|
0
|
1 # -*- coding: utf-8 -*-
|
|
|
2 """
|
|
|
3 Created on Wed Sep 4 18:41:42 2013
|
|
|
4
|
|
|
5 @author: chmaramis
|
|
|
6 """
|
|
|
7
|
|
|
8 from __future__ import division
|
|
|
9 import string as strpy
|
|
|
10 import numpy as np
|
|
|
11 from pandas import *
|
|
|
12 from numpy import nan as NA
|
|
|
13 import time
|
|
|
14 import sys
|
|
|
15
|
|
|
16
|
|
|
17 def filter_condition_AAjunction(x):
|
|
|
18 x= x.strip()
|
|
|
19 if ' ' in x:
|
|
|
20 return x.split(' ')[0]
|
|
|
21 else:
|
|
|
22 return x
|
|
|
23
|
|
|
24 #-----------frame creation---------------------
|
|
|
25 def filtering(inp,cells,psorf,con,prod,CF,Vper,Vgene,laa1,laa2,conaa,Jgene,Dgene,fname):
|
|
|
26
|
|
|
27 try:
|
|
|
28 path=inp
|
|
|
29 frame = DataFrame()
|
|
|
30 seqlen = []
|
|
|
31 head = []
|
|
|
32 tp = read_csv(path, iterator=True, chunksize=5000,sep='\t', index_col=0 )
|
|
|
33 frame = concat([chunk for chunk in tp])
|
|
|
34
|
|
|
35 frcol = list(frame.columns)
|
|
|
36 #print frcol[-1]
|
|
|
37 if 'Unnamed' in frcol[-1]:
|
|
|
38 del frcol[-1]
|
|
|
39 frame=frame[frcol]
|
|
|
40
|
|
|
41 frame.index = range(1,len(frame)+1)
|
|
|
42
|
|
|
43 head.append('Total reads of raw data')
|
|
|
44 seqlen.append(len(frame))
|
|
|
45
|
|
|
46 #------------drop nulls--------------------
|
|
|
47 filtered = DataFrame()
|
|
|
48 filtall = DataFrame()
|
|
|
49 summ_df = DataFrame()
|
|
|
50 filtered = frame[isnull(frame['AA JUNCTION']) | isnull(frame['V-GENE and allele'])]
|
|
|
51
|
|
|
52 filtall = filtall.append(filtered)
|
|
|
53 if len(filtall) > 0:
|
|
|
54 filtall.loc[filtered.index,'Reason'] = "NoResults"
|
|
|
55 frame = frame[frame['AA JUNCTION'].notnull()]
|
|
|
56 frame = frame[frame['V-GENE and allele'].notnull()]
|
|
|
57
|
|
|
58 head.append('Not Null CDR3/V')
|
|
|
59 head.append('filter out')
|
|
|
60 seqlen.append(len(frame))
|
|
|
61 seqlen.append(len(filtered))
|
|
|
62 filtered = DataFrame()
|
|
|
63
|
|
|
64 if psorf.startswith('y') or psorf.startswith('Y'):
|
|
|
65
|
|
|
66 cc0=np.array(frame['V-GENE and allele'].unique())
|
|
|
67
|
|
|
68
|
|
|
69 for x in cc0:
|
|
|
70 x1=x.split('*')
|
|
|
71 try:
|
|
|
72 if (x1[1].find('P')>-1) or (x1[1].find('ORF')>-1):
|
|
|
73 filtered = filtered.append(frame[frame['V-GENE and allele'] == x])
|
|
|
74 frame['V-GENE and allele']=frame['V-GENE and allele'].replace(x,NA)
|
|
|
75 elif x.find('or')>-1:
|
|
|
76 posa=x.count('or')
|
|
|
77 x2=x.split('or')
|
|
|
78 x4=''
|
|
|
79 genelist=[]
|
|
|
80 for cnt in range(0, posa+1):
|
|
|
81 x3=x2[cnt].split('*')
|
|
|
82 x3[0]=x3[0].strip()#kobei ta space
|
|
|
83 k=x3[0].split(' ')# holds only TRBV
|
|
|
84 if cnt==0:
|
|
|
85 genelist.append(k[1])
|
|
|
86 x4+=k[1]
|
|
|
87 elif ((str(k[1]) in genelist) == False) & (x3[1].find('P')==-1):# check for P in x3
|
|
|
88 genelist.append(k[1])
|
|
|
89 x4+=' or '
|
|
|
90 x4+=k[1]
|
|
|
91 x3=None
|
|
|
92 k1=None
|
|
|
93 genelist=None
|
|
|
94
|
|
|
95 frame['V-GENE and allele']=frame['V-GENE and allele'].replace(x,x4)
|
|
|
96
|
|
|
97 else:
