Mercurial > repos > davidecangelosi > pipe_t
diff pipe-t.R @ 2:6cd22b1fbf6d draft
planemo upload for repository https://github.com/igg-molecular-biology-lab/pipe-t.git commit 18d030f0c2e423a04617a3827ba5a652c8d7867a
author | davidecangelosi |
---|---|
date | Mon, 06 May 2019 05:37:40 -0400 |
parents | 185ba61836ab |
children | e2fcf5a4609c |
line wrap: on
line diff
--- a/pipe-t.R Fri May 03 11:01:43 2019 -0400 +++ b/pipe-t.R Mon May 06 05:37:40 2019 -0400 @@ -140,6 +140,96 @@ } cat("\n Initialization completed! \n") +.readCtEDS <- +function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Scan through beginning of file, max 100 lines + file.header <- readLines(con=readfile, n=100) + n.header <- grep("^Well", file.header) + if (length(n.header)==0) + n.header <- 0 + # Read data, skip the required lines + out <- read.delim(file=readfile, header=TRUE, colClasses="character", nrows=nspots*n.data[i], skip=n.header-1, strip.white=TRUE, ...) + out +} # .readCtEDS + + +.readCtPlain <- +function(readfile=readfile, header=header, n.features=n.features, n.data=n.data, i=i, ...) +{ + # A check for file dimensions. Read a single file. + sample <- read.delim(file=readfile, header=header, ...) + nspots <- nrow(sample) + if (nspots != n.features*n.data[1]) + warning(paste(n.features, "gene names (rows) expected, got", nspots)) + # Read in the required file + out <- read.delim(file=readfile, header=header, colClasses="character", nrows=nspots*n.data[i], ...) + # Return + out +} # .readCtPlain + +.readCtSDS <- +function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Scan through beginning of file, max 100 lines + file.header <- readLines(con=readfile, n=100) + n.header <- grep("^#", file.header) + if (length(n.header)==0) + n.header <- 0 + # Read data, skip the required lines + out <- read.delim(file=readfile, header=FALSE, colClasses="character", nrows=nspots*n.data[i], skip=n.header, strip.white=TRUE, ...) + # Return + out +} # .readCtSDS + +.readCtLightCycler <- +function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Read data, skip the required lines + out <- read.delim(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], skip=1, strip.white=TRUE, ...) + # Return + out +} # .readCtLightCycler + +.readCtCFX <- function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Read data, skip the required lines + out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], strip.white=TRUE, ...) + # Return + out +} # .readCtCFX + +.readCtOpenArray <- +function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Read data + out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], strip.white=TRUE, ...) + # Regard those marked as outliers as "Unreliable" + out$ThroughHole.Outlier[out$ThroughHole.Outlier=="False"] <- "OK" + out$ThroughHole.Outlier[out$ThroughHole.Outlier=="True"] <- "Unreliable" + # Return + out +} # .readCtOpenArray + +.readCtBioMark <- +function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) +{ + # Scan through beginning of file, max 100 lines + file.header <- readLines(con=readfile, n=100) + n.header <- grep("^ID", file.header)-1 + if (length(n.header)==0) + n.header <- 0 + # Read data, skip the required lines + out <- read.csv(file=readfile, header=TRUE, as.is=TRUE, nrows=nspots*n.data[i], skip=n.header, strip.white=TRUE, ...) + # Convert the calls into flags + out$Call[out$Call=="Pass"] <- "OK" + out$Call[out$Call=="Fail"] <- "Undetermined" + # Return + out +} # .readCtBioMark + + + readCtDataDav<- function (files, path = NULL, n.features = 384, format = "plain", column.info, flag, feature, type, position, Ct, header = FALSE, @@ -283,18 +373,7 @@ CtHistory = X.hist) out } -.readCtEDS <- -function(readfile=readfile, n.data=n.data, i=i, nspots=nspots, ...) -{ - # Scan through beginning of file, max 100 lines - file.header <- readLines(con=readfile, n=100) - n.header <- grep("^Well", file.header) - if (length(n.header)==0) - n.header <- 0 - # Read data, skip the required lines - out <- read.delim(file=readfile, header=TRUE, colClasses="character", nrows=nspots*n.data[i], skip=n.header-1, strip.white=TRUE, ...) - out -} # .readCtEDS + head(read.delim(file.path(path000, dpfiles), sep="\t")) files <- read.delim(file.path(path000, dpfiles), sep="\t") @@ -542,7 +621,20 @@ # Return the normalised object q } +#library(NormqPCR) +#delete.na <- function(DF, n=0) { + # DF[rowSums(is.na(DF)) <= n,] +#} + +#user_number=5 +#genorm <- selectHKs(t(delete.na(as.matrix(exprs(xGlico)),0)), method = "geNorm", Symbols = rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE) +#normfinder <- selectHKs(as.matrix(t(delete.na(exprs(xGlico),0))), group= files$Treatment , method = "NormFinder", Symbols =rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE) +#intersection= intersect(normfinder$ranking, genorm$ranking[1:as.numeric(user_number)]) + +#cat("\n GeNorm and NormFinder transcripts selected as housekeeping for normalization! \n") +#intersection +#dnorm <- normalizeCtData(xGlico , norm="deltaCt", deltaCt.genes=as.vector(intersection)) switch(normalizationMethod, "deltaCt"={