changeset 28:798b62942b4b draft

Uploaded
author davidvanzessen
date Wed, 01 Mar 2017 10:41:30 -0500
parents b539aeb75980
children 1f83e14f173b
files imgt_loader/imgt_loader.r imgt_loader/imgt_loader.sh report_clonality/RScript.r.old report_clonality/RScript.r~ report_clonality/r_wrapper.sh.old report_clonality/r_wrapper.sh~
diffstat 6 files changed, 7 insertions(+), 2057 deletions(-) [+]
line wrap: on
line diff
--- a/imgt_loader/imgt_loader.r	Tue Feb 28 08:10:34 2017 -0500
+++ b/imgt_loader/imgt_loader.r	Wed Mar 01 10:41:30 2017 -0500
@@ -4,11 +4,13 @@
 sequences.file = args[2]
 aa.file = args[3]
 junction.file = args[4]
-out.file = args[5]
+gapped.aa.file = args[5]
+out.file = args[6]
 
 summ = read.table(summ.file, sep="\t", header=T, quote="", fill=T)
 sequences = read.table(sequences.file, sep="\t", header=T, quote="", fill=T)
 aa = read.table(aa.file, sep="\t", header=T, quote="", fill=T)
+gapped.aa = read.table(gapped.aa.file, sep="\t", header=T, quote="", fill=T)
 junction = read.table(junction.file, sep="\t", header=T, quote="", fill=T)
 
 old_summary_columns=c('Sequence.ID','JUNCTION.frame','V.GENE.and.allele','D.GENE.and.allele','J.GENE.and.allele','CDR1.IMGT.length','CDR2.IMGT.length','CDR3.IMGT.length','Orientation')
@@ -32,8 +34,8 @@
 out[,"CDR3.Seq"] = aa[,"CDR3.IMGT"]
 out[,"CDR3.Length"] = summ[,"CDR3.IMGT.length"]
 
-out[,"CDR3.Seq.DNA"] = sequences[,"CDR3.IMGT"]
-out[,"CDR3.Length.DNA"] = nchar(as.character(sequences[,"CDR3.IMGT"]))
+out[,"CDR3.Seq.DNA"] = gapped.aa[,"CDR3.IMGT"]
+out[,"CDR3.Length.DNA"] = nchar(as.character(out[,"CDR3.Seq.DNA"]))
 out[,"Strand"] = summ[,"Orientation"]
 out[,"CDR3.Found.How"] = "a"
 
--- a/imgt_loader/imgt_loader.sh	Tue Feb 28 08:10:34 2017 -0500
+++ b/imgt_loader/imgt_loader.sh	Wed Mar 01 10:41:30 2017 -0500
@@ -62,9 +62,10 @@
 fi
 find $PWD/$name/files -iname "1_*" -exec cat {} + > $PWD/$name/summ.txt
 find $PWD/$name/files -iname "3_*" -exec cat {} + > $PWD/$name/sequences.txt
+find $PWD/$name/files -iname "4_*" -exec cat {} + > $PWD/$name/gapped_aa.txt
 find $PWD/$name/files -iname "5_*" -exec cat {} + > $PWD/$name/aa.txt
 find $PWD/$name/files -iname "6_*" -exec cat {} + > $PWD/$name/junction.txt
 
 #python $dir/imgt_loader.py --summ $PWD/$name/summ.txt --aa $PWD/$name/aa.txt --junction $PWD/$name/junction.txt --output $output
 
-Rscript --verbose $dir/imgt_loader.r $PWD/$name/summ.txt $PWD/$name/sequences.txt $PWD/$name/aa.txt $PWD/$name/junction.txt $output 2>&1
+Rscript --verbose $dir/imgt_loader.r $PWD/$name/summ.txt $PWD/$name/sequences.txt $PWD/$name/aa.txt $PWD/$name/junction.txt $PWD/$name/gapped_aa.txt $output 2>&1
--- a/report_clonality/RScript.r.old	Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,877 +0,0 @@
-# ---------------------- load/install packages ----------------------
-
-if (!("gridExtra" %in% rownames(installed.packages()))) {
-  install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") 
-}
-library(gridExtra)
-if (!("ggplot2" %in% rownames(installed.packages()))) {
-  install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
-}
-library(ggplot2)
-if (!("plyr" %in% rownames(installed.packages()))) {
-  install.packages("plyr", repos="http://cran.xl-mirror.nl/") 
-}
-library(plyr)
-
-if (!("data.table" %in% rownames(installed.packages()))) {
-  install.packages("data.table", repos="http://cran.xl-mirror.nl/") 
-}
-library(data.table)
-
-if (!("reshape2" %in% rownames(installed.packages()))) {
-  install.packages("reshape2", repos="http://cran.xl-mirror.nl/")
-}
-library(reshape2)
-
-if (!("lymphclon" %in% rownames(installed.packages()))) {
-  install.packages("lymphclon", repos="http://cran.xl-mirror.nl/")
-}
-library(lymphclon)
-
-# ---------------------- parameters ----------------------
-
-args <- commandArgs(trailingOnly = TRUE)
-
-infile = args[1] #path to input file
-outfile = args[2] #path to output file
-outdir = args[3] #path to output folder (html/images/data)
-clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering
-ct = unlist(strsplit(clonaltype, ","))
-species = args[5] #human or mouse
-locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD
-filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no)
-clonality_method = args[8]
-
-
-# ---------------------- Data preperation ----------------------
-
-print("Report Clonality - Data preperation")
-
-inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="", stringsAsFactors=F)
-
-print(paste("nrows: ", nrow(inputdata)))
-
-setwd(outdir)
-
-# remove weird rows
-inputdata = inputdata[inputdata$Sample != "",]
-
-print(paste("nrows: ", nrow(inputdata)))
-
-#remove the allele from the V,D and J genes
-inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene)
-inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene)
-inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene)
-
-print(paste("nrows: ", nrow(inputdata)))
-
-#filter uniques
-inputdata.removed = inputdata[NULL,]
-
-print(paste("nrows: ", nrow(inputdata)))
-
-inputdata$clonaltype = 1:nrow(inputdata)
-
-#keep track of the count of sequences in samples or samples/replicates for the front page overview
-input.sample.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample")])
-input.rep.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample", "Replicate")])
-
-PRODF = inputdata
-UNPROD = inputdata
-if(filterproductive){
-  if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column
-    #PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ]
-    PRODF = inputdata[inputdata$Functionality %in% c("productive (see comment)","productive"),]
-    
-    PRODF.count = data.frame(data.table(PRODF)[, list(count=.N), by=c("Sample")])
-    
-    UNPROD = inputdata[inputdata$Functionality %in% c("unproductive (see comment)","unproductive"), ]
-  } else {
-    PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ]
-    UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ]
-  }
-}
-
-for(i in 1:nrow(UNPROD)){
-    if(!is.numeric(UNPROD[i,"CDR3.Length"])){
-        UNPROD[i,"CDR3.Length"] = 0
-    }
-}
-
-prod.sample.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample")])
-prod.rep.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample", "Replicate")])
-
-unprod.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample")])
-unprod.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample", "Replicate")])
-
-clonalityFrame = PRODF
-
-#remove duplicates based on the clonaltype
-if(clonaltype != "none"){
-  clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples
-  PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  PRODF = PRODF[!duplicated(PRODF$clonaltype), ]
-    
-  UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ]
-  
-  #again for clonalityFrame but with sample+replicate
-  clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":"))
-  clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ]
-}
-
-print("SAMPLE TABLE:")
-print(table(PRODF$Sample))
-
-prod.unique.sample.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample")])
-prod.unique.rep.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample", "Replicate")])
-
-unprod.unique.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample")])
-unprod.unique.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample", "Replicate")])
-
-PRODF$freq = 1
-
-if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*"
-  PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
-  PRODF$freq = gsub("_.*", "", PRODF$freq)
-  PRODF$freq = as.numeric(PRODF$freq)
-  if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence
-    PRODF$freq = 1
-  }
-}
-
-#make a names list with sample -> color
-naive.colors = c('blue4', 'darkred', 'olivedrab3', 'red', 'gray74', 'darkviolet', 'lightblue1', 'gold', 'chartreuse2', 'pink', 'Paleturquoise3', 'Chocolate1', 'Yellow', 'Deeppink3', 'Mediumorchid1', 'Darkgreen', 'Blue', 'Gray36', 'Hotpink', 'Yellow4')
-unique.samples = unique(PRODF$Sample)
-
-if(length(unique.samples) <= length(naive.colors)){
-	sample.colors = naive.colors[1:length(unique.samples)]
-} else {
-	sample.colors = rainbow(length(unique.samples))
-}
-
-names(sample.colors) = unique.samples
-
-print("Sample.colors")
-print(sample.colors)
-
-
-#write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive
-write.table(PRODF, "allUnique.txt", sep="\t",quote=F,row.names=F,col.names=T)
-write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
-write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-#write the samples to a file