|
|
|
98 s=x1[0].split(' ')
|
|
|
99 frame['V-GENE and allele']=frame['V-GENE and allele'].replace(x,s[1])
|
|
|
100 except IndexError as e:
|
|
|
101 print('V-gene is already been formed')
|
|
|
102 continue
|
|
|
103
|
|
|
104 x=None
|
|
|
105 x1=None
|
|
|
106 s=None
|
|
|
107
|
|
|
108 filtall = filtall.append(filtered)
|
|
|
109 if len(filtall) > 0:
|
|
|
110 filtall.loc[filtered.index,'Reason'] = 'P or ORF'
|
|
|
111 frame = frame[frame['V-GENE and allele'].notnull()]
|
|
|
112
|
|
|
113 head.append('Functional TRBV')
|
|
|
114 head.append('filter out')
|
|
|
115 seqlen.append(len(frame))
|
|
|
116 seqlen.append(len(filtered))
|
|
|
117 filtered = DataFrame()
|
|
|
118
|
|
|
119
|
|
|
120
|
|
|
121 #------------FILTERING for data quality--------------------
|
|
|
122 if con.startswith('y') or con.startswith('Y'):
|
|
|
123 filtered = frame [frame['AA JUNCTION'].str.contains('X') |
|
|
|
124 frame['AA JUNCTION'].str.contains('#') |
|
|
|
125 frame['AA JUNCTION'].str.contains('[*]')]
|
|
|
126
|
|
|
127
|
|
|
128
|
|
|
129 frame = frame [~frame['AA JUNCTION'].str.contains('X') &
|
|
|
130 ~frame['AA JUNCTION'].str.contains('#') &
|
|
|
131 ~frame['AA JUNCTION'].str.contains('[*]') ]
|
|
|
132
|
|
|
133
|
|
|
134 filtall = filtall.append(filtered)
|
|
|
135 if len(filtall) > 0:
|
|
|
136 filtall.loc[filtered.index,'Reason'] = 'X,#,*'
|
|
|
137 head.append('Not Containing X,#,*')
|
|
|
138 head.append('filter out')
|
|
|
139 seqlen.append(len(frame))
|
|
|
140 seqlen.append(len(filtered))
|
|
|
141 filtered = DataFrame()
|
|
|
142
|
|
|
143 # Set label of functionality column, taking into account current & past IMGT Summary column label
|
|
|
144 functionality_label = 'Functionality'
|
|
|
145 if 'V-DOMAIN Functionality' in frame.columns:
|
|
|
146 functionality_label = 'V-DOMAIN Functionality'
|
|
|
147
|
|
|
148 if prod.startswith('y') or prod.startswith('Y'):
|
|
|
149 filtered = frame[~frame[functionality_label].str.startswith('productive')]
|
|
|
150 filtall = filtall.append(filtered)
|
|
|
151 if len(filtall) > 0:
|
|
|
152 filtall.loc[filtered.index,'Reason'] = 'not productive'
|
|
|
153
|
|
|
154
|
|
|
155 frame=frame[frame[functionality_label].str.startswith('productive')]
|
|
|
156
|
|
|
157 head.append('Productive')
|
|
|
158 head.append('filter out')
|
|
|
159 seqlen.append(len(frame))
|
|
|
160
|
|
|
161 seqlen.append(len(filtered))
|
|
|
162
|
|
|
163
|
|
|
164 frame['AA JUNCTION'] = frame['AA JUNCTION'].map(filter_condition_AAjunction)
|
|
|
165
|
|
|
166 if CF.startswith('y') or CF.startswith('Y'):
|
|
|
167 if cells == 'TCR':
|
|
|
168 filtered = DataFrame()
|
|
|
169 filtered = frame[~frame['AA JUNCTION'].str.startswith('C') |
|
|
|
170 ~frame['AA JUNCTION'].str.endswith('F')]
|
|
|
171
|
|
|
172 filtall = filtall.append(filtered)
|
|
|
173 if len(filtall) > 0:
|
|
|
174 filtall.loc[filtered.index,'Reason'] = 'Not C..F'
|
|
|
175
|
|
|
176 frame = frame[frame['AA JUNCTION'].str.startswith('C') &
|
|
|
177 frame['AA JUNCTION'].str.endswith('F')]
|
|
|
178
