Mercurial > repos > davidvanzessen > argalaxy_tools
comparison report_clonality/RScript.r.old @ 20:9185c3dfc679 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Fri, 27 Jan 2017 03:44:18 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 19:3ef457aa5df6 | 20:9185c3dfc679 |
|---|---|
| 1 # ---------------------- load/install packages ---------------------- | |
| 2 | |
| 3 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
| 4 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
| 5 } | |
| 6 library(gridExtra) | |
| 7 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
| 8 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
| 9 } | |
| 10 library(ggplot2) | |
| 11 if (!("plyr" %in% rownames(installed.packages()))) { | |
| 12 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
| 13 } | |
| 14 library(plyr) | |
| 15 | |
| 16 if (!("data.table" %in% rownames(installed.packages()))) { | |
| 17 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
| 18 } | |
| 19 library(data.table) | |
| 20 | |
| 21 if (!("reshape2" %in% rownames(installed.packages()))) { | |
| 22 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | |
| 23 } | |
| 24 library(reshape2) | |
| 25 | |
| 26 if (!("lymphclon" %in% rownames(installed.packages()))) { | |
| 27 install.packages("lymphclon", repos="http://cran.xl-mirror.nl/") | |
| 28 } | |
| 29 library(lymphclon) | |
| 30 | |
| 31 # ---------------------- parameters ---------------------- | |
| 32 | |
| 33 args <- commandArgs(trailingOnly = TRUE) | |
| 34 | |
| 35 infile = args[1] #path to input file | |
| 36 outfile = args[2] #path to output file | |
| 37 outdir = args[3] #path to output folder (html/images/data) | |
| 38 clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering | |
| 39 ct = unlist(strsplit(clonaltype, ",")) | |
| 40 species = args[5] #human or mouse | |
| 41 locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD | |
| 42 filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no) | |
| 43 clonality_method = args[8] | |
| 44 | |
| 45 | |
| 46 # ---------------------- Data preperation ---------------------- | |
| 47 | |
| 48 print("Report Clonality - Data preperation") | |
| 49 | |
| 50 inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="", stringsAsFactors=F) | |
| 51 | |
| 52 print(paste("nrows: ", nrow(inputdata))) | |
| 53 | |
| 54 setwd(outdir) | |
| 55 | |
| 56 # remove weird rows | |
| 57 inputdata = inputdata[inputdata$Sample != "",] | |
| 58 | |
| 59 print(paste("nrows: ", nrow(inputdata))) | |
| 60 | |
| 61 #remove the allele from the V,D and J genes | |
| 62 inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene) | |
| 63 inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene) | |
| 64 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) | |
| 65 | |
| 66 print(paste("nrows: ", nrow(inputdata))) | |
| 67 | |
| 68 #filter uniques | |
| 69 inputdata.removed = inputdata[NULL,] | |
| 70 | |
| 71 print(paste("nrows: ", nrow(inputdata))) | |
| 72 | |
| 73 inputdata$clonaltype = 1:nrow(inputdata) | |
| 74 | |
| 75 #keep track of the count of sequences in samples or samples/replicates for the front page overview | |
| 76 input.sample.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample")]) | |
| 77 input.rep.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample", "Replicate")]) | |
| 78 | |
| 79 PRODF = inputdata | |
| 80 UNPROD = inputdata | |
| 81 if(filterproductive){ | |
| 82 if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column | |
| 83 #PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ] | |
| 84 PRODF = inputdata[inputdata$Functionality %in% c("productive (see comment)","productive"),] | |
| 85 | |
| 86 PRODF.count = data.frame(data.table(PRODF)[, list(count=.N), by=c("Sample")]) | |
| 87 | |
| 88 UNPROD = inputdata[inputdata$Functionality %in% c("unproductive (see comment)","unproductive"), ] | |
| 89 } else { | |
| 90 PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ] | |
| 91 UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ] | |
| 92 } | |
| 93 } | |
| 94 | |
| 95 for(i in 1:nrow(UNPROD)){ | |
| 96 if(!is.numeric(UNPROD[i,"CDR3.Length"])){ | |
| 97 UNPROD[i,"CDR3.Length"] = 0 | |
| 98 } | |
| 99 } | |
| 100 | |
| 101 prod.sample.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample")]) | |
| 102 prod.rep.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample", "Replicate")]) | |
| 103 | |
| 104 unprod.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample")]) | |
| 105 unprod.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample", "Replicate")]) | |
| 106 | |
| 107 clonalityFrame = PRODF | |
| 108 | |
| 109 #remove duplicates based on the clonaltype | |
| 110 if(clonaltype != "none"){ | |
| 111 clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples | |
| 112 PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 113 PRODF = PRODF[!duplicated(PRODF$clonaltype), ] | |
| 114 | |
| 115 UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 116 UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ] | |
| 117 | |
| 118 #again for clonalityFrame but with sample+replicate | |
| 119 clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 120 clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":")) | |
| 121 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ] | |
| 122 } | |
| 123 | |
| 124 print("SAMPLE TABLE:") | |
| 125 print(table(PRODF$Sample)) | |
| 126 | |
| 127 prod.unique.sample.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample")]) | |
| 128 prod.unique.rep.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample", "Replicate")]) | |
| 129 | |
| 130 unprod.unique.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample")]) | |
| 131 unprod.unique.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample", "Replicate")]) | |
| 132 | |
| 133 PRODF$freq = 1 | |
| 134 | |
| 135 if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*" | |
| 136 PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID) | |
| 137 PRODF$freq = gsub("_.*", "", PRODF$freq) | |
| 138 PRODF$freq = as.numeric(PRODF$freq) | |
| 139 if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence | |
| 140 PRODF$freq = 1 | |
| 141 } | |
| 142 } | |
| 143 | |
| 144 #make a names list with sample -> color | |
| 145 naive.colors = c('blue4', 'darkred', 'olivedrab3', 'red', 'gray74', 'darkviolet', 'lightblue1', 'gold', 'chartreuse2', 'pink', 'Paleturquoise3', 'Chocolate1', 'Yellow', 'Deeppink3', 'Mediumorchid1', 'Darkgreen', 'Blue', 'Gray36', 'Hotpink', 'Yellow4') | |
| 146 unique.samples = unique(PRODF$Sample) | |
| 147 | |
| 148 if(length(unique.samples) <= length(naive.colors)){ | |
| 149 sample.colors = naive.colors[1:length(unique.samples)] | |
| 150 } else { | |
| 151 sample.colors = rainbow(length(unique.samples)) | |
| 152 } | |
| 153 | |
| 154 names(sample.colors) = unique.samples | |
| 155 | |
| 156 print("Sample.colors") | |
| 157 print(sample.colors) | |
| 158 | |
| 159 | |
| 160 #write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive | |
| 161 write.table(PRODF, "allUnique.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 162 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 163 write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 164 | |
| 165 #write the samples to a file | |
| 166 sampleFile <- file("samples.txt") | |
| 167 un = unique(inputdata$Sample) | |
| 168 un = paste(un, sep="\n") | |
| 169 writeLines(un, sampleFile) | |
| 170 close(sampleFile) | |
| 171 | |
| 172 # ---------------------- Counting the productive/unproductive and unique sequences ---------------------- | |
| 173 | |
| 174 print("Report Clonality - counting productive/unproductive/unique") | |
| 175 | |
| 176 #create the table on the overview page with the productive/unique counts per sample/replicate | |
| 177 #first for sample | |
| 178 sample.count = merge(input.sample.count, prod.sample.count, by="Sample", all.x=T) | |
| 179 sample.count$perc_prod = round(sample.count$Productive / sample.count$All * 100) | |
| 180 sample.count = merge(sample.count, prod.unique.sample.count, by="Sample", all.x=T) | |
| 181 sample.count$perc_prod_un = round(sample.count$Productive_unique / sample.count$All * 100) | |
| 182 | |
| 183 sample.count = merge(sample.count , unprod.sample.count, by="Sample", all.x=T) | |
| 184 sample.count$perc_unprod = round(sample.count$Unproductive / sample.count$All * 100) | |
| 185 sample.count = merge(sample.count, unprod.unique.sample.count, by="Sample", all.x=T) | |
| 186 sample.count$perc_unprod_un = round(sample.count$Unproductive_unique / sample.count$All * 100) | |
| 187 | |
| 188 #then sample/replicate | |
| 189 rep.count = merge(input.rep.count, prod.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
| 190 rep.count$perc_prod = round(rep.count$Productive / rep.count$All * 100) | |
| 191 rep.count = merge(rep.count, prod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
| 192 rep.count$perc_prod_un = round(rep.count$Productive_unique / rep.count$All * 100) | |
| 193 | |
| 194 rep.count = merge(rep.count, unprod.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
| 195 rep.count$perc_unprod = round(rep.count$Unproductive / rep.count$All * 100) | |
| 196 rep.count = merge(rep.count, unprod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
| 197 rep.count$perc_unprod_un = round(rep.count$Unproductive_unique / rep.count$All * 100) | |
| 198 | |
| 199 rep.count$Sample = paste(rep.count$Sample, rep.count$Replicate, sep="_") | |
| 200 rep.count = rep.count[,names(rep.count) != "Replicate"] | |
| 201 | |
| 202 count = rbind(sample.count, rep.count) | |
| 203 | |
| 204 | |
| 205 | |
| 206 write.table(x=count, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F) | |