-sampleFile <- file("samples.txt")
-un = unique(inputdata$Sample)
-un = paste(un, sep="\n")
-writeLines(un, sampleFile)
-close(sampleFile)
-
-# ---------------------- Counting the productive/unproductive and unique sequences ----------------------
-
-print("Report Clonality - counting productive/unproductive/unique")
-
-#create the table on the overview page with the productive/unique counts per sample/replicate
-#first for sample
-sample.count = merge(input.sample.count, prod.sample.count, by="Sample", all.x=T)
-sample.count$perc_prod = round(sample.count$Productive / sample.count$All * 100)
-sample.count = merge(sample.count, prod.unique.sample.count, by="Sample", all.x=T)
-sample.count$perc_prod_un = round(sample.count$Productive_unique / sample.count$All * 100)
-
-sample.count = merge(sample.count , unprod.sample.count, by="Sample", all.x=T)
-sample.count$perc_unprod = round(sample.count$Unproductive / sample.count$All * 100)
-sample.count = merge(sample.count, unprod.unique.sample.count, by="Sample", all.x=T)
-sample.count$perc_unprod_un = round(sample.count$Unproductive_unique / sample.count$All * 100)
-
-#then sample/replicate
-rep.count = merge(input.rep.count, prod.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_prod = round(rep.count$Productive / rep.count$All * 100)
-rep.count = merge(rep.count, prod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_prod_un = round(rep.count$Productive_unique / rep.count$All * 100)
-
-rep.count = merge(rep.count, unprod.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_unprod = round(rep.count$Unproductive / rep.count$All * 100)
-rep.count = merge(rep.count, unprod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_unprod_un = round(rep.count$Unproductive_unique / rep.count$All * 100)
-
-rep.count$Sample = paste(rep.count$Sample, rep.count$Replicate, sep="_")
-rep.count = rep.count[,names(rep.count) != "Replicate"]
-
-count = rbind(sample.count, rep.count)
-
-
-
-write.table(x=count, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F)
-
-# ---------------------- V+J+CDR3 sequence count ----------------------
-
-VJCDR3.count = data.frame(table(clonalityFrame$Top.V.Gene, clonalityFrame$Top.J.Gene, clonalityFrame$CDR3.Seq.DNA))
-names(VJCDR3.count) = c("Top.V.Gene", "Top.J.Gene", "CDR3.Seq.DNA", "Count")
-
-VJCDR3.count = VJCDR3.count[VJCDR3.count$Count > 0,]
-VJCDR3.count = VJCDR3.count[order(-VJCDR3.count$Count),]
-
-write.table(x=VJCDR3.count, file="VJCDR3_count.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Frequency calculation for V, D and J ----------------------
-
-print("Report Clonality - frequency calculation V, D and J")
-
-PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
-Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
-Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
-Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
-
-# ---------------------- Setting up the gene names for the different species/loci ----------------------
-
-print("Report Clonality - getting genes for species/loci")
-
-Vchain = ""
-Dchain = ""
-Jchain = ""
-
-if(species == "custom"){
-	print("Custom genes: ")
-	splt = unlist(strsplit(locus, ";"))
-	print(paste("V:", splt[1]))
-	print(paste("D:", splt[2]))
-	print(paste("J:", splt[3]))
-	
-	Vchain = unlist(strsplit(splt[1], ","))
-	Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain))
-	
-	Dchain = unlist(strsplit(splt[2], ","))
-	if(length(Dchain) > 0){
-		Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain))
-	} else {
-		Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0))
-	}
-	
-	Jchain = unlist(strsplit(splt[3], ","))
-	Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain))
-
-} else {
-	genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="")
-
-	Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Vchain) = c("v.name", "chr.orderV")
-	Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Dchain) = c("v.name", "chr.orderD")
-	Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Jchain) = c("v.name", "chr.orderJ")
-}
-useD = TRUE
-if(nrow(Dchain) == 0){
-  useD = FALSE
-  cat("No D Genes in this species/locus")
-}
-print(paste(nrow(Vchain), "genes in V"))
-print(paste(nrow(Dchain), "genes in D"))
-print(paste(nrow(Jchain), "genes in J"))
-
-# ---------------------- merge with the frequency count ----------------------
-
-PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
-
-# ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ----------------------
-
-print("Report Clonality - V, D and J frequency plots")
-
-pV = ggplot(PRODFV)
-pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") + scale_fill_manual(values=sample.colors)
-pV = pV + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("VPlot.png",width = 1280, height = 720)
-pV
-dev.off();
-
-if(useD){
-  pD = ggplot(PRODFD)
-  pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-  pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + scale_fill_manual(values=sample.colors)
-  pD = pD + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-  write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-  
-  png("DPlot.png",width = 800, height = 600)
-  print(pD)
-  dev.off();
-}
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") + scale_fill_manual(values=sample.colors)
-pJ = pJ + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-# ---------------------- Now the frequency plots of the V, D and J families ----------------------
-
-print("Report Clonality - V, D and J family plots")
-
-VGenes = PRODF[,c("Sample", "Top.V.Gene")]
-VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
-VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
-TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
-VGenes = merge(VGenes, TotalPerSample, by="Sample")
-VGenes$Frequency = VGenes$Count * 100 / VGenes$total
-VPlot = ggplot(VGenes)
-VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-  ggtitle("Distribution of V gene families") + 
-  ylab("Percentage of sequences") +
-  scale_fill_manual(values=sample.colors) +
-  theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-png("VFPlot.png")
-VPlot
-dev.off();
-write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-if(useD){
-  DGenes = PRODF[,c("Sample", "Top.D.Gene")]
-  DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
-  DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
-  TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
-  DGenes = merge(DGenes, TotalPerSample, by="Sample")
-  DGenes$Frequency = DGenes$Count * 100 / DGenes$total
-  DPlot = ggplot(DGenes)
-  DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-    ggtitle("Distribution of D gene families") + 
-    ylab("Percentage of sequences") + 
-    scale_fill_manual(values=sample.colors) +
-    theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-  png("DFPlot.png")
-  print(DPlot)
-  dev.off();
-  write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-}
-
-# ---------------------- Plotting the cdr3 length ----------------------
-
-print("Report Clonality - CDR3 length plot")
-
-CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length")])
-TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
-CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
-CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
-CDR3LengthPlot = ggplot(CDR3Length)
-CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = factor(reorder(CDR3.Length, as.numeric(CDR3.Length))), y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-  ggtitle("Length distribution of CDR3") + 
-  xlab("CDR3 Length") + 
-  ylab("Percentage of sequences") +
-  scale_fill_manual(values=sample.colors) +
-  theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-png("CDR3LengthPlot.png",width = 1280, height = 720)
-CDR3LengthPlot
-dev.off()
-write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plot the heatmaps ----------------------
-
-#get the reverse order for the V and D genes
-revVchain = Vchain
-revDchain = Dchain
-revVchain$chr.orderV = rev(revVchain$chr.orderV)
-revDchain$chr.orderD = rev(revDchain$chr.orderD)
-
-if(useD){
-  print("Report Clonality - Heatmaps VD")
-  plotVD <- function(dat){
-    if(length(dat[,1]) == 0){
-      return()
-    }
-    
-    img = ggplot() + 
-      geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-      xlab("D genes") + 
-      ylab("V Genes") +
-      theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-    
-    png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
-    print(img)
