml</import>
+    </macros>
+
+    <command detect_errors="exit_code">
+        <![CDATA[
+      	python $__tool_directory__/importMetabolicModel.py
+        --tool_dir $__tool_directory__
+        --medium_selector $cond_model.cond_medium.medium_selector
+        #if $cond_model.model_selector == 'Custom_model'
+            --input $cond_model.input
+            --name $cond_model.input.element_identifier
+            --out_tabular $out_tabular_custom
+        #elif $cond_model.model_selector == 'ENGRO2'
+            --model $cond_model.model_selector
+            --name $cond_model.model_selector
+            --out_tabular $out_tabular_engro2
+        #else
+            --model $cond_model.model_selector
+            --name $cond_model.model_selector
+            --out_tabular $out_tabular_recon
+        #end if
+        --gene_format $cond_model.gene_format
+        --out_log $log
+        ]]>
+    </command>
+    <inputs>
+        <conditional name="cond_model">
+            <expand macro="options_model"/>
+            
+            <!-- ENGRO2 -->
+            <when value="ENGRO2">
+            
+                <conditional name="cond_medium">
+                    <expand macro="options_ras_to_bounds_medium"/>
+                </conditional>
+
+                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
+                    <option value="Default" selected="true">Keep original gene nomenclature (HGNC Symbol)</option>
+                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
+                    <option value="HGNC_ID">HGNC ID</option>
+                    <option value="entrez_id">Entrez Gene ID</option>
+                </param>
+            </when>
+
+            <!-- Recon -->
+            <when value="Recon">
+            
+                <conditional name="cond_medium">
+                    <param name="medium_selector" argument="--medium_selector" type="select" label="Medium">
+                        <option value="Default" selected="true">Default (Recon built-in medium)</option>
+                    </param>
+                    <when value="Default">
+                        <!-- Nessun parametro aggiuntivo necessario -->
+                    </when>
+                </conditional>
+                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
+                    <option value="Default" selected="true">Keep original gene nomenclature (HGNC Symbol)</option>
+                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
+                    <option value="HGNC_ID">HGNC ID</option>
+                    <option value="entrez_id">Entrez Gene ID</option>
+                </param>
+            </when>
+
+            <!-- Custom model -->
+            <when value="Custom_model">
+                <param name="input" argument="--input" type="data" format="json,xml,sbml" label="Custom model file:" />
+                <conditional name="cond_medium">
+                    <param name="medium_selector" argument="--medium_selector" type="select" label="Medium">
+                        <option value="Default" selected="true">Default (custom model medium)</option>
+                    </param>
+                    <when value="Default">
+                        <!-- Nessun parametro aggiuntivo necessario -->
+                    </when>
+                </conditional>
+                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
+                    <option value="Default" selected="true">Keep original gene nomenclature</option>
+                    <option value="HGNC_symbol">HGNC Symbol</option>
+                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
+                    <option value="HGNC_ID">HGNC ID</option>
+                    <option value="entrez_id">Entrez Gene ID</option>
+                </param>
+            </when>
+        </conditional>
+
+    </inputs>
+
+    <outputs>
+        <data name="log" format="txt" label="MetabolicModelSetting - Log" />
+        
+        <data name="out_tabular_engro2" format="tabular" label="ENGRO2_model_tabular">
+            <filter>cond_model['model_selector'] == 'ENGRO2'</filter>
+        </data>
+        
+        <data name="out_tabular_recon" format="tabular" label="Recon_model_tabular">
+            <filter>cond_model['model_selector'] == 'Recon'</filter>
+        </data>
+
+        <data name="out_tabular_custom" format="tabular" label="${cond_model.input.element_identifier}_model_tabular">
+            <filter>cond_model['model_selector'] == 'Custom_model'</filter>
+        </data>
+    </outputs>
+
+    <help>
+    <![CDATA[
+Overview
+-------------
+This tool generates a Tabular file (.tabular) containing the main information of the metabolic model, starting -either from a built-in model or a user-provided model file. 