| 207 | |
| 208 # ---------------------- V+J+CDR3 sequence count ---------------------- | |
| 209 | |
| 210 VJCDR3.count = data.frame(table(clonalityFrame$Top.V.Gene, clonalityFrame$Top.J.Gene, clonalityFrame$CDR3.Seq.DNA)) | |
| 211 names(VJCDR3.count) = c("Top.V.Gene", "Top.J.Gene", "CDR3.Seq.DNA", "Count") | |
| 212 | |
| 213 VJCDR3.count = VJCDR3.count[VJCDR3.count$Count > 0,] | |
| 214 VJCDR3.count = VJCDR3.count[order(-VJCDR3.count$Count),] | |
| 215 | |
| 216 write.table(x=VJCDR3.count, file="VJCDR3_count.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 217 | |
| 218 # ---------------------- Frequency calculation for V, D and J ---------------------- | |
| 219 | |
| 220 print("Report Clonality - frequency calculation V, D and J") | |
| 221 | |
| 222 PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")]) | |
| 223 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 224 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 225 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 226 | |
| 227 PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")]) | |
| 228 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 229 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 230 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 231 | |
| 232 PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")]) | |
| 233 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 234 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 235 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 236 | |
| 237 # ---------------------- Setting up the gene names for the different species/loci ---------------------- | |
| 238 | |
| 239 print("Report Clonality - getting genes for species/loci") | |
| 240 | |
| 241 Vchain = "" | |
| 242 Dchain = "" | |
| 243 Jchain = "" | |
| 244 | |
| 245 if(species == "custom"){ | |
| 246 print("Custom genes: ") | |
| 247 splt = unlist(strsplit(locus, ";")) | |
| 248 print(paste("V:", splt[1])) | |
| 249 print(paste("D:", splt[2])) | |
| 250 print(paste("J:", splt[3])) | |
| 251 | |
| 252 Vchain = unlist(strsplit(splt[1], ",")) | |
| 253 Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain)) | |
| 254 | |
| 255 Dchain = unlist(strsplit(splt[2], ",")) | |
| 256 if(length(Dchain) > 0){ | |
| 257 Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain)) | |
| 258 } else { | |
| 259 Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0)) | |
| 260 } | |
| 261 | |
| 262 Jchain = unlist(strsplit(splt[3], ",")) | |
| 263 Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain)) | |
| 264 | |
| 265 } else { | |
| 266 genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="") | |
| 267 | |
| 268 Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")] | |
| 269 colnames(Vchain) = c("v.name", "chr.orderV") | |
| 270 Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")] | |
| 271 colnames(Dchain) = c("v.name", "chr.orderD") | |
| 272 Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")] | |
| 273 colnames(Jchain) = c("v.name", "chr.orderJ") | |
| 274 } | |
| 275 useD = TRUE | |
| 276 if(nrow(Dchain) == 0){ | |
| 277 useD = FALSE | |
| 278 cat("No D Genes in this species/locus") | |
| 279 } | |
| 280 print(paste(nrow(Vchain), "genes in V")) | |
| 281 print(paste(nrow(Dchain), "genes in D")) | |
| 282 print(paste(nrow(Jchain), "genes in J")) | |
| 283 | |
| 284 # ---------------------- merge with the frequency count ---------------------- | |
| 285 | |
| 286 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
| 287 | |
| 288 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
| 289 | |
| 290 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
| 291 | |
| 292 # ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ---------------------- | |
| 293 | |
| 294 print("Report Clonality - V, D and J frequency plots") | |
| 295 | |
| 296 pV = ggplot(PRODFV) | |
| 297 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 298 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") + scale_fill_manual(values=sample.colors) | |
| 299 pV = pV + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 300 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 301 | |
| 302 png("VPlot.png",width = 1280, height = 720) | |
| 303 pV | |
| 304 dev.off(); | |
| 305 | |
| 306 if(useD){ | |
| 307 pD = ggplot(PRODFD) | |
| 308 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 309 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + scale_fill_manual(values=sample.colors) | |
| 310 pD = pD + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 311 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 312 | |
| 313 png("DPlot.png",width = 800, height = 600) | |
| 314 print(pD) | |
| 315 dev.off(); | |
| 316 } | |
| 317 | |
| 318 pJ = ggplot(PRODFJ) | |