-    dev.off()
-    write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-  }
-  
-  VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
-  
-  VandDCount$l = log(VandDCount$Length)
-  maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
-  VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
-  VandDCount$relLength = VandDCount$l / VandDCount$max
-  check = is.nan(VandDCount$relLength)
-  if(any(check)){
-	VandDCount[check,"relLength"] = 0
-  }
-  
-  cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name)
-  
-  completeVD = merge(VandDCount, cartegianProductVD, by.x=c("Top.V.Gene", "Top.D.Gene"), by.y=c("Top.V.Gene", "Top.D.Gene"), all=TRUE)
- 
-  completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
- 
-  completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-  
-  fltr = is.nan(completeVD$relLength)
-  if(all(fltr)){
-	  completeVD[fltr,"relLength"] = 0
-  }
-  
-  VDList = split(completeVD, f=completeVD[,"Sample"])
-  lapply(VDList, FUN=plotVD)
-}
-
-print("Report Clonality - Heatmaps VJ")
-
-plotVJ <- function(dat){
-  if(length(dat[,1]) == 0){
-    return()
-  }
-  cat(paste(unique(dat[3])[1,1]))
-  img = ggplot() + 
-    geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-    theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-    scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-    ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-    xlab("J genes") + 
-    ylab("V Genes") +
-    theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-  
-  png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
-  print(img)
-  dev.off()
-  write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-}
-
-VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
-
-VandJCount$l = log(VandJCount$Length)
-maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
-VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
-VandJCount$relLength = VandJCount$l / VandJCount$max
-
-check = is.nan(VandJCount$relLength)
-if(any(check)){
-	VandJCount[check,"relLength"] = 0
-}
-
-cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name)
-
-completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
-completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-
-fltr = is.nan(completeVJ$relLength)
-if(any(fltr)){
-	completeVJ[fltr,"relLength"] = 1
-}
-
-VJList = split(completeVJ, f=completeVJ[,"Sample"])
-lapply(VJList, FUN=plotVJ)
-
-
-
-if(useD){
-  print("Report Clonality - Heatmaps DJ")	
-  plotDJ <- function(dat){
-    if(length(dat[,1]) == 0){
-      return()
-    }
-    img = ggplot() + 
-      geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + 
-      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-      xlab("J genes") + 
-      ylab("D Genes") +
-      theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-    
-    png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
-    print(img)
-    dev.off()
-    write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-  }
-  
-  
-  DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
-  
-  DandJCount$l = log(DandJCount$Length)
-  maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
-  DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
-  DandJCount$relLength = DandJCount$l / DandJCount$max
-  
-  check = is.nan(DandJCount$relLength)
-  if(any(check)){
-    DandJCount[check,"relLength"] = 0
-  }
-  
-  cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name)
-  
-  completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
-  completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-  completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-  
-  fltr = is.nan(completeDJ$relLength)
-  if(any(fltr)){
-	  completeDJ[fltr, "relLength"] = 1
-  }
-  
-  DJList = split(completeDJ, f=completeDJ[,"Sample"])
-  lapply(DJList, FUN=plotDJ)
-}
-
-
-# ---------------------- output tables for the circos plots ----------------------
-
-print("Report Clonality - Circos data")
-
-for(smpl in unique(PRODF$Sample)){
-	PRODF.sample = PRODF[PRODF$Sample == smpl,]
-	
-	fltr = PRODF.sample$Top.V.Gene == ""
-	if(any(fltr, na.rm=T)){
-	  PRODF.sample[fltr, "Top.V.Gene"] = "NA"
-	}
-	
-	fltr = PRODF.sample$Top.D.Gene == ""
-	if(any(fltr, na.rm=T)){
-	  PRODF.sample[fltr, "Top.D.Gene"] = "NA"
-	}
-
-	fltr = PRODF.sample$Top.J.Gene == ""
-	if(any(fltr, na.rm=T)){
-	  PRODF.sample[fltr, "Top.J.Gene"] = "NA"
-	}
-	
-	v.d = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.D.Gene)
-	v.j = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.J.Gene)
-	d.j = table(PRODF.sample$Top.D.Gene, PRODF.sample$Top.J.Gene)
-
-	write.table(v.d, file=paste(smpl, "_VD_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
-	write.table(v.j, file=paste(smpl, "_VJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
-	write.table(d.j, file=paste(smpl, "_DJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
-}
-
-# ---------------------- calculating the clonality score ----------------------
-
-if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available
-{
-  print("Report Clonality - Clonality")
-  write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
-  if(clonality_method == "boyd"){
-    samples = split(clonalityFrame, clonalityFrame$Sample, drop=T)
-   
-    for (sample in samples){
-      res = data.frame(paste=character(0))
-      sample_id = unique(sample$Sample)[[1]]
-      for(replicate in unique(sample$Replicate)){
-        tmp = sample[sample$Replicate == replicate,]
-        clone_table = data.frame(table(tmp$clonaltype))
-        clone_col_name = paste("V", replicate, sep="")
-        colnames(clone_table) = c("paste", clone_col_name)
-        res = merge(res, clone_table, by="paste", all=T)
-      }
-      
-      res[is.na(res)] = 0      
-      infer.result = infer.clonality(as.matrix(res[,2:ncol(res)]))
-      
-      #print(infer.result)
-      
-      write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F)
-      
-      res$type = rowSums(res[,2:ncol(res)])
-      
-      coincidence.table = data.frame(table(res$type))
-      colnames(coincidence.table) = c("Coincidence Type",  "Raw Coincidence Freq")
-      write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
-    }
-  } else {
-    clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")])
-    
-    #write files for every coincidence group of >1
-    samples = unique(clonalFreq$Sample)
-    for(sample in samples){
-		clonalFreqSample = clonalFreq[clonalFreq$Sample == sample,]
-		if(max(clonalFreqSample$Type) > 1){
-			for(i in 2:max(clonalFreqSample$Type)){
-				clonalFreqSampleType = clonalFreqSample[clonalFreqSample$Type == i,]
-				clonalityFrame.sub = clonalityFrame[clonalityFrame$clonaltype %in% clonalFreqSampleType$clonaltype,]
-				clonalityFrame.sub = clonalityFrame.sub[order(clonalityFrame.sub$clonaltype),]
-				write.table(clonalityFrame.sub, file=paste("coincidences_", sample, "_", i, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-			}
-		}
-	}
-	
-    clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
-    clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
-    clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
-    
-    ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
-    tcct = textConnection(ct)
-    CT  = read.table(tcct, sep="\t", header=TRUE)
-    close(tcct)
-    clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
-    clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
-    
-    ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")])
-    ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
-    clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
-    ReplicateReads$Reads = as.numeric(ReplicateReads$Reads)
-    ReplicateReads$squared = as.numeric(ReplicateReads$Reads * ReplicateReads$Reads)
-    
-    ReplicatePrint <- function(dat){
-      write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-    lapply(ReplicateSplit, FUN=ReplicatePrint)
-    
-    ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
-    
-    ReplicateSumPrint <- function(dat){
-      write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-    lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
-    
-    clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
-    clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
-    clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
-    clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
-    
-    ClonalityScorePrint <- function(dat){