+For built-in models, users can select among different nutrient-informed variants (i.e., different media composition) and gene nomenclature formats.
+
+The generated tabular file can be used as input for tools Expression2RAS, Expression2RPS, RAS2Bounds, Flux Simulation and Export Metabolic Model - within the COBRAxy suite.
+
+Input parameters:
+-------------
+
+The tool has three input parameters:
+    - Model: a file containing metabolic information (reactions, metabolites, genes). Ready-to-use models are ENGRO2 and Recon3D.
+    The user can also upload a custom model (see TIP 1).
+    - Medium: choose a growth medium typically used for cell culture (see TIP 2 & 3). 
+    - Gene nomenclature format: use the original GPR gene names or translate them into another nomenclature.
+
+Output files:
+-------------
+
+The tool generates:
+	- one tabular file (.tabular) containing reaction IDs, reaction formula, GPR rules, reaction bounds, objective function coefficients, pathways in which the reaction is involved and a flag indicating whether the reaction is an exchange reaction (i.e., related to the growth medium).
+    - a log file (.txt).
+
+**TIP 1**: Different input files can be used as the input model. The possible formats are XML (SBML), JSON, MAT or YAML (.yml). 
+    Supported compressed formats: .zip, .gz and .bz2. Filename must follow the pattern: {model_name}.{extension}.[zip|gz|bz2]
+    More detail can be found at https://cobrapy.readthedocs.io/en/latest/io.html
+
+**TIP 2**:  for pre-existing models ENGRO2 and RECON3D, the user can select the default built-in medium or one of the possible growth medium typically used for cell line cultures.
+In case no specific information is available, it is possible to set an "OPEN" medium in which all the nutrients are available in unlimited quantity.
+
+**TIP 3:** Medium composition can be derived from the tabular file. Exchange reactions with `InMedium = TRUE` are included. Nutrient values correspond to the lower bound (e.g., EX_Glc_D_e lower bound -10 → nutrient value 10).  
+More info: [COBRApy Media](https://cobrapy-cdiener.readthedocs.io/en/latest/media.html)
+
+    ]]>
+    </help>
+    <expand macro="citations" />
+
+</tool>
+
+
--- a/COBRAxy/src/metabolicModel2Tabular.py	Sat Oct 25 14:55:13 2025 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,349 +0,0 @@
-"""
-Scripts to generate a tabular file of a metabolic model (built-in or custom).
-
-This script loads a COBRA model (built-in or custom), optionally applies
-medium and gene nomenclature settings, derives reaction-related metadata
-(GPR rules, formulas, bounds, objective coefficients, medium membership,
-and compartments for ENGRO2), and writes a tabular summary.
-"""
-
-import os
-import csv
-import cobra
-import argparse
-import pandas as pd
-import utils.general_utils as utils
-from typing import Optional, Tuple, List
-import utils.model_utils as modelUtils
-import logging
-from pathlib import Path
-
-
-ARGS : argparse.Namespace
-def process_args(args: List[str] = None) -> argparse.Namespace:
-    """
-    Parse command-line arguments.
-    """
-
-    parser = argparse.ArgumentParser(
-        usage="%(prog)s [options]",
-        description="Generate custom data from a given model"
-    )
-
-    parser.add_argument("--out_log", type=str, required=True,
-                        help="Output log file")
-
-    parser.add_argument("--model", type=str,
-                        help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
-    parser.add_argument("--input", type=str,
-                        help="Custom model file (JSON, XML, MAT, YAML)")
-    parser.add_argument("--name", nargs='*', required=True,
-                        help="Model name (default or custom)")
-    
-    parser.add_argument("--medium_selector", type=str, required=True,
-                        help="Medium selection option")
-
-    parser.add_argument("--gene_format", type=str, default="Default",
-                        help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
-    
-    parser.add_argument("--out_tabular", type=str,
-                        help="Output file for the merged dataset (CSV or XLSX)")
-    
-    parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
-                        help="Tool directory (passed from Galaxy as $__tool_directory__)")
-
-
-    return parser.parse_args(args)
-
-################################- INPUT DATA LOADING -################################
-def detect_file_format(file_path: str) -> utils.FileFormat:
-    """
-    Detect file format by examining file content and extension.