| 319 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 320 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") + scale_fill_manual(values=sample.colors) | |
| 321 pJ = pJ + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 322 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 323 | |
| 324 png("JPlot.png",width = 800, height = 600) | |
| 325 pJ | |
| 326 dev.off(); | |
| 327 | |
| 328 # ---------------------- Now the frequency plots of the V, D and J families ---------------------- | |
| 329 | |
| 330 print("Report Clonality - V, D and J family plots") | |
| 331 | |
| 332 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | |
| 333 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | |
| 334 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | |
| 335 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 336 VGenes = merge(VGenes, TotalPerSample, by="Sample") | |
| 337 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | |
| 338 VPlot = ggplot(VGenes) | |
| 339 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 340 ggtitle("Distribution of V gene families") + | |
| 341 ylab("Percentage of sequences") + | |
| 342 scale_fill_manual(values=sample.colors) + | |
| 343 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 344 png("VFPlot.png") | |
| 345 VPlot | |
| 346 dev.off(); | |
| 347 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 348 | |
| 349 if(useD){ | |
| 350 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | |
| 351 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | |
| 352 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | |
| 353 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 354 DGenes = merge(DGenes, TotalPerSample, by="Sample") | |
| 355 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | |
| 356 DPlot = ggplot(DGenes) | |
| 357 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 358 ggtitle("Distribution of D gene families") + | |
| 359 ylab("Percentage of sequences") + | |
| 360 scale_fill_manual(values=sample.colors) + | |
| 361 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 362 png("DFPlot.png") | |
| 363 print(DPlot) | |
| 364 dev.off(); | |
| 365 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 366 } | |
| 367 | |
| 368 # ---------------------- Plotting the cdr3 length ---------------------- | |
| 369 | |
| 370 print("Report Clonality - CDR3 length plot") | |
| 371 | |
| 372 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length")]) | |
| 373 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 374 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | |
| 375 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | |
| 376 CDR3LengthPlot = ggplot(CDR3Length) | |
| 377 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = factor(reorder(CDR3.Length, as.numeric(CDR3.Length))), y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 378 ggtitle("Length distribution of CDR3") + | |
| 379 xlab("CDR3 Length") + | |
| 380 ylab("Percentage of sequences") + | |
| 381 scale_fill_manual(values=sample.colors) + | |
| 382 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 383 png("CDR3LengthPlot.png",width = 1280, height = 720) | |
| 384 CDR3LengthPlot | |
| 385 dev.off() | |
| 386 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 387 | |
| 388 # ---------------------- Plot the heatmaps ---------------------- | |
| 389 | |
| 390 #get the reverse order for the V and D genes | |
| 391 revVchain = Vchain | |
| 392 revDchain = Dchain | |
| 393 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
| 394 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
| 395 | |
| 396 if(useD){ | |
| 397 print("Report Clonality - Heatmaps VD") | |
| 398 plotVD <- function(dat){ | |
| 399 if(length(dat[,1]) == 0){ | |
| 400 return() | |
| 401 } | |
| 402 | |
| 403 img = ggplot() + | |
| 404 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
| 405 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 406 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 407 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 408 xlab("D genes") + | |
| 409 ylab("V Genes") + | |
| 410 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
| 411 | |
| 412 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
| 413 print(img) | |
| 414 dev.off() | |
| 415 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 416 } | |
| 417 | |
| 418 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
| 419 | |
| 420 VandDCount$l = log(VandDCount$Length) | |
| 421 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
| 422 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
| 423 VandDCount$relLength = VandDCount$l / VandDCount$max | |
| 424 check = is.nan(VandDCount$relLength) | |
| 425 if(any(check)){ | |
| 426 VandDCount[check,"relLength"] = 0 | |
| 427 } | |
| 428 | |
| 429 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name) | |
| 430 | |