-      write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    clonalityScore = clonalFreqCount[c("Sample", "Result")]
-    clonalityScore = unique(clonalityScore)
-    
-    clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
-    lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
-    
-    clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
-    
-    
-    
-    ClonalityOverviewPrint <- function(dat){
-	  dat = dat[order(dat[,2]),]
-      write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
-    lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
-  }
-}
-
-bak = PRODF
-
-imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb")
-if(all(imgtcolumns %in% colnames(inputdata)))
-{
-  print("found IMGT columns, running junction analysis")
-  
-  if(locus %in% c("IGK","IGL", "TRA", "TRG")){
-	  print("VJ recombination, no filtering on absent D")
-  } else {
-	  print("VDJ recombination, using N column for junction analysis")
-	  fltr = nchar(PRODF$Top.D.Gene) < 4
-	  print(paste("Removing", sum(fltr), "sequences without a identified D"))
-	  PRODF = PRODF[!fltr,]
-  }
-  
-  
-  #ensure certain columns are in the data (files generated with older versions of IMGT Loader)
-  col.checks = c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb")
-  for(col.check in col.checks){
-	  if(!(col.check %in% names(PRODF))){
-		  print(paste(col.check, "not found adding new column"))
-		  if(nrow(PRODF) > 0){ #because R is anoying...
-			PRODF[,col.check] = 0
-		  } else {
-			PRODF = cbind(PRODF, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0)))
-		  }
-		  if(nrow(UNPROD) > 0){
-			UNPROD[,col.check] = 0
-		  } else {
-			UNPROD = cbind(UNPROD, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0)))
-		  }
-	  }
-  }
-  
-  num_median = function(x, na.rm=T) { as.numeric(median(x, na.rm=na.rm)) }
-  
-  newData = data.frame(data.table(PRODF)[,list(unique=.N, 
-                                               VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                               P1=mean(.SD$P3V.nt.nb, na.rm=T),
-                                               N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
-                                               P2=mean(.SD$P5D.nt.nb, na.rm=T),
-                                               DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                               DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                               P3=mean(.SD$P3D.nt.nb, na.rm=T),
-                                               N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                               P4=mean(.SD$P5J.nt.nb, na.rm=T),
-                                               DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-                                               Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
-                                               Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                               Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
-                                               Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
-                                         by=c("Sample")])
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-  
-  newData = data.frame(data.table(PRODF)[,list(unique=.N, 
-                                               VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                               P1=num_median(.SD$P3V.nt.nb, na.rm=T),
-                                               N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
-                                               P2=num_median(.SD$P5D.nt.nb, na.rm=T),
-                                               DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                               DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                               P3=num_median(.SD$P3D.nt.nb, na.rm=T),
-                                               N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                               P4=num_median(.SD$P5J.nt.nb, na.rm=T),
-                                               DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-											   Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
-											   Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-											   Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
-											   Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
-                                         by=c("Sample")])
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-  
-  newData = data.frame(data.table(UNPROD)[,list(unique=.N, 
-                                                VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                                P1=mean(.SD$P3V.nt.nb, na.rm=T),
-                                                N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
-                                                P2=mean(.SD$P5D.nt.nb, na.rm=T),
-                                                DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                                DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                                P3=mean(.SD$P3D.nt.nb, na.rm=T),
-                                                N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                                P4=mean(.SD$P5J.nt.nb, na.rm=T),
-                                                DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-                                                Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
-                                                Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                                Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
-                                                Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
-                                          by=c("Sample")])
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisUnProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-  
-    newData = data.frame(data.table(UNPROD)[,list(unique=.N, 
-                                                VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                                P1=num_median(.SD$P3V.nt.nb, na.rm=T),
-                                                N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
-                                                P2=num_median(.SD$P5D.nt.nb, na.rm=T),
-                                                DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                                DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                                P3=num_median(.SD$P3D.nt.nb, na.rm=T),
-                                                N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                                P4=num_median(.SD$P5J.nt.nb, na.rm=T),
-                                                DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-                                                Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
-                                                Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
-                                                Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
-                                                Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
-															by=c("Sample")])
-															
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisUnProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-}
-
-PRODF = bak
-
-
-# ---------------------- D reading frame ----------------------
-
-D.REGION.reading.frame = PRODF[,c("Sample", "D.REGION.reading.frame")]
-
-chck = is.na(D.REGION.reading.frame$D.REGION.reading.frame)
-if(any(chck)){
-	D.REGION.reading.frame[chck,"D.REGION.reading.frame"] = "No D"
-}
-
-D.REGION.reading.frame = data.frame(data.table(D.REGION.reading.frame)[, list(Freq=.N), by=c("Sample", "D.REGION.reading.frame")])
-
-write.table(D.REGION.reading.frame, "DReadingFrame.csv" , sep="\t",quote=F,row.names=F,col.names=T)
-
-D.REGION.reading.frame = ggplot(D.REGION.reading.frame)
-D.REGION.reading.frame = D.REGION.reading.frame + geom_bar(aes( x = D.REGION.reading.frame, y = Freq, fill=Sample), stat='identity', position='dodge' ) + ggtitle("D reading frame") + xlab("Frequency") + ylab("Frame")