-    Handles Galaxy .dat files by looking at content.
-    """
-    try:
-        with open(file_path, 'r') as f:
-            first_lines = ''.join([f.readline() for _ in range(5)])
-        
-        # Check for XML (SBML)
-        if '<?xml' in first_lines or '<sbml' in first_lines:
-            return utils.FileFormat.XML
-        
-        # Check for JSON
-        if first_lines.strip().startswith('{'):
-            return utils.FileFormat.JSON
-            
-        # Check for YAML
-        if any(line.strip().endswith(':') for line in first_lines.split('\n')[:3]):
-            return utils.FileFormat.YML
-            
-    except:
-        pass
-    
-    # Fall back to extension-based detection
-    if file_path.endswith('.xml') or file_path.endswith('.sbml'):
-        return utils.FileFormat.XML
-    elif file_path.endswith('.json'):
-        return utils.FileFormat.JSON
-    elif file_path.endswith('.mat'):
-        return utils.FileFormat.MAT
-    elif file_path.endswith('.yml') or file_path.endswith('.yaml'):
-        return utils.FileFormat.YML
-    
-    # Default to XML for unknown extensions
-    return utils.FileFormat.XML
-
-def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
-    """
-    Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
-
-    Args:
-        file_path : The path to the file containing the custom model.
-        ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
-
-    Raises:
-        DataErr : if the file is in an invalid format or cannot be opened for whatever reason.    
-    
-    Returns:
-        cobra.Model : the model, if successfully opened.
-    """
-    ext = ext if ext else file_path.ext
-    try:
-        if ext is utils.FileFormat.XML:
-            return cobra.io.read_sbml_model(file_path.show())
-        
-        if ext is utils.FileFormat.JSON:
-            return cobra.io.load_json_model(file_path.show())
-
-        if ext is utils.FileFormat.MAT:
-            return cobra.io.load_matlab_model(file_path.show())
-
-        if ext is utils.FileFormat.YML:
-            return cobra.io.load_yaml_model(file_path.show())
-
-    except Exception as e: raise utils.DataErr(file_path, e.__str__())
-    raise utils.DataErr(
-        file_path,
-        f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
-    )
-
-
-###############################- FILE SAVING -################################
-def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
-    """
-    Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
-
-    Args:
-        data : the data to be written to the file.
-        file_path : the path to the .csv file.
-        fieldNames : the names of the fields (columns) in the .csv file.
-    
-    Returns:
-        None
-    """
-    with open(file_path.show(), 'w', newline='') as csvfile:
-        writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
-        writer.writeheader()
-
-        for key, value in data.items():
-            writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
-
-def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
-    """
-    Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
-
-    Args:
-        data : the data to be written to the file.
-        file_path : the path to the .csv file.
-        fieldNames : the names of the fields (columns) in the .csv file.
-    
-    Returns:
-        None
-    """
-    with open(file_path, 'w', newline='') as csvfile:
-        writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
-        writer.writeheader()
-
-        for key, value in data.items():
-            writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
-
-def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
-    """
-    Save a pandas DataFrame as a tab-separated file, creating directories as needed.
-
-    Args:
-        df: The DataFrame to write.
-        path: Destination file path (will be written as TSV).
-
-    Raises:
-        DataErr: If writing the output fails for any reason.
-
-    Returns:
-        None
-    """
-    try:
-        os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
-        df.to_csv(path, sep="\t", index=False)
-    except Exception as e:
-        raise utils.DataErr(path, f"failed writing tabular output: {e}")
-    
-def is_placeholder(gid) -> bool:
-    """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
-    if gid is None:
-        return True
-    s = str(gid).strip().lower()
-    return s in {"0", "", "na", "nan"}  # lowercase for simple matching
-
-def sample_valid_gene_ids(genes, limit=10):
-    """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
-    out = []
-    for g in genes:
-        gid = getattr(g, "id", getattr(g, "gene_id", g))
-        if not is_placeholder(gid):
-            out.append(str(gid))
-            if len(out) >= limit:
-                break
-    return out
-
-
-###############################- ENTRY POINT -################################
-def main(args:List[str] = None) -> None:
-    """
-    Initialize and generate custom data based on the frontend input arguments.