| 431 completeVD = merge(VandDCount, cartegianProductVD, by.x=c("Top.V.Gene", "Top.D.Gene"), by.y=c("Top.V.Gene", "Top.D.Gene"), all=TRUE) | |
| 432 | |
| 433 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 434 | |
| 435 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 436 | |
| 437 fltr = is.nan(completeVD$relLength) | |
| 438 if(all(fltr)){ | |
| 439 completeVD[fltr,"relLength"] = 0 | |
| 440 } | |
| 441 | |
| 442 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
| 443 lapply(VDList, FUN=plotVD) | |
| 444 } | |
| 445 | |
| 446 print("Report Clonality - Heatmaps VJ") | |
| 447 | |
| 448 plotVJ <- function(dat){ | |
| 449 if(length(dat[,1]) == 0){ | |
| 450 return() | |
| 451 } | |
| 452 cat(paste(unique(dat[3])[1,1])) | |
| 453 img = ggplot() + | |
| 454 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
| 455 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 456 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 457 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 458 xlab("J genes") + | |
| 459 ylab("V Genes") + | |
| 460 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
| 461 | |
| 462 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
| 463 print(img) | |
| 464 dev.off() | |
| 465 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 466 } | |
| 467 | |
| 468 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
| 469 | |
| 470 VandJCount$l = log(VandJCount$Length) | |
| 471 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
| 472 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
| 473 VandJCount$relLength = VandJCount$l / VandJCount$max | |
| 474 | |
| 475 check = is.nan(VandJCount$relLength) | |
| 476 if(any(check)){ | |
| 477 VandJCount[check,"relLength"] = 0 | |
| 478 } | |
| 479 | |
| 480 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name) | |
| 481 | |
| 482 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
| 483 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 484 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 485 | |
| 486 fltr = is.nan(completeVJ$relLength) | |
| 487 if(any(fltr)){ | |
| 488 completeVJ[fltr,"relLength"] = 1 | |
| 489 } | |
| 490 | |
| 491 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
| 492 lapply(VJList, FUN=plotVJ) | |
| 493 | |
| 494 | |
| 495 | |
| 496 if(useD){ | |
| 497 print("Report Clonality - Heatmaps DJ") | |
| 498 plotDJ <- function(dat){ | |
| 499 if(length(dat[,1]) == 0){ | |
| 500 return() | |
| 501 } | |
| 502 img = ggplot() + | |
| 503 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
| 504 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 505 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 506 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 507 xlab("J genes") + | |
| 508 ylab("D Genes") + | |
| 509 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
| 510 | |
| 511 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
| 512 print(img) | |
| 513 dev.off() | |
| 514 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 515 } | |
| 516 | |
| 517 | |
| 518 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
| 519 | |
| 520 DandJCount$l = log(DandJCount$Length) | |
| 521 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
| 522 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
| 523 DandJCount$relLength = DandJCount$l / DandJCount$max | |
| 524 | |
| 525 check = is.nan(DandJCount$relLength) | |
| 526 if(any(check)){ | |
| 527 DandJCount[check,"relLength"] = 0 | |
| 528 } | |
| 529 | |
| 530 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name) | |
| 531 | |
| 532 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
| 533 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 534 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 535 | |
| 536 fltr = is.nan(completeDJ$relLength) | |
| 537 if(any(fltr)){ | |
| 538 completeDJ[fltr, "relLength"] = 1 | |
| 539 } | |
| 540 | |
| 541 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
| 542 lapply(DJList, FUN=plotDJ) | |
| 543 } | |
| 544 | |
| 545 | |
| 546 # ---------------------- output tables for the circos plots ---------------------- | |
| 547 | |
| 548 print("Report Clonality - Circos data") | |
| 549 | |
| 550 for(smpl in unique(PRODF$Sample)){ | |
| 551 PRODF.sample = PRODF[PRODF$Sample == smpl,] | |
| 552 | |
| 553 fltr = PRODF.sample$Top.V.Gene == "" | |
| 554 if(any(fltr, na.rm=T)){ | |
| 555 PRODF.sample[fltr, "Top.V.Gene"] = "NA" | |
| 556 } | |
| 557 | |
| 558 fltr = PRODF.sample$Top.D.Gene == "" | |
| 559 if(any(fltr, na.rm=T)){ | |
| 560 PRODF.sample[fltr, "Top.D.Gene"] = "NA" | |
| 561 } | |
| 562 | |
| 563 fltr = PRODF.sample$Top.J.Gene == "" | |
| 564 if(any(fltr, na.rm=T)){ | |
| 565 PRODF.sample[fltr, "Top.J.Gene"] = "NA" | |
| 566 } | |
| 567 | |
| 568 v.d = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.D.Gene) | |