-D.REGION.reading.frame = D.REGION.reading.frame + scale_fill_manual(values=sample.colors)
-D.REGION.reading.frame = D.REGION.reading.frame + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-
-png("DReadingFrame.png")
-D.REGION.reading.frame
-dev.off()
-
-
-
-
-# ---------------------- AA composition in CDR3 ----------------------
-
-AACDR3 = PRODF[,c("Sample", "CDR3.Seq")]
-
-TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample])
-
-AAfreq = list()
-
-for(i in 1:nrow(TotalPerSample)){
-	sample = TotalPerSample$Sample[i]
-  AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), ""))))
-  AAfreq[[i]]$Sample = sample
-}
-
-AAfreq = ldply(AAfreq, data.frame)
-AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T)
-AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100)
-
-
-AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI")
-AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE)
-
-AAfreq = AAfreq[!is.na(AAfreq$order.aa),]
-
-AAfreqplot = ggplot(AAfreq)
-AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' )
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage") + scale_fill_manual(values=sample.colors)
-AAfreqplot = AAfreqplot + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-
-png("AAComposition.png",width = 1280, height = 720)
-AAfreqplot
-dev.off()
-write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T)
-
-# ---------------------- AA median CDR3 length ----------------------
-
-median.aa.l = data.frame(data.table(PRODF)[, list(median=as.double(median(.SD$CDR3.Length))), by=c("Sample")])
-write.table(median.aa.l, "AAMedianBySample.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
--- a/report_clonality/RScript.r~	Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,658 +0,0 @@
-# ---------------------- load/install packages ----------------------
-
-if (!("gridExtra" %in% rownames(installed.packages()))) {
-  install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") 
-}
-library(gridExtra)
-if (!("ggplot2" %in% rownames(installed.packages()))) {
-  install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
-}
-library(ggplot2)
-if (!("plyr" %in% rownames(installed.packages()))) {
-  install.packages("plyr", repos="http://cran.xl-mirror.nl/") 
-}			
-library(plyr)
-
-if (!("data.table" %in% rownames(installed.packages()))) {
-  install.packages("data.table", repos="http://cran.xl-mirror.nl/") 
-}
-library(data.table)
-
-if (!("reshape2" %in% rownames(installed.packages()))) {
-  install.packages("reshape2", repos="http://cran.xl-mirror.nl/") 
-}
-library(reshape2)
-
-if (!("lymphclon" %in% rownames(installed.packages()))) {
-  install.packages("lymphclon", repos="http://cran.xl-mirror.nl/") 
-}
-library(lymphclon)
-
-# ---------------------- parameters ----------------------
-
-args <- commandArgs(trailingOnly = TRUE)
-
-infile = args[1] #path to input file
-outfile = args[2] #path to output file
-outdir = args[3] #path to output folder (html/images/data)
-clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering
-ct = unlist(strsplit(clonaltype, ","))
-species = args[5] #human or mouse
-locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD
-filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no)
-clonality_method = args[8]
-
-# ---------------------- Data preperation ----------------------
-
-inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="")
-
-setwd(outdir)
-
-# remove weird rows
-inputdata = inputdata[inputdata$Sample != "",]
-
-#remove the allele from the V,D and J genes
-inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene)
-inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene)
-inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene)
-
-inputdata$clonaltype = 1:nrow(inputdata)
-
-PRODF = inputdata
-UNPROD = inputdata
-if(filterproductive){
-  if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column
-    PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ]
-    UNPROD = inputdata[!(inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)"), ]
-  } else {
-    PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ]
-    UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ]
-  }
-}
-
-clonalityFrame = PRODF
-
-#remove duplicates based on the clonaltype
-if(clonaltype != "none"){
-  clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples
-  PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  PRODF = PRODF[!duplicated(PRODF$clonaltype), ]
-  
-  UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ]
-  
-  #again for clonalityFrame but with sample+replicate
-  clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":"))
-  clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":"))
-  clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ]
-}
-
-PRODF$freq = 1
-
-if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*"
-  PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
-  PRODF$freq = gsub("_.*", "", PRODF$freq)
-  PRODF$freq = as.numeric(PRODF$freq)
-  if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence
-    PRODF$freq = 1
-  }
-}
-
-
-
-#write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive
-write.table(PRODF, "allUnique.txt", sep=",",quote=F,row.names=F,col.names=T)
-write.table(PRODF, "allUnique.csv", sep="\t",quote=F,row.names=F,col.names=T)
-write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-#write the samples to a file
-sampleFile <- file("samples.txt")
-un = unique(inputdata$Sample)
-un = paste(un, sep="\n")
-writeLines(un, sampleFile)
-close(sampleFile)
-
-# ---------------------- Counting the productive/unproductive and unique sequences ----------------------
-
-if(!("Functionality" %in% inputdata)){ #add a functionality column to the igblast data
-  inputdata$Functionality = "unproductive"
-  search = (inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND")
-  if(sum(search) > 0){
-    inputdata[search,]$Functionality = "productive"
-  }
-}
-
-inputdata.dt = data.table(inputdata) #for speed
-
-if(clonaltype == "none"){
-  ct = c("clonaltype")
-}
-
-inputdata.dt$samples_replicates = paste(inputdata.dt$Sample, inputdata.dt$Replicate, sep="_")
-samples_replicates = c(unique(inputdata.dt$samples_replicates), unique(as.character(inputdata.dt$Sample)))
-frequency_table = data.frame(ID = samples_replicates[order(samples_replicates)])
-
-
-sample_productive_count = inputdata.dt[, list(All=.N, 
-                                              Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), 
-                                              perc_prod = 1,
-                                              Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), 
-                                              perc_prod_un = 1,
-                                              Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]),
-                                              perc_unprod = 1,
-                                              Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]),
-                                              perc_unprod_un = 1),
-                                       by=c("Sample")]
-
-sample_productive_count$perc_prod = round(sample_productive_count$Productive / sample_productive_count$All * 100)
-sample_productive_count$perc_prod_un = round(sample_productive_count$Productive_unique / sample_productive_count$All * 100)
-
-sample_productive_count$perc_unprod = round(sample_productive_count$Unproductive / sample_productive_count$All * 100)
-sample_productive_count$perc_unprod_un = round(sample_productive_count$Unproductive_unique / sample_productive_count$All * 100)
-
-
-sample_replicate_productive_count = inputdata.dt[, list(All=.N, 
-                                                        Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), 
-                                                        perc_prod = 1,
-                                                        Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), 
-                                                        perc_prod_un = 1,
-                                                        Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]),
-                                                        perc_unprod = 1,
-                                                        Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]),
-                                                        perc_unprod_un = 1),
-                                                 by=c("samples_replicates")]
-