-    
-    Returns:
-        None
-    """
-    # Parse args from frontend (Galaxy XML)
-    global ARGS
-    ARGS = process_args(args)
-
-    # Convert name from list to string (handles names with spaces)
-    if isinstance(ARGS.name, list):
-        ARGS.name = ' '.join(ARGS.name)
-
-    if ARGS.input:
-        # Load a custom model from file with auto-detected format
-        detected_format = detect_file_format(ARGS.input)
-        model = load_custom_model(utils.FilePath.fromStrPath(ARGS.input), detected_format)
-    else:
-        # Load a built-in model
-        if not ARGS.model:
-            raise utils.ArgsErr("model", "either --model or --input must be provided", "None")
-
-        try:
-            model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2']
-        except KeyError:
-            raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
-
-        # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
-        try:
-            model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
-        except Exception as e:
-            # Wrap/normalize load errors as DataErr for consistency
-            raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
-
-    # Determine final model name: explicit --name overrides, otherwise use the model id
-    
-    if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
-        df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
-        #ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") medium.csv uses underscores now
-        medium = df_mediums[[ARGS.medium_selector]]
-        medium = medium[ARGS.medium_selector].to_dict()
-
-        # Reset all medium reactions lower bound to zero
-        for rxn_id, _ in model.medium.items():
-            model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
-        
-        # Apply selected medium uptake bounds (negative for uptake)
-        for reaction, value in medium.items():
-            if value is not None:
-                model.reactions.get_by_id(reaction).lower_bound = -float(value)
-
-    # Initialize translation_issues dictionary
-    translation_issues = {}
-    
-    if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
-        logging.basicConfig(level=logging.INFO)
-        logger = logging.getLogger(__name__)
-
-        model, translation_issues = modelUtils.translate_model_genes(
-            model=model,
-            mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
-            target_nomenclature=ARGS.gene_format,
-            source_nomenclature='HGNC_symbol',
-            logger=logger
-        )
-
-    if ARGS.input and ARGS.gene_format != "Default":
-        logging.basicConfig(level=logging.INFO)
-        logger = logging.getLogger(__name__)
-
-        # Take a small, clean sample of gene IDs (skipping placeholders like 0)
-        ids_sample = sample_valid_gene_ids(model.genes, limit=10)
-        if not ids_sample:
-            raise utils.DataErr(
-                "Custom_model",
-                "No valid gene IDs found (many may be placeholders like 0)."
-            )
-
-        # Detect source nomenclature on the sample
-        types = []
-        for gid in ids_sample:
-            try:
-                t = modelUtils.gene_type(gid, "Custom_model")
-            except Exception as e:
-                # Keep it simple: skip problematic IDs
-                logger.debug(f"gene_type failed for {gid}: {e}")
-                t = None
-            if t:
-                types.append(t)
-
-        if not types:
-            raise utils.DataErr(
-                "Custom_model",
-                "Could not detect a known gene nomenclature from the sample."
-            )
-
-        unique_types = set(types)
-        if len(unique_types) > 1:
-            raise utils.DataErr(
-                "Custom_model",
-                "Mixed or inconsistent gene nomenclatures detected. "
-                "Please unify them before converting."