| 569 v.j = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.J.Gene) | |
| 570 d.j = table(PRODF.sample$Top.D.Gene, PRODF.sample$Top.J.Gene) | |
| 571 | |
| 572 write.table(v.d, file=paste(smpl, "_VD_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 573 write.table(v.j, file=paste(smpl, "_VJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 574 write.table(d.j, file=paste(smpl, "_DJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 575 } | |
| 576 | |
| 577 # ---------------------- calculating the clonality score ---------------------- | |
| 578 | |
| 579 if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available | |
| 580 { | |
| 581 print("Report Clonality - Clonality") | |
| 582 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 583 if(clonality_method == "boyd"){ | |
| 584 samples = split(clonalityFrame, clonalityFrame$Sample, drop=T) | |
| 585 | |
| 586 for (sample in samples){ | |
| 587 res = data.frame(paste=character(0)) | |
| 588 sample_id = unique(sample$Sample)[[1]] | |
| 589 for(replicate in unique(sample$Replicate)){ | |
| 590 tmp = sample[sample$Replicate == replicate,] | |
| 591 clone_table = data.frame(table(tmp$clonaltype)) | |
| 592 clone_col_name = paste("V", replicate, sep="") | |
| 593 colnames(clone_table) = c("paste", clone_col_name) | |
| 594 res = merge(res, clone_table, by="paste", all=T) | |
| 595 } | |
| 596 | |
| 597 res[is.na(res)] = 0 | |
| 598 infer.result = infer.clonality(as.matrix(res[,2:ncol(res)])) | |
| 599 | |
| 600 #print(infer.result) | |
| 601 | |
| 602 write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F) | |
| 603 | |
| 604 res$type = rowSums(res[,2:ncol(res)]) | |
| 605 | |
| 606 coincidence.table = data.frame(table(res$type)) | |
| 607 colnames(coincidence.table) = c("Coincidence Type", "Raw Coincidence Freq") | |
| 608 write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
| 609 } | |
| 610 } else { | |
| 611 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")]) | |
| 612 | |
| 613 #write files for every coincidence group of >1 | |
| 614 samples = unique(clonalFreq$Sample) | |
| 615 for(sample in samples){ | |
| 616 clonalFreqSample = clonalFreq[clonalFreq$Sample == sample,] | |
| 617 if(max(clonalFreqSample$Type) > 1){ | |
| 618 for(i in 2:max(clonalFreqSample$Type)){ | |
| 619 clonalFreqSampleType = clonalFreqSample[clonalFreqSample$Type == i,] | |
| 620 clonalityFrame.sub = clonalityFrame[clonalityFrame$clonaltype %in% clonalFreqSampleType$clonaltype,] | |
| 621 clonalityFrame.sub = clonalityFrame.sub[order(clonalityFrame.sub$clonaltype),] | |
| 622 write.table(clonalityFrame.sub, file=paste("coincidences_", sample, "_", i, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
| 623 } | |
| 624 } | |
| 625 } | |
| 626 | |
| 627 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
| 628 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
| 629 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
| 630 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
| 631 | |
| 632 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
| 633 tcct = textConnection(ct) | |
| 634 CT = read.table(tcct, sep="\t", header=TRUE) | |
| 635 close(tcct) | |
| 636 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
| 637 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
| 638 | |
| 639 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")]) | |
| 640 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
| 641 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
| 642 ReplicateReads$Reads = as.numeric(ReplicateReads$Reads) | |
| 643 ReplicateReads$squared = as.numeric(ReplicateReads$Reads * ReplicateReads$Reads) | |
| 644 | |
| 645 ReplicatePrint <- function(dat){ | |
| 646 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 647 } | |
| 648 | |
| 649 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 650 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
| 651 | |
| 652 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")]) | |
| 653 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
| 654 | |
| 655 ReplicateSumPrint <- function(dat){ | |
| 656 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 657 } | |
| 658 | |
| 659 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 660 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
| 661 | |
| 662 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
| 663 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
| 664 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
| 665 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
| 666 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
| 667 | |
| 668 ClonalityScorePrint <- function(dat){ | |
| 669 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 670 } | |
| 671 | |
| 672 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
| 673 clonalityScore = unique(clonalityScore) | |
| 674 | |