|
|
|
179 head.append('CDR3 landmarks C-F')
|
|
|
180 head.append('filter out')
|
|
|
181 seqlen.append(len(frame))
|
|
|
182 seqlen.append(len(filtered))
|
|
|
183 filtered = DataFrame()
|
|
|
184 elif cells == 'BCR':
|
|
|
185 filtered = DataFrame()
|
|
|
186 filtered = frame[~frame['AA JUNCTION'].str.startswith('C') |
|
|
|
187 ~frame['AA JUNCTION'].str.endswith('W')]
|
|
|
188
|
|
|
189 filtall = filtall.append(filtered)
|
|
|
190 if len(filtall) > 0:
|
|
|
191 filtall.loc[filtered.index,'Reason'] = 'Not C..W'
|
|
|
192
|
|
|
193 frame = frame[frame['AA JUNCTION'].str.startswith('C') &
|
|
|
194 frame['AA JUNCTION'].str.endswith('W')]
|
|
|
195
|
|
|
196 head.append('CDR3 landmarks C-W')
|
|
|
197 head.append('filter out')
|
|
|
198 seqlen.append(len(frame))
|
|
|
199 seqlen.append(len(filtered))
|
|
|
200 filtered = DataFrame()
|
|
|
201 else:
|
|
|
202 print('TCR or BCR type')
|
|
|
203
|
|
|
204
|
|
|
205 filtered = DataFrame()
|
|
|
206
|
|
|
207 filtered = frame[frame['V-REGION identity %'] < Vper]
|
|
|
208
|
|
|
209
|
|
|
210 filtall = filtall.append(filtered)
|
|
|
211 if len(filtall) > 0:
|
|
|
212 filtall.loc[filtered.index,'Reason'] = 'identity < {iden}%'.format(iden = Vper)
|
|
|
213
|
|
|
214 frame=frame[frame['V-REGION identity %']>= Vper]
|
|
|
215 head.append('Identity >= {iden}%'.format(iden = Vper))
|
|
|
216 head.append('filter out')
|
|
|
217 seqlen.append(len(frame))
|
|
|
218 seqlen.append(len(filtered))
|
|
|
219
|
|
|
220 head.append('Total filter out A')
|
|
|
221 head.append('Total filter in A')
|
|
|
222 seqlen.append(len(filtall))
|
|
|
223 seqlen.append(len(frame))
|
|
|
224
|
|
|
225 ###############################
|
|
|
226 if Vgene != 'null':
|
|
|
227
|
|
|
228 filtered = DataFrame()
|
|
|
229
|
|
|
230 filtered = frame[frame['V-GENE and allele'] != Vgene]
|
|
|
231
|
|
|
232 filtall = filtall.append(filtered)
|
|
|
233 if len(filtall) > 0:
|
|
|
234 filtall.loc[filtered.index,'Reason'] = 'V-GENE != {} '.format(Vgene)
|
|
|
235
|
|
|
236
|
|
|
237 frame = frame[frame['V-GENE and allele'] == Vgene]
|
|
|
238
|
|
|
239
|
|
|
240
|
|
|
241 head.append('V-GENE = {} '.format(Vgene))
|
|
|
242 head.append('filter out')
|
|
|
243 seqlen.append(len(frame))
|
|
|
244 seqlen.append(len(filtered))
|
|
|
245
|
|
|
246
|
|
|
247
|
|
|
248 ###############################
|
|
|
249 if (laa1 != 'null') or (laa2 != 'null'):
|
|
|
250 if int(laa2) == 0:
|
|
|
251 low = int(laa1)
|
|
|
252 high = 100
|
|
|
253 elif int(laa1) > int(laa2):
|
|
|
254 low = int(laa2)
|
|
|
255 high = int(laa1)
|
|
|
256 else:
|
|
|
257 low = int(laa1)
|
|
|
258 high = int(laa2)
|
|
|
259
|
|
|
260 filtered = DataFrame()
|
|
|
261 criteria = frame['AA JUNCTION'].apply(lambda row: (len(row)-2) < low)
|
|
|
262 criteria2 = frame['AA JUNCTION'].apply(lambda row: (len(row)-2) > high)
|
|
|
263 filtered = frame[criteria | criteria2]
|
|
|
264
|
|
|
265 filtall = filtall.append(filtered)
|
|
|
266 if int(laa2)==0:
|
|
|
267 if len(filtall) > 0:
|
|
|