-            )
-
-        source_nomenclature = types[0]
-
-        # Convert only if needed
-        if source_nomenclature != ARGS.gene_format:
-            model, translation_issues = modelUtils.translate_model_genes(
-                model=model,
-                mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
-                target_nomenclature=ARGS.gene_format,
-                source_nomenclature=source_nomenclature,
-                logger=logger
-            )
-
-    # generate data using unified function
-    if not ARGS.out_tabular:
-        raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
-    
-    merged = modelUtils.export_model_to_tabular(
-        model=model,
-        output_path=ARGS.out_tabular,
-        translation_issues=translation_issues,
-        include_objective=True,
-        save_function=save_as_tabular_df
-    )
-    expected = ARGS.out_tabular
-
-    # verify output exists and non-empty
-    if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
-        raise utils.DataErr(expected, "Output not created or empty")
-
-    print("Completed successfully")
-
-if __name__ == '__main__':
-
-    main()
--- a/COBRAxy/src/metabolicModel2Tabular.xml	Sat Oct 25 14:55:13 2025 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,154 +0,0 @@
-<tool id="metabolicModel2Tabular" name="Import Metabolic Model" version="2.0.0">
-
-	<requirements>
-        <requirement type="package" version="1.24.4">numpy</requirement>
-        <requirement type="package" version="2.0.3">pandas</requirement>
-		<requirement type="package" version="0.29.0">cobra</requirement>
-        <requirement type="package" version="5.2.2">lxml</requirement>
-	</requirements>
-
-    <macros>
-        <import>marea_macros.xml</import>
-    </macros>
-
-    <command detect_errors="exit_code">
-        <![CDATA[
-      	python $__tool_directory__/metabolicModel2Tabular.py
-        --tool_dir $__tool_directory__
-        --medium_selector $cond_model.cond_medium.medium_selector
-        #if $cond_model.model_selector == 'Custom_model'
-            --input $cond_model.input
-            --name $cond_model.input.element_identifier
-            --out_tabular $out_tabular_custom
-        #elif $cond_model.model_selector == 'ENGRO2'
-            --model $cond_model.model_selector
-            --name $cond_model.model_selector
-            --out_tabular $out_tabular_engro2
-        #else
-            --model $cond_model.model_selector
-            --name $cond_model.model_selector
-            --out_tabular $out_tabular_recon
-        #end if
-        --gene_format $cond_model.gene_format
-        --out_log $log
-        ]]>
-    </command>
-    <inputs>
-        <conditional name="cond_model">
-            <expand macro="options_model"/>
-            
-            <!-- ENGRO2 -->
-            <when value="ENGRO2">
-            
-                <conditional name="cond_medium">
-                    <expand macro="options_ras_to_bounds_medium"/>
-                </conditional>
-
-                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
-                    <option value="Default" selected="true">Keep original gene nomenclature (HGNC Symbol)</option>
-                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
-                    <option value="HGNC_ID">HGNC ID</option>
-                    <option value="entrez_id">Entrez Gene ID</option>
-                </param>
-            </when>
-
-            <!-- Recon -->
-            <when value="Recon">
-            
-                <conditional name="cond_medium">
-                    <param name="medium_selector" argument="--medium_selector" type="select" label="Medium">
-                        <option value="Default" selected="true">Default (Recon built-in medium)</option>
-                    </param>
-                    <when value="Default">
-                        <!-- Nessun parametro aggiuntivo necessario -->
-                    </when>
-                </conditional>
-                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
-                    <option value="Default" selected="true">Keep original gene nomenclature (HGNC Symbol)</option>
-                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
-                    <option value="HGNC_ID">HGNC ID</option>
-                    <option value="entrez_id">Entrez Gene ID</option>
-                </param>
-            </when>
-
-            <!-- Custom model -->
-            <when value="Custom_model">
-                <param name="input" argument="--input" type="data" format="json,xml,sbml" label="Custom model file:" />
-                <conditional name="cond_medium">
-                    <param name="medium_selector" argument="--medium_selector" type="select" label="Medium">
-                        <option value="Default" selected="true">Default (custom model medium)</option>
-                    </param>
-                    <when value="Default">
-                        <!-- Nessun parametro aggiuntivo necessario -->
-                    </when>
-                </conditional>
-                <param name="gene_format" argument="--gene_format" type="select" label="Gene nomenclature format:">
-                    <option value="Default" selected="true">Keep original gene nomenclature</option>
-                    <option value="HGNC_symbol">HGNC Symbol</option>
-                    <option value="ENSG">ENSG (Ensembl Gene ID)</option>
-                    <option value="HGNC_ID">HGNC ID</option>
-                    <option value="entrez_id">Entrez Gene ID</option>
-                </param>
-            </when>
-        </conditional>
-
-    </inputs>
-
-    <outputs>
-        <data name="log" format="txt" label="MetabolicModelSetting - Log" />
-        
-        <data name="out_tabular_engro2" format="tabular" label="ENGRO2_model_tabular">
-            <filter>cond_model['model_selector'] == 'ENGRO2'</filter>
-        </data>
-        
-        <data name="out_tabular_recon" format="tabular" label="Recon_model_tabular">
-            <filter>cond_model['model_selector'] == 'Recon'</filter>
-        </data>
-
-        <data name="out_tabular_custom" format="tabular" label="${cond_model.input.element_identifier}_model_tabular">
-            <filter>cond_model['model_selector'] == 'Custom_model'</filter>
-        </data>
-    </outputs>
-
-    <help>
-    <![CDATA[
-Overview
--------------
-This tool generates a Tabular file (.tabular) containing the main information of the metabolic model, starting -either from a built-in model or a user-provided model file. 
