comparison pipe-t.R @ 2:6cd22b1fbf6d draft

planemo upload for repository https://github.com/igg-molecular-biology-lab/pipe-t.git commit 18d030f0c2e423a04617a3827ba5a652c8d7867a
author davidecangelosi
date Mon, 06 May 2019 05:37:40 -0400
parents 185ba61836ab
children e2fcf5a4609c
comparison
equal deleted inserted replaced
1:ecd0a79e8130 2:6cd22b1fbf6d
138 } 138 }
139 } 139 }
140 } 140 }
141 cat("\n Initialization completed! \n") 141 cat("\n Initialization completed! \n")
142 142
143 .readCtEDS <-
144 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
145 {
146 # Scan through beginning of file, max 100 lines
147 file.header <- readLines(con=readfile, n=100)
148 n.header <- grep("^Well", file.header)
149 if (length(n.header)==0)
150 n.header <- 0
151 # Read data, skip the required lines
152 out <- read.delim(file=readfile, header=TRUE, colClasses="character", nrows=nspots*n.data[i], skip=n.header-1, strip.white=TRUE, ...)
153 out
154 } # .readCtEDS
155
156
157 .readCtPlain <-
158 function(readfile=readfile, header=header, n.features=n.features, n.data=n.data, i=i, ...)
159 {
160 # A check for file dimensions. Read a single file.
161 sample <- read.delim(file=readfile, header=header, ...)
162 nspots <- nrow(sample)
163 if (nspots != n.features*n.data[1])
164 warning(paste(n.features, "gene names (rows) expected, got", nspots))
165 # Read in the required file
166 out <- read.delim(file=readfile, header=header, colClasses="character", nrows=nspots*n.data[i], ...)
167 # Return
168 out
169 } # .readCtPlain
170
171 .readCtSDS <-
172 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
173 {
174 # Scan through beginning of file, max 100 lines
175 file.header <- readLines(con=readfile, n=100)
176 n.header <- grep("^#", file.header)
177 if (length(n.header)==0)
178 n.header <- 0
179 # Read data, skip the required lines
180 out <- read.delim(file=readfile, header=FALSE, colClasses="character", nrows=nspots*n.data[i], skip=n.header, strip.white=TRUE, ...)
181 # Return
182 out
183 } # .readCtSDS
184
185 .readCtLightCycler <-
186 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
187 {
188 # Read data, skip the required lines
189 out <- read.delim(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], skip=1, strip.white=TRUE, ...)
190 # Return
191 out
192 } # .readCtLightCycler
193
194 .readCtCFX <- function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
195 {
196 # Read data, skip the required lines
197 out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], strip.white=TRUE, ...)
198 # Return
199 out
200 } # .readCtCFX
201
202 .readCtOpenArray <-
203 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
204 {
205 # Read data
206 out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], strip.white=TRUE, ...)
207 # Regard those marked as outliers as "Unreliable"
208 out$ThroughHole.Outlier[out$ThroughHole.Outlier=="False"] <- "OK"
209 out$ThroughHole.Outlier[out$ThroughHole.Outlier=="True"] <- "Unreliable"
210 # Return
211 out
212 } # .readCtOpenArray
213
214 .readCtBioMark <-
215 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
216 {
217 # Scan through beginning of file, max 100 lines
218 file.header <- readLines(con=readfile, n=100)
219 n.header <- grep("^ID", file.header)-1
220 if (length(n.header)==0)
221 n.header <- 0
222 # Read data, skip the required lines
223 out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], skip=n.header, strip.white=TRUE, ...)
224 # Convert the calls into flags
225 out$Call[out$Call=="Pass"] <- "OK"
226 out$Call[out$Call=="Fail"] <- "Undetermined"
227 # Return
228 out
229 } # .readCtBioMark
230
231
232
143 readCtDataDav<- 233 readCtDataDav<-
144 function (files, path = NULL, n.features = 384, format = "plain", 234 function (files, path = NULL, n.features = 384, format = "plain",
145 column.info, flag, feature, type, position, Ct, header = FALSE, 235 column.info, flag, feature, type, position, Ct, header = FALSE,
146 SDS = FALSE, n.data = 1, samples, na.value = 40, sample.info, 236 SDS = FALSE, n.data = 1, samples, na.value = 40, sample.info,
147 ...) 237 ...)
281 out <- new("qPCRset", exprs = X, phenoData = sample.info, 371 out <- new("qPCRset", exprs = X, phenoData = sample.info,
282 featureData = featData, featureCategory = X.cat, flag = X.flags, 372 featureData = featData, featureCategory = X.cat, flag = X.flags,
283 CtHistory = X.hist) 373 CtHistory = X.hist)
284 out 374 out
285 } 375 }
286 .readCtEDS <- 376
287 function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...)
288 {
289 # Scan through beginning of file, max 100 lines
290 file.header <- readLines(con=readfile, n=100)
291 n.header <- grep("^Well", file.header)
292 if (length(n.header)==0)
293 n.header <- 0
294 # Read data, skip the required lines
295 out <- read.delim(file=readfile, header=TRUE, colClasses="character", nrows=nspots*n.data[i], skip=n.header-1, strip.white=TRUE, ...)
296 out
297 } # .readCtEDS
298 377
299 head(read.delim(file.path(path000, dpfiles), sep="\t")) 378 head(read.delim(file.path(path000, dpfiles), sep="\t"))
300 files <- read.delim(file.path(path000, dpfiles), sep="\t") 379 files <- read.delim(file.path(path000, dpfiles), sep="\t")
301 switch(format, 380 switch(format,
302 "EDS"={ 381 "EDS"={
540 setCtHistory(q) <- data.frame(history="Manually created qPCRset object.", stringsAsFactors=FALSE) 619 setCtHistory(q) <- data.frame(history="Manually created qPCRset object.", stringsAsFactors=FALSE)
541 setCtHistory(q) <- rbind(getCtHistory(q), capture.output(match.call(normalizeCtData))) 620 setCtHistory(q) <- rbind(getCtHistory(q), capture.output(match.call(normalizeCtData)))
542 # Return the normalised object 621 # Return the normalised object
543 q 622 q
544 } 623 }
545 624 #library(NormqPCR)
625
626 #delete.na <- function(DF, n=0) {
627 # DF[rowSums(is.na(DF)) <= n,]
628 #}
629
630 #user_number=5
631 #genorm <- selectHKs(t(delete.na(as.matrix(exprs(xGlico)),0)), method = "geNorm", Symbols = rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE)
632 #normfinder <- selectHKs(as.matrix(t(delete.na(exprs(xGlico),0))), group= files$Treatment , method = "NormFinder", Symbols =rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE)
633 #intersection= intersect(normfinder$ranking, genorm$ranking[1:as.numeric(user_number)])
634
635 #cat("\n GeNorm and NormFinder transcripts selected as housekeeping for normalization! \n")
636 #intersection
637 #dnorm <- normalizeCtData(xGlico , norm="deltaCt", deltaCt.genes=as.vector(intersection))
546 638
547 switch(normalizationMethod, 639 switch(normalizationMethod,
548 "deltaCt"={ 640 "deltaCt"={
549 normalizedDataset <- normalizeCtDataDav(xFilter, norm="deltaCt", deltaCt.genes =explode(normalizers, sep = ",")) 641 normalizedDataset <- normalizeCtDataDav(xFilter, norm="deltaCt", deltaCt.genes =explode(normalizers, sep = ","))
550 }, 642 },