268 filtall.loc[filtered.index,'Reason'] = 'CDR3 length not bigger than {}'.format(low)
|
|
|
269 else:
|
|
|
270 if len(filtall) > 0:
|
|
|
271 filtall.loc[filtered.index,'Reason'] = 'CDR3 length not from {} to {}'.format(low,high)
|
|
|
272
|
|
|
273 criteria3 = frame['AA JUNCTION'].apply(lambda row: (len(row)-2) >= low)
|
|
|
274 criteria4 = frame['AA JUNCTION'].apply(lambda row: (len(row)-2) <= high)
|
|
|
275 frame = frame[criteria3 & criteria4]
|
|
|
276
|
|
|
277 if int(laa2)==0:
|
|
|
278 head.append('CDR3 length bigger than {}'.format(low))
|
|
|
279 else:
|
|
|
280 head.append('CDR3 length from {} to {} '.format(low,high))
|
|
|
281 head.append('filter out')
|
|
|
282 seqlen.append(len(frame))
|
|
|
283 seqlen.append(len(filtered))
|
|
|
284
|
|
|
285 ###############################
|
|
|
286 if conaa != 'null':
|
|
|
287 if conaa.islower():
|
|
|
288 conaa = conaa.upper()
|
|
|
289 filtered = DataFrame()
|
|
|
290
|
|
|
291 filtered = frame[~frame['AA JUNCTION'].str.contains(conaa)]
|
|
|
292
|
|
|
293 filtall = filtall.append(filtered)
|
|
|
294 if len(filtall) > 0:
|
|
|
295 filtall.loc[filtered.index,'Reason'] = 'CDR3 not containing {}'.format(conaa)
|
|
|
296
|
|
|
297 frame = frame[frame['AA JUNCTION'].str.contains(conaa) ]
|
|
|
298
|
|
|
299 head.append('CDR3 containing {}'.format(conaa))
|
|
|
300 head.append('filter out')
|
|
|
301 seqlen.append(len(frame))
|
|
|
302 seqlen.append(len(filtered))
|
|
|
303
|
|
|
304
|
|
|
305
|
|
|
306
|
|
|
307 #####------------keep the small J gene name--------------------
|
|
|
308 #frame['J-GENE and allele'] = frame['J-GENE and allele'].map(filter_condition_Jgene)
|
|
|
309 cc2=np.array(frame['J-GENE and allele'].unique())
|
|
|
310
|
|
|
311 for x in cc2:
|
|
|
312 try:
|
|
|
313 if notnull(x):
|
|
|
314 x1=x.split('*')
|
|
|
315 # print(x)
|
|
|
316 # print (x1[0])
|
|
|
317 trbj=x1[0].split(' ')
|
|
|
318 frame['J-GENE and allele']=frame['J-GENE and allele'].replace(x,trbj[1])
|
|
|
319 except IndexError as e:
|
|
|
320 print('J-Gene has been formed')
|
|
|
321
|
|
|
322
|
|
|
323
|
|
|
324 x=None
|
|
|
325 x1=None
|
|
|
326
|
|
|
327
|
|
|
328 #------------keep the small D gene name--------------------
|
|
|
329 cc1=np.array(frame['D-GENE and allele'].unique())
|
|
|
330 for x in cc1:
|
|
|
331 try:
|
|
|
332 if notnull(x):
|
|
|
333 x1=x.split('*')
|
|
|
334 trbd=x1[0].split(' ')
|
|
|
335 frame['D-GENE and allele']=frame['D-GENE and allele'].replace(x,trbd[1])
|
|
|
336 else:
|
|
|
337 frame['D-GENE and allele']=frame['D-GENE and allele'].replace(x,'none')
|
|
|
338 except IndexError as e:
|
|
|
339 print('D-gene has been formed')
|
|
|
340
|
|
|
341
|
|
|
342 x=None
|
|
|
343 x1=None
|
|
|
344
|
|
|
345
|
|
|
346 if Jgene != 'null':
|
|
|
347
|
|
|
348 filtered = DataFrame()
|
|
|
349
|
|
|
350 filtered = frame[frame['J-GENE and allele'] != Jgene]
|
|
|
351
|
|
|
352 filtall = filtall.append(filtered)
|
|
|
353 if len(filtall) > 0:
|
|
|
354 filtall.loc[filtered.index,'Reason'] = 'J-GENE not {} '.format(Jgene)
|
|
|
355
|
|
|
356
|
|
|