-For built-in models, users can select among different nutrient-informed variants (i.e., different media composition) and gene nomenclature formats.
-
-The generated tabular file can be used as input for tools Expression2RAS, Expression2RPS, RAS2Bounds, Flux Simulation and Export Metabolic Model - within the COBRAxy suite.
-
-Input parameters:
--------------
-
-The tool has three input parameters:
-    - Model: a file containing metabolic information (reactions, metabolites, genes). Ready-to-use models are ENGRO2 and Recon3D.
-    The user can also upload a custom model (see TIP 1).
-    - Medium: choose a growth medium typically used for cell culture (see TIP 2 & 3). 
-    - Gene nomenclature format: use the original GPR gene names or translate them into another nomenclature.
-
-Output files:
--------------
-
-The tool generates:
-	- one tabular file (.tabular) containing reaction IDs, reaction formula, GPR rules, reaction bounds, objective function coefficients, pathways in which the reaction is involved and a flag indicating whether the reaction is an exchange reaction (i.e., related to the growth medium).
-    - a log file (.txt).
-
-**TIP 1**: Different input files can be used as the input model. The possible formats are XML (SBML), JSON, MAT or YAML (.yml). 
-    Supported compressed formats: .zip, .gz and .bz2. Filename must follow the pattern: {model_name}.{extension}.[zip|gz|bz2]
-    More detail can be found at https://cobrapy.readthedocs.io/en/latest/io.html
-
-**TIP 2**:  for pre-existing models ENGRO2 and RECON3D, the user can select the default built-in medium or one of the possible growth medium typically used for cell line cultures.
-In case no specific information is available, it is possible to set an "OPEN" medium in which all the nutrients are available in unlimited quantity.
-
-**TIP 3:** Medium composition can be derived from the tabular file. Exchange reactions with `InMedium = TRUE` are included. Nutrient values correspond to the lower bound (e.g., EX_Glc_D_e lower bound -10 → nutrient value 10).  
-More info: [COBRApy Media](https://cobrapy-cdiener.readthedocs.io/en/latest/media.html)
-
-    ]]>
-    </help>
-    <expand macro="citations" />
-
-</tool>
-
-
--- a/COBRAxy/src/tabular2MetabolicModel.py	Sat Oct 25 14:55:13 2025 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,117 +0,0 @@
-"""
-Convert a tabular (CSV/TSV/Tabular) description of a COBRA model into a COBRA file.
-
-Supported output formats: SBML, JSON, MATLAB (.mat), YAML.
-The script logs to a user-provided file for easier debugging in Galaxy.
-"""
-
-import os
-import cobra
-import argparse
-from typing import List
-import logging
-import utils.model_utils as modelUtils
-
-ARGS : argparse.Namespace
-def process_args(args: List[str] = None) -> argparse.Namespace:
-    """
-    Parse command-line arguments for the CSV-to-COBRA conversion tool.
-
-    Returns:
-        argparse.Namespace: Parsed arguments.