-sample_replicate_productive_count$perc_prod = round(sample_replicate_productive_count$Productive / sample_replicate_productive_count$All * 100)
-sample_replicate_productive_count$perc_prod_un = round(sample_replicate_productive_count$Productive_unique / sample_replicate_productive_count$All * 100)
-
-sample_replicate_productive_count$perc_unprod = round(sample_replicate_productive_count$Unproductive / sample_replicate_productive_count$All * 100)
-sample_replicate_productive_count$perc_unprod_un = round(sample_replicate_productive_count$Unproductive_unique / sample_replicate_productive_count$All * 100)
-
-setnames(sample_replicate_productive_count, colnames(sample_productive_count))
-
-counts = rbind(sample_replicate_productive_count, sample_productive_count)
-counts = counts[order(counts$Sample),]
-
-write.table(x=counts, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F)
-
-# ---------------------- Frequency calculation for V, D and J ----------------------
-
-PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
-Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
-Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
-Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
-
-# ---------------------- Setting up the gene names for the different species/loci ----------------------
-
-Vchain = ""
-Dchain = ""
-Jchain = ""
-
-if(species == "custom"){
-	print("Custom genes: ")
-	splt = unlist(strsplit(locus, ";"))
-	print(paste("V:", splt[1]))
-	print(paste("D:", splt[2]))
-	print(paste("J:", splt[3]))
-	
-	Vchain = unlist(strsplit(splt[1], ","))
-	Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain))
-	
-	Dchain = unlist(strsplit(splt[2], ","))
-	if(length(Dchain) > 0){
-		Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain))
-	} else {
-		Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0))
-	}
-	
-	Jchain = unlist(strsplit(splt[3], ","))
-	Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain))
-
-} else {
-	genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="")
-
-	Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Vchain) = c("v.name", "chr.orderV")
-	Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Dchain) = c("v.name", "chr.orderD")
-	Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")]
-	colnames(Jchain) = c("v.name", "chr.orderJ")
-}
-useD = TRUE
-if(nrow(Dchain) == 0){
-  useD = FALSE
-  cat("No D Genes in this species/locus")
-}
-print(paste("useD:", useD))
-
-# ---------------------- merge with the frequency count ----------------------
-
-PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
-
-# ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ----------------------
-
-pV = ggplot(PRODFV)
-pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage")
-write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("VPlot.png",width = 1280, height = 720)
-pV
-dev.off();
-
-if(useD){
-  pD = ggplot(PRODFD)
-  pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-  pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
-  write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-  
-  png("DPlot.png",width = 800, height = 600)
-  print(pD)
-  dev.off();
-}
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-# ---------------------- Now the frequency plots of the V, D and J families ----------------------
-
-VGenes = PRODF[,c("Sample", "Top.V.Gene")]
-VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
-VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
-TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
-VGenes = merge(VGenes, TotalPerSample, by="Sample")
-VGenes$Frequency = VGenes$Count * 100 / VGenes$total
-VPlot = ggplot(VGenes)
-VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-  ggtitle("Distribution of V gene families") + 
-  ylab("Percentage of sequences")
-png("VFPlot.png")
-VPlot
-dev.off();
-write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-if(useD){
-  DGenes = PRODF[,c("Sample", "Top.D.Gene")]
-  DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
-  DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
-  TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
-  DGenes = merge(DGenes, TotalPerSample, by="Sample")
-  DGenes$Frequency = DGenes$Count * 100 / DGenes$total
-  DPlot = ggplot(DGenes)
-  DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-    ggtitle("Distribution of D gene families") + 
-    ylab("Percentage of sequences")
-  png("DFPlot.png")
-  print(DPlot)
-  dev.off();
-  write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-}
-
-JGenes = PRODF[,c("Sample", "Top.J.Gene")]
-JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene)
-JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")])
-TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample])
-JGenes = merge(JGenes, TotalPerSample, by="Sample")
-JGenes$Frequency = JGenes$Count * 100 / JGenes$total
-JPlot = ggplot(JGenes)
-JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-  ggtitle("Distribution of J gene families") + 
-  ylab("Percentage of sequences")
-png("JFPlot.png")
-JPlot
-dev.off();
-write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plotting the cdr3 length ----------------------
-
-CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")])
-TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
-CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
-CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
-CDR3LengthPlot = ggplot(CDR3Length)
-CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-  ggtitle("Length distribution of CDR3") + 
-  xlab("CDR3 Length") + 
-  ylab("Percentage of sequences")
-png("CDR3LengthPlot.png",width = 1280, height = 720)
-CDR3LengthPlot
-dev.off()
-write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plot the heatmaps ----------------------
-
-
-#get the reverse order for the V and D genes
-revVchain = Vchain
-revDchain = Dchain
-revVchain$chr.orderV = rev(revVchain$chr.orderV)
-revDchain$chr.orderD = rev(revDchain$chr.orderD)
-
-if(useD){
-  plotVD <- function(dat){
-    if(length(dat[,1]) == 0){
-      return()
-    }
-    img = ggplot() + 
-      geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-      xlab("D genes") + 
-      ylab("V Genes")
-    
-    png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
-    print(img)
-    dev.off()
-    write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-  }
-  
-  VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
-  
-  VandDCount$l = log(VandDCount$Length)
-  maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
-  VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
-  VandDCount$relLength = VandDCount$l / VandDCount$max
-  
-  cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(inputdata$Sample))
-  
-  completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
-  completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-  completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-  VDList = split(completeVD, f=completeVD[,"Sample"])
-  
-  lapply(VDList, FUN=plotVD)
-}
-
-plotVJ <- function(dat){
-  if(length(dat[,1]) == 0){
-    return()
-  }
-  cat(paste(unique(dat[3])[1,1]))
-  img = ggplot() + 
-    geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-    theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-    scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-    ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-    xlab("J genes") + 
-    ylab("V Genes")
-  
-  png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
-  print(img)
-  dev.off()
-  write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-}
-
-VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
-
-VandJCount$l = log(VandJCount$Length)
-maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
-VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
-VandJCount$relLength = VandJCount$l / VandJCount$max
-
-cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
-
-completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
-completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-VJList = split(completeVJ, f=completeVJ[,"Sample"])
-lapply(VJList, FUN=plotVJ)
-
-if(useD){
-  plotDJ <- function(dat){
-    if(length(dat[,1]) == 0){
-      return()
-    }
-    img = ggplot() + 
-      geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + 
-      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-      xlab("J genes") + 
-      ylab("D Genes")
-    
-    png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
-    print(img)