357 frame = frame[frame['J-GENE and allele'] == Jgene]
|
|
|
358
|
|
|
359
|
|
|
360
|
|
|
361 head.append('J-GENE = {} '.format(Jgene))
|
|
|
362 head.append('filter out')
|
|
|
363 seqlen.append(len(frame))
|
|
|
364 seqlen.append(len(filtered))
|
|
|
365
|
|
|
366
|
|
|
367
|
|
|
368 if Dgene != 'null':
|
|
|
369
|
|
|
370 filtered = DataFrame()
|
|
|
371
|
|
|
372 filtered = frame[frame['D-GENE and allele'] != Dgene]
|
|
|
373
|
|
|
374 filtall = filtall.append(filtered)
|
|
|
375 if len(filtall) > 0:
|
|
|
376 filtall.loc[filtered.index,'Reason'] = 'D-GENE not {} '.format(Dgene)
|
|
|
377
|
|
|
378
|
|
|
379 frame = frame[frame['D-GENE and allele'] == Dgene]
|
|
|
380
|
|
|
381
|
|
|
382
|
|
|
383 head.append('D-GENE = {} '.format(Dgene))
|
|
|
384 head.append('filter out')
|
|
|
385 seqlen.append(len(frame))
|
|
|
386 seqlen.append(len(filtered))
|
|
|
387
|
|
|
388
|
|
|
389 head.append('Total filter out')
|
|
|
390 head.append('Total filter in')
|
|
|
391 seqlen.append(len(filtall))
|
|
|
392 seqlen.append(len(frame))
|
|
|
393 summ_df = DataFrame(index = head)
|
|
|
394 col = fname
|
|
|
395
|
|
|
396 summ_df[col] = seqlen
|
|
|
397 frame=frame.rename(columns = {'V-GENE and allele':'V-GENE',
|
|
|
398 'J-GENE and allele':'J-GENE','D-GENE and allele':'D-GENE'})
|
|
|
399
|
|
|
400
|
|
|
401 frcol.append('Reason')
|
|
|
402
|
|
|
403 filtall = filtall[frcol]
|
|
|
404
|
|
|
405 #--------------out CSV---------------------------
|
|
|
406 frame.index = range(1,len(frame)+1)
|
|
|
407 if not summ_df.empty:
|
|
|
408 summ_df['%'] = (100*summ_df[summ_df.columns[0]]/summ_df[summ_df.columns[0]][summ_df.index[0]]).map(('{:.4f}'.format))
|
|
|
409 return(frame,filtall,summ_df)
|
|
|
410 except KeyError as e:
|
|
|
411 print('This file has no ' + str(e) + ' column')
|
|
|
412 return(frame,filtall,summ_df)
|
|
|
413
|
|
|
414
|
|
|
415 if __name__ == '__main__':
|
|
|
416
|
|
|
417 start=time.time()
|
|
|
418
|
|
|
419 # Parse input arguments
|
|
|
420 inp = sys.argv[1]
|
|
|
421 cells = sys.argv[2]
|
|
|
422 psorf = sys.argv[3]
|
|
|
423 con = sys.argv[4]
|
|
|
424 prod = sys.argv[5]
|
|
|
425 CF = sys.argv[6]
|
|
|
426 Vper = float(sys.argv[7])
|
|
|
427 Vgene = sys.argv[8]
|
|
|
428 laa1 = sys.argv[9]
|
|
|
429 conaa = sys.argv[10]
|
|
|
430 filterin = sys.argv[11]
|
|
|
431 filterout = sys.argv[12]
|
|
|
432 Sum_table = sys.argv[13]
|
|
|
433 Jgene = sys.argv[14]
|
|
|
434 Dgene = sys.argv[15]
|
|
|
435 laa2 = sys.argv[16]
|
|
|
436 fname = sys.argv[17]
|
|
|
437
|
|
|
438 # Execute basic function
|
|
|
439 fin,fout,summ = filtering(inp,cells,psorf,con,prod,CF,Vper,Vgene,laa1,laa2,conaa,Jgene,Dgene,fname)
|
|
|
440
|
|
|
441 # Save output to CSV files
|
|
|
442 if not summ.empty:
|
|
|
443 summ.to_csv(Sum_table, sep = '\t')
|
|
|
444 if not fin.empty:
|
|
|
445 fin.to_csv(filterin , sep = '\t')
|
|
|
446 if not fout.empty:
|
|
|
447 fout.to_csv(filterout, sep= '\t')
|
|
|
448
|
|
|
449 # Print execution time
|
|
|
450 stop=time.time()
|
|
|
451 print('Runtime:' + str(stop-start))
|
|
|
452
|