-    """
-    parser = argparse.ArgumentParser(
-    usage="%(prog)s [options]",
-    description="Convert a tabular/CSV file to a COBRA model"
-    )
-
-
-    parser.add_argument("--out_log", type=str, required=True,
-    help="Output log file")
-
-
-    parser.add_argument("--input", type=str, required=True,
-    help="Input tabular file (CSV/TSV)")
-
-
-    parser.add_argument("--format", type=str, required=True, choices=["sbml", "json", "mat", "yaml"],
-    help="Model format (SBML, JSON, MATLAB, YAML)")
-
-
-    parser.add_argument("--output", type=str, required=True,
-    help="Output model file path")
-
-    parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
-    help="Tool directory (passed from Galaxy as $__tool_directory__)")
-
-
-    return parser.parse_args(args)
-
-
-###############################- ENTRY POINT -################################
-
-def main(args: List[str] = None) -> None:
-    """
-    Entry point: parse arguments, build the COBRA model from a CSV/TSV file,
-    and save it in the requested format.
-
-    Returns:
-        None
-    """
-    global ARGS
-    ARGS = process_args(args)
-
-    # configure logging to the requested log file (overwrite each run)
-    logging.basicConfig(filename=ARGS.out_log,
-                        level=logging.DEBUG,
-                        format='%(asctime)s %(levelname)s: %(message)s',
-                        filemode='w')
-
-    logging.info('Starting fromCSVtoCOBRA tool')
-    logging.debug('Args: input=%s format=%s output=%s tool_dir=%s', ARGS.input, ARGS.format, ARGS.output, ARGS.tool_dir)
-
-    try:
-        # Basic sanity checks
-        if not os.path.exists(ARGS.input):
-            logging.error('Input file not found: %s', ARGS.input)
-
-        out_dir = os.path.dirname(os.path.abspath(ARGS.output))
-        
-        if out_dir and not os.path.isdir(out_dir):
-            try:
-                os.makedirs(out_dir, exist_ok=True)
-                logging.info('Created missing output directory: %s', out_dir)
-            except Exception as e:
-                logging.exception('Cannot create output directory: %s', out_dir)
-
-        model = modelUtils.build_cobra_model_from_csv(ARGS.input)
-        
-        
-        logging.info('Created model with name: %s (ID: %s)', model.name, model.id)
-
-        # Save model in requested format - Galaxy handles the filename
-        if ARGS.format == "sbml":
-            cobra.io.write_sbml_model(model, ARGS.output)
-        elif ARGS.format == "json":
-            cobra.io.save_json_model(model, ARGS.output)
-        elif ARGS.format == "mat":
-            cobra.io.save_matlab_model(model, ARGS.output)
-        elif ARGS.format == "yaml":
-            cobra.io.save_yaml_model(model, ARGS.output)
-        else:
-            logging.error('Unknown format requested: %s', ARGS.format)
-            raise ValueError(f"Unknown format: {ARGS.format}")
-
-
-        logging.info('Model successfully written to %s (format=%s)', ARGS.output, ARGS.format)
-        print(f"Model created successfully in {ARGS.format.upper()} format")
-
-    except Exception as e:
-        # Log full traceback to the out_log so Galaxy users/admins can see what happened
-        logging.exception('Unhandled exception in fromCSVtoCOBRA')
-        print(f"ERROR: {str(e)}")
-        raise
-
-
-if __name__ == '__main__':
-    main()
--- a/COBRAxy/src/tabular2MetabolicModel.xml	Sat Oct 25 14:55:13 2025 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,82 +0,0 @@
-<tool id="tabular2MetabolicModel" name="Export Metabolic Model" version="1.0.0">
-    <description>Export a tabular model to file format (SBML, JSON, MAT or YAML)</description>
-
-    <!-- Python dependencies required for COBRApy -->
-    <requirements>
-        <requirement type="package" version="0.29.0">cobra</requirement>
-        <requirement type="package" version="1.24.4">numpy</requirement>
-        <requirement type="package" version="2.0.3">pandas</requirement>
-        <requirement type="package" version="5.2.2">lxml</requirement>