-    dev.off()
-    write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-  }
-  
-  
-  DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
-  
-  DandJCount$l = log(DandJCount$Length)
-  maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
-  DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
-  DandJCount$relLength = DandJCount$l / DandJCount$max
-  
-  cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
-  
-  completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
-  completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-  completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-  DJList = split(completeDJ, f=completeDJ[,"Sample"])
-  lapply(DJList, FUN=plotDJ)
-}
-
-
-# ---------------------- calculating the clonality score ----------------------
-
-if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available
-{
-  if(clonality_method == "boyd"){
-    samples = split(clonalityFrame, clonalityFrame$Sample, drop=T)
-   
-    for (sample in samples){
-      res = data.frame(paste=character(0))
-      sample_id = unique(sample$Sample)[[1]]
-      for(replicate in unique(sample$Replicate)){
-        tmp = sample[sample$Replicate == replicate,]
-        clone_table = data.frame(table(tmp$clonaltype))
-        clone_col_name = paste("V", replicate, sep="")
-        colnames(clone_table) = c("paste", clone_col_name)
-        res = merge(res, clone_table, by="paste", all=T)
-      }
-      
-      res[is.na(res)] = 0      
-      infer.result = infer.clonality(as.matrix(res[,2:ncol(res)]))
-      
-      write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F)
-      
-      res$type = rowSums(res[,2:ncol(res)])
-      
-      coincidence.table = data.frame(table(res$type))
-      colnames(coincidence.table) = c("Coincidence Type",  "Raw Coincidence Freq")
-      write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
-    }
-  } else {
-    write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
-      
-    clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")])
-    clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
-    clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
-    clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
-    
-    ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
-    tcct = textConnection(ct)
-    CT  = read.table(tcct, sep="\t", header=TRUE)
-    close(tcct)
-    clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
-    clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
-    
-    ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")])
-    ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
-    clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
-    ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
-    
-    ReplicatePrint <- function(dat){
-      write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-    lapply(ReplicateSplit, FUN=ReplicatePrint)
-    
-    ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
-    
-    ReplicateSumPrint <- function(dat){
-      write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-    lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
-    
-    clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
-    clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
-    clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
-    clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
-    clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
-    
-    ClonalityScorePrint <- function(dat){
-      write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    clonalityScore = clonalFreqCount[c("Sample", "Result")]
-    clonalityScore = unique(clonalityScore)
-    
-    clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
-    lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
-    
-    clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
-    
-    
-    
-    ClonalityOverviewPrint <- function(dat){
-      write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-    }
-    
-    clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
-    lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
-  }
-}
-
-imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb")
-if(all(imgtcolumns %in% colnames(inputdata)))
-{
-  print("found IMGT columns, running junction analysis")
-  newData = data.frame(data.table(PRODF)[,list(unique=.N, 
-                                               VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                               P1=mean(.SD$P3V.nt.nb, na.rm=T),
-                                               N1=mean(.SD$N1.REGION.nt.nb, na.rm=T),
-                                               P2=mean(.SD$P5D.nt.nb, na.rm=T),
-                                               DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                               DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                               P3=mean(.SD$P3D.nt.nb, na.rm=T),
-                                               N2=mean(.SD$N2.REGION.nt.nb, na.rm=T),
-                                               P4=mean(.SD$P5J.nt.nb, na.rm=T),
-                                               DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-                                               Total.Del=(	mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) + 
-                                                             mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) + 
-                                                             mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) +
-                                                             mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)),
-                                               
-                                               Total.N=(	mean(.SD$N1.REGION.nt.nb, na.rm=T) +
-                                                           mean(.SD$N2.REGION.nt.nb, na.rm=T)),
-                                               
-                                               Total.P=(	mean(.SD$P3V.nt.nb, na.rm=T) +
-                                                           mean(.SD$P5D.nt.nb, na.rm=T) +
-                                                           mean(.SD$P3D.nt.nb, na.rm=T) +
-                                                           mean(.SD$P5J.nt.nb, na.rm=T))),
-                                         by=c("Sample")])
-  print(newData)
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisProd.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-  
-  newData = data.frame(data.table(UNPROD)[,list(unique=.N, 
-                                                VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
-                                                P1=mean(.SD$P3V.nt.nb, na.rm=T),
-                                                N1=mean(.SD$N1.REGION.nt.nb, na.rm=T),
-                                                P2=mean(.SD$P5D.nt.nb, na.rm=T),
-                                                DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
-                                                DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
-                                                P3=mean(.SD$P3D.nt.nb, na.rm=T),
-                                                N2=mean(.SD$N2.REGION.nt.nb, na.rm=T),
-                                                P4=mean(.SD$P5J.nt.nb, na.rm=T),
-                                                DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
-                                                Total.Del=(mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) + 
-                                                           mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) + 
-                                                           mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) +
-                                                           mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)),
-                                                Total.N=(  mean(.SD$N1.REGION.nt.nb, na.rm=T) +
-                                                           mean(.SD$N2.REGION.nt.nb, na.rm=T)),
-                                                Total.P=(  mean(.SD$P3V.nt.nb, na.rm=T) +
-							   mean(.SD$P5D.nt.nb, na.rm=T) +
-							   mean(.SD$P3D.nt.nb, na.rm=T) +
-						           mean(.SD$P5J.nt.nb, na.rm=T))),
-                                          by=c("Sample")])