| 675 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
| 676 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
| 677 | |
| 678 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
| 679 | |
| 680 | |
| 681 | |
| 682 ClonalityOverviewPrint <- function(dat){ | |
| 683 dat = dat[order(dat[,2]),] | |
| 684 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 685 } | |
| 686 | |
| 687 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
| 688 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
| 689 } | |
| 690 } | |
| 691 | |
| 692 bak = PRODF | |
| 693 | |
| 694 imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb") | |
| 695 if(all(imgtcolumns %in% colnames(inputdata))) | |
| 696 { | |
| 697 print("found IMGT columns, running junction analysis") | |
| 698 | |
| 699 if(locus %in% c("IGK","IGL", "TRA", "TRG")){ | |
| 700 print("VJ recombination, no filtering on absent D") | |
| 701 } else { | |
| 702 print("VDJ recombination, using N column for junction analysis") | |
| 703 fltr = nchar(PRODF$Top.D.Gene) < 4 | |
| 704 print(paste("Removing", sum(fltr), "sequences without a identified D")) | |
| 705 PRODF = PRODF[!fltr,] | |
| 706 } | |
| 707 | |
| 708 | |
| 709 #ensure certain columns are in the data (files generated with older versions of IMGT Loader) | |
| 710 col.checks = c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb") | |
| 711 for(col.check in col.checks){ | |
| 712 if(!(col.check %in% names(PRODF))){ | |
| 713 print(paste(col.check, "not found adding new column")) | |
| 714 if(nrow(PRODF) > 0){ #because R is anoying... | |
| 715 PRODF[,col.check] = 0 | |
| 716 } else { | |
| 717 PRODF = cbind(PRODF, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0))) | |
| 718 } | |
| 719 if(nrow(UNPROD) > 0){ | |
| 720 UNPROD[,col.check] = 0 | |
| 721 } else { | |
| 722 UNPROD = cbind(UNPROD, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0))) | |
| 723 } | |
| 724 } | |
| 725 } | |
| 726 | |
| 727 num_median = function(x, na.rm=T) { as.numeric(median(x, na.rm=na.rm)) } | |
| 728 | |
| 729 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
| 730 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 731 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
| 732 N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
| 733 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
| 734 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 735 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 736 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
| 737 N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 738 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
| 739 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 740 Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
| 741 Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 742 Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
| 743 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
| 744 by=c("Sample")]) | |
| 745 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 746 write.table(newData, "junctionAnalysisProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 747 | |
| 748 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
| 749 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 750 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
| 751 N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
| 752 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
| 753 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 754 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 755 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
| 756 N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 757 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
| 758 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 759 Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
| 760 Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 761 Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
| 762 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
| 763 by=c("Sample")]) | |
| 764 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 765 write.table(newData, "junctionAnalysisProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 766 | |
| 767 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
| 768 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 769 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
| 770 N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
| 771 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
| 772 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 773 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 774 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
| 775 N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 776 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