-    </requirements>
-
-    <!-- Import shared macros if available -->
-    <macros>
-        <import>marea_macros.xml</import>
-    </macros>
-
-    <!-- Command to run the Python script -->
-    <command detect_errors="exit_code"><![CDATA[
-        python $__tool_directory__/tabular2MetabolicModel.py
-            --tool_dir $__tool_directory__
-            --input $input 
-            --format $format
-            --output $output
-            --out_log $log
-    ]]></command>
-
-    <!-- Tool inputs -->
-    <inputs>
-        <param name="input" type="data" format="tabular,csv,tsv" label="Model tabular:"/>
-        <param name="model_name" type="text" value="Converted_Model" label="Output model name:" help="Name for the created COBRA model"/>
-        <param name="format" type="select" label="Output format">
-            <option value="sbml" selected="true">SBML (.xml)</option>
-            <option value="json">JSON (.json)</option>
-            <option value="mat">MATLAB (.mat)</option>
-            <option value="yaml">YAML (.yml)</option>
-        </param>
-    </inputs>
-
-    <!-- Tool outputs -->
-    <outputs>
-        <data name="log" format="txt" label="Tabular to Model Conversion - Log" />
-        <data name="output" format="xml" label="${model_name}.${format}">
-            <change_format>
-                <when input="format" value="sbml" format="xml"/>
-                <when input="format" value="json" format="json"/>
-                <when input="format" value="mat" format="mat"/>
-                <when input="format" value="yaml" format="yaml"/>
-            </change_format>
-        </data>
-    </outputs>
-
-    <!-- Help section -->
-    <help><![CDATA[
-This tool exports a tabular dataset into a standard metabolic model file formats using COBRApy.
-
-**Input**
-- A tabular/CSV/TSV file describing the metabolic properties of the model (reactions, metabolites, and genes), as generated by the Import Metabolic Model tool.
-
-The possible columns are:
-    - ReactionID: unique identifier of the reactions
-    - Formula: chemical equation showing the metabolites involved in the reaction and their stoichiometric coefficients.
-    - GPR: gene-protein-reaction association, expressed as a logical rule describing how genes contribute to catalyzing the reaction.
-    - lower bound: minimum allowable flux value for the reaction.
-    - upper bound: maximum allowable flux value for the reaction.
-    - Objective coefficient: coefficient used in the objective function (e.g., for pFBA or FVA analyses).
-    - Pathway_1,Pathway_2,etc.: possible pathways in which the reaction is involved.
-    - InMedium: TRUE if the reaction represents nutrient uptake from the medium, FALSE otherwise.
-
-Columns ReactionID and Formula are mandatory.
-
-**Output**
-- A COBRA model in the chosen format:  
-  - SBML (.xml)  
-  - JSON (.json)  
-  - MATLAB (.mat)  
-  - YAML (.yml)  
-
-**Notes**
-- The exact table structure (columns required) depends on how you want to encode reactions and metabolites.  
-- You can extend the Python script to parse specific column formats.  
-    ]]></help>
-</tool>
--- a/COBRAxy/src/test/test_marea.py	Sat Oct 25 14:55:13 2025 +0000
+++ b/COBRAxy/src/test/test_marea.py	Sat Oct 25 15:08:19 2025 +0000
@@ -147,16 +147,16 @@
     
     def test_tabular_to_model(self):
         """Test tabular to model conversion"""
-        import tabular2MetabolicModel
+        import COBRAxy.src.exportMetabolicModel as exportMetabolicModel
         
-        args = tabular2MetabolicModel.process_args([])
+        args = exportMetabolicModel.process_args([])
         assert hasattr(args, 'tool_dir')
     
     def test_model_to_tabular(self):
         """Test model to tabular conversion"""
-        import metabolicModel2Tabular
+        import COBRAxy.src.importMetabolicModel as importMetabolicModel
         
-        args = metabolicModel2Tabular.process_args([])
+        args = importMetabolicModel.process_args([])
         assert hasattr(args, 'tool_dir')