1
|
1 #!/usr/bin/python
|
|
2
|
|
3 """
|
|
4 ****************************** versioned_data_cache_clear.py ******************************
|
|
5 Call this script directly to clear out all but the latest galaxy Versioned Data data library
|
|
6 and server data store cached folder versions.
|
|
7
|
|
8 SUGGEST RUNNING THIS UNDER GALAXY OR LESS PRIVILEGED USER, BUT the versioneddata_api_key file does need to be readable by the user.
|
|
9
|
|
10 """
|
|
11 import vdb_retrieval
|
|
12 import vdb_common
|
|
13 import glob
|
|
14 import os
|
|
15
|
|
16 # Note that globals from vdb_retrieval can be referenced by prefixing with vdb_retrieval.XYZ
|
|
17 # Note that this script uses the admin_api established in vdb_retrieval.py
|
|
18
|
|
19 retrieval_obj = vdb_retrieval.VDBRetrieval()
|
|
20 retrieval_obj.set_admin_api()
|
|
21 retrieval_obj.user_api = retrieval_obj.admin_api
|
|
22 retrieval_obj.set_datastores()
|
|
23
|
|
24 workflow_keepers = [] #stack of Versioned Data library dataset_ids that if found in a workflow data input folder key name, can be saved; otherwise remove folder.
|
|
25 library_folder_deletes = []
|
|
26 library_dataset_deletes = []
|
|
27
|
|
28 # Cycle through datastores, listing subfolders under each, sorted.
|
|
29 # Permanently delete all but latest subfolder.
|
|
30 for data_store in retrieval_obj.data_stores:
|
|
31 spec_file_id = data_store['id']
|
|
32 # STEP 1: Determine data store type and location
|
|
33 data_store_spec = retrieval_obj.admin_api.libraries.show_folder(retrieval_obj.library_id, spec_file_id)
|
|
34 data_store_type = retrieval_obj.test_data_store_type(data_store_spec['name'])
|
|
35
|
|
36 if not data_store_type in 'folder biomaj': # Folders are static - they don't do caching.
|
|
37
|
|
38 base_folder_id = data_store_spec['folder_id']
|
|
39 ds_obj = retrieval_obj.get_data_store_gateway(data_store_type, spec_file_id)
|
|
40
|
|
41 print
|
|
42
|
|
43 #Cycle through library tree; have to look at the whole thing since there's no /[string]/* wildcard search:
|
|
44 folders = retrieval_obj.get_library_folders(ds_obj.library_label_path)
|
|
45 for ptr, folder in enumerate(folders):
|
|
46
|
|
47 # Ignore folder that represents data store itself:
|
|
48 if ptr == 0:
|
|
49 print 'Data Store ::' + folder['name']
|
|
50
|
|
51 # Keep most recent cache item
|
|
52 elif ptr == len(folders)-1:
|
|
53 print 'Cached Version ::' + folder['name']
|
|
54 workflow_keepers.extend(folder['files'])
|
|
55
|
|
56 # Drop version caches that are further in the past:
|
|
57 else:
|
|
58 print 'Clearing version cache:' + folder['name']
|
|
59 library_folder_deletes.extend(folder['id'])
|
|
60 library_dataset_deletes.extend(folder['files'])
|
|
61
|
|
62
|
|
63 # Now auto-clean versioned/ folders too?
|
|
64 print "Server loc: " + ds_obj.data_store_path
|
|
65
|
|
66 items = os.listdir(ds_obj.data_store_path)
|
|
67 items = sorted(items, key=lambda el: vdb_common.natural_sort_key(el), reverse=True)
|
|
68 count = 0
|
|
69 for name in items:
|
|
70
|
|
71 # If it is a directory and it isn't the master or symlinked "current" one:
|
|
72 # Add ability to skip sym-linked folders too?
|
|
73 version_folder=os.path.join(ds_obj.data_store_path, name)
|
|
74 if not name == 'master' \
|
|
75 and os.path.isdir(version_folder) \
|
|
76 and not os.path.islink(version_folder):
|
|
77
|
|
78 count += 1
|
|
79 if count == 1:
|
|
80 print "Keeping cache:" + name
|
|
81 else:
|
|
82 print "Dropping cache:" + name
|
|
83 for root2, dirs2, files2 in os.walk(version_folder):
|
|
84 for version_file in files2:
|
|
85 full_path = os.path.join(root2, version_file)
|
|
86 print "Removing " + full_path
|
|
87 os.remove(full_path)
|
|
88 #Not expecting any subfolders here.
|
|
89
|
|
90 os.rmdir(version_folder)
|
|
91
|
|
92
|
|
93 # Permanently delete specific data library datasets:
|
|
94 for item in library_dataset_deletes:
|
|
95 retrieval_obj.admin_api.libraries.delete_library_dataset(retrieval_obj.library_id, item['id'], purged=True)
|
|
96
|
|
97
|
|
98 # Newer Bioblend API method for deleting galaxy library folders.
|
|
99 # OLD Galaxy way possible: http DELETE request to {{url}}/api/folders/{{encoded_folder_id}}?key={{key}}
|
|
100 if 'folders' in dir(retrieval_obj.admin_api):
|
|
101 for folder in library_folder_deletes:
|
|
102 retrieval_obj.admin_api.folders.delete(folder['id'])
|
|
103
|
|
104
|
|
105 print workflow_keepers
|
|
106
|
|
107 workflow_cache_folders = retrieval_obj.get_library_folders('/'+ vdb_retrieval.VDB_WORKFLOW_CACHE_FOLDER_NAME+'/')
|
|
108
|
|
109 for folder in workflow_cache_folders:
|
|
110 dataset_ids = folder['name'].split('_') #input dataset ids separated by underscore
|
|
111 count = 0
|
|
112 for id in dataset_ids:
|
|
113 if id in workflow_keepers:
|
|
114 count += 1
|
|
115
|
|
116 # If every input dataset in workflow cache exists in library cache, then keep it.
|
|
117 if count == len(dataset_ids):
|
|
118 continue
|
|
119
|
|
120 # We have one or more cached datasets to drop.
|
|
121 print "Dropping workflow cache: " + folder['name']
|
|
122 for id in [item['id'] for item in folder['files']]:
|
|
123 print id
|
|
124 retrieval_obj.admin_api.libraries.delete_library_dataset(retrieval_obj.library_id, id, purged=True)
|
|
125
|
|
126 # NOW DELETE WORKFLOW FOLDER.
|
|
127 if 'folders' in dir(retrieval_obj.admin_api):
|
|
128 retrieval_obj.admin_api.folders.delete(folder['id'])
|
|
129
|
|
130
|