| 777 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 778 Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
| 779 Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 780 Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
| 781 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
| 782 by=c("Sample")]) | |
| 783 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 784 write.table(newData, "junctionAnalysisUnProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 785 | |
| 786 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
| 787 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 788 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
| 789 N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
| 790 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
| 791 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 792 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 793 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
| 794 N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 795 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
| 796 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 797 Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
| 798 Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
| 799 Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
| 800 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
| 801 by=c("Sample")]) | |
| 802 | |
| 803 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 804 write.table(newData, "junctionAnalysisUnProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 805 } | |
| 806 | |
| 807 PRODF = bak | |
| 808 | |
| 809 | |
| 810 # ---------------------- D reading frame ---------------------- | |
| 811 | |
| 812 D.REGION.reading.frame = PRODF[,c("Sample", "D.REGION.reading.frame")] | |
| 813 | |
| 814 chck = is.na(D.REGION.reading.frame$D.REGION.reading.frame) | |
| 815 if(any(chck)){ | |
| 816 D.REGION.reading.frame[chck,"D.REGION.reading.frame"] = "No D" | |
| 817 } | |
| 818 | |
| 819 D.REGION.reading.frame = data.frame(data.table(D.REGION.reading.frame)[, list(Freq=.N), by=c("Sample", "D.REGION.reading.frame")]) | |
| 820 | |
| 821 write.table(D.REGION.reading.frame, "DReadingFrame.csv" , sep="\t",quote=F,row.names=F,col.names=T) | |
| 822 | |
| 823 D.REGION.reading.frame = ggplot(D.REGION.reading.frame) | |
| 824 D.REGION.reading.frame = D.REGION.reading.frame + geom_bar(aes( x = D.REGION.reading.frame, y = Freq, fill=Sample), stat='identity', position='dodge' ) + ggtitle("D reading frame") + xlab("Frequency") + ylab("Frame") | |
| 825 D.REGION.reading.frame = D.REGION.reading.frame + scale_fill_manual(values=sample.colors) | |
| 826 D.REGION.reading.frame = D.REGION.reading.frame + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 827 | |
| 828 png("DReadingFrame.png") | |
| 829 D.REGION.reading.frame | |
| 830 dev.off() | |
| 831 | |
| 832 | |
| 833 | |
| 834 | |
| 835 # ---------------------- AA composition in CDR3 ---------------------- | |
| 836 | |
| 837 AACDR3 = PRODF[,c("Sample", "CDR3.Seq")] | |
| 838 | |
| 839 TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample]) | |
| 840 | |
| 841 AAfreq = list() | |
| 842 | |
| 843 for(i in 1:nrow(TotalPerSample)){ | |
| 844 sample = TotalPerSample$Sample[i] | |
| 845 AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), "")))) | |
| 846 AAfreq[[i]]$Sample = sample | |
| 847 } | |
| 848 | |
| 849 AAfreq = ldply(AAfreq, data.frame) | |
| 850 AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T) | |
| 851 AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100) | |
| 852 | |
| 853 | |
| 854 AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI") | |
| 855 AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE) | |
| 856 | |
| 857 AAfreq = AAfreq[!is.na(AAfreq$order.aa),] | |
| 858 | |
| 859 AAfreqplot = ggplot(AAfreq) | |
| 860 AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' ) | |
| 861 AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
| 862 AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
| 863 AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
| 864 AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
| 865 AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage") + scale_fill_manual(values=sample.colors) | |
| 866 AAfreqplot = AAfreqplot + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
| 867 | |
| 868 png("AAComposition.png",width = 1280, height = 720) | |
| 869 AAfreqplot | |
| 870 dev.off() | |
| 871 write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T) | |
| 872 | |
| 873 # ---------------------- AA median CDR3 length ---------------------- | |
| 874 | |
| 875 median.aa.l = data.frame(data.table(PRODF)[, list(median=as.double(median(.SD$CDR3.Length))), by=c("Sample")]) | |
| 876 write.table(median.aa.l, "AAMedianBySample.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 877 |