-  newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
-  write.table(newData, "junctionAnalysisUnProd.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-}
-
-# ---------------------- AA composition in CDR3 ----------------------
-
-AACDR3 = PRODF[,c("Sample", "CDR3.Seq")]
-
-TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample])
-
-AAfreq = list()
-
-for(i in 1:nrow(TotalPerSample)){
-	sample = TotalPerSample$Sample[i]
-  AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), ""))))
-  AAfreq[[i]]$Sample = sample
-}
-
-AAfreq = ldply(AAfreq, data.frame)
-AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T)
-AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100)
-
-
-AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI")
-AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE)
-
-AAfreq = AAfreq[!is.na(AAfreq$order.aa),]
-
-AAfreqplot = ggplot(AAfreq)
-AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' )
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage")
-
-png("AAComposition.png",width = 1280, height = 720)
-AAfreqplot
-dev.off()
-write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T)
-
-
--- a/report_clonality/r_wrapper.sh.old	Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,315 +0,0 @@
-#!/bin/bash
-
-inputFile=$1
-outputDir=$3
-outputFile=$3/index.html #$2
-clonalType=$4
-species=$5
-locus=$6
-filterproductive=$7
-clonality_method=$8
-
-dir="$(cd "$(dirname "$0")" && pwd)"
-useD="false"
-if grep -q "$species.*${locus}D" "$dir/genes.txt" ; then
-	echo "species D region in reference db"
-	useD="true"
-fi
-echo "$species"
-if [[ "$species" == *"custom"* ]] ; then
-	loci=(${locus//;/ })
-	useD="true"
-	echo "${loci[@]}"
-	if [[ "${#loci[@]}" -eq "2" ]] ; then
-		useD="false"
-	fi
-fi
-mkdir $3
-cp $dir/genes.txt $outputDir
-Rscript --verbose $dir/RScript.r $inputFile $outputDir $outputDir $clonalType "$species" "$locus" $filterproductive ${clonality_method} 2>&1
-cp $dir/tabber.js $outputDir
-cp $dir/style.css $outputDir
-cp $dir/script.js $outputDir
-cp $dir/jquery-1.11.0.min.js $outputDir
-cp $dir/pure-min.css $outputDir
-samples=`cat $outputDir/samples.txt`
-
-echo "<html><center><h1><a href='index.html'>Click here for the results</a></h1>Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)<br />" > $2
-echo "<table border = 1>" >> $2
-echo "<thead><tr><th>Sample/Replicate</th><th>All</th><th>Productive</th><th>Unique Productive</th><th>Unproductive</th><th>Unique Unproductive</th></tr></thead>" >> $2
-while IFS=, read sample all productive perc_prod productive_unique perc_prod_un unproductive perc_unprod unproductive_unique perc_unprod_un
-	do
-		echo "<tr><td>$sample</td>" >> $2
-		echo "<td>$all</td>" >> $2
-		echo "<td>$productive (${perc_prod}%)</td>" >> $2
-		echo "<td>$productive_unique (${perc_prod_un}%)</td>" >> $2
-		echo "<td>$unproductive (${perc_unprod}%)</td>" >> $2
-		echo "<td>$unproductive_unique (${perc_unprod_un}%)</td></tr>" >> $2
-done < $outputDir/productive_counting.txt
-echo "</table border></center></html>" >> $2
-
-echo "<html><head><title>Report on:" >> $outputFile
-
-mkdir $outputDir/circos
-cp $dir/circos/* $outputDir/circos/
-#CIRCOSTOOLS="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/circos-tools-0.21/tools"
-#CIRCOSDIR="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/"
-
-#CIRCOSTOOLS="/home/galaxy/circos/circos-tools-0.22/tools"
-#CIRCOSDIR="/home/galaxy/Anaconda3/bin"
-
-USECIRCOS="no"
-if [ -d "$CIRCOSDIR" ]; then
-	USECIRCOS="yes"
-else
-	if [ -d "/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/" ]; then #hopefully temporary fix
-		USECIRCOS="yes"
-		CIRCOSTOOLS="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/circos-tools-0.21/tools"
-		CIRCOSDIR="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/"
-	fi
-	
-	if [ -d "/home/galaxy/Anaconda3/bin" ]; then #hopefully temporary fix
-		USECIRCOS="yes"
-		CIRCOSTOOLS="/home/galaxy/circos/circos-tools-0.22/tools"
-		CIRCOSDIR="/home/galaxy/Anaconda3/bin"
-	fi
-fi
-
-echo "Using Circos: $USECIRCOS"
-sed -i "s%DATA_DIR%$outputDir/circos%" $outputDir/circos/circos.conf
-for sample in $samples; do #output the samples to a file and create the circos plots with the R script output
-	echo " $sample" >> $outputFile
-	
-	if [[ "$USECIRCOS" != "yes" ]]; then
-		continue
-	fi
-	
-	circos_file="$outputDir/${sample}_VJ_circos.txt"
-	echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
-	cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
-	$CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
-	mv $outputDir/circos/circos.png $outputDir/circosVJ_${sample}.png
-	
-	
-	if [[ "$useD" == "true" ]] ; then
-		circos_file="$outputDir/${sample}_VD_circos.txt"
-		echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
-		cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
-		$CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
-		mv $outputDir/circos/circos.png $outputDir/circosVD_${sample}.png
-		
-		circos_file="$outputDir/${sample}_DJ_circos.txt"
-		echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
-		cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
-		$CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
-		mv $outputDir/circos/circos.png $outputDir/circosDJ_${sample}.png
-		
-	fi
-done
-echo "</title><script type='text/javascript' src='jquery-1.11.0.min.js'></script>" >> $outputFile
-echo "<link rel='stylesheet' type='text/css' href='pure-min.css'>" >> $outputFile
-echo "<script type='text/javascript' src='tabber.js'></script>" >> $outputFile
-echo "<script type='text/javascript' src='script.js'></script>" >> $outputFile
-echo "<link rel='stylesheet' type='text/css' href='style.css'></head>" >> $outputFile
-echo "<div class='tabber'><div class='tabbertab' title='Gene frequencies'>" >> $outputFile
-
-
-echo "<img src='VFPlot.png'/>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<img src='DFPlot.png'/>" >> $outputFile
-fi
-echo "<img src='VPlot.png'/>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<img src='DPlot.png'/>" >> $outputFile
-fi
-echo "<img src='JPlot.png'/>" >> $outputFile
-echo "</div>" >> $outputFile
-
-echo "<div class='tabbertab' title='CDR3 Characteristics'>" >> $outputFile
-echo "<img src='CDR3LengthPlot.png'/><br />" >> $outputFile
-echo "<img src='AAComposition.png'/>" >> $outputFile
-echo "<img src='DReadingFrame.png'/>" >> $outputFile
-
-echo "<table class='pure-table pure-table-striped'>" >> $outputFile
-echo "<thead><tr><th>Sample</th><th>Median CDR3 Length</th></tr></thead>" >> $outputFile
-while IFS=, read Sample median
-do
-	echo "<tr><td>$Sample</td><td>$median</td></tr>" >> $outputFile
-done < $outputDir/AAMedianBySample.csv
-echo "</table>" >> $outputFile
-
-echo "</div>" >> $outputFile
-
-#Heatmaps
-
-count=1
-echo "<div class='tabbertab' title='Heatmaps'><div class='tabber'>" >> $outputFile
-for sample in $samples; do
-	echo "<div class='tabbertab' title='$sample'><table border='1'><tr>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<td><img src='HeatmapVD_$sample.png'/></td>" >> $outputFile
-	fi
-	echo "<td><img src='HeatmapVJ_$sample.png'/></td>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<td><img src='HeatmapDJ_$sample.png'/></td>" >> $outputFile
-	fi
-	echo "</tr></table></div>" >> $outputFile
-	count=$((count+1))
-done
-echo "</div></div>" >> $outputFile
-
-#circos
-
-if [[ "$USECIRCOS" == "yes" ]]; then
-
-	echo "<div class='tabbertab' title='Circos'><div class='tabber'>" >> $outputFile
-	for sample in $samples; do
-		echo "<div class='tabbertab' title='$sample'><table border='1'><center>" >> $outputFile
-		if [[ "$useD" == "true" ]] ; then
-			echo "<tr><td>V-D</td><td><img src='circosVD_${sample}.png' width='700' height='700'/></td></tr>" >> $outputFile
-		fi
-		echo "<tr><td>V-J</td><td><img src='circosVJ_${sample}.png' width='700' height='700'/></td></tr>" >> $outputFile
-		if [[ "$useD" == "true" ]] ; then
-			echo "<tr><td>D-J</td><td><img src='circosDJ_${sample}.png' width='700' height='700'/></td></tr>" >> $outputFile
-		fi
-		echo "<center></table></div>" >> $outputFile
-		count=$((count+1))
-	done
-	echo "</div></div>" >> $outputFile
-fi
-#echo "<div class='tabbertab' title='Interactive'><svg class='chart'></svg><script src='http://d3js.org/d3.v3.min.js'></script></div>" >> $outputFile
-
-hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)"
-echo "$hasReplicateColumn"
-#if its a 'new' merged file with replicate info
-if [[ "$hasReplicateColumn" == "Yes" ]] ; then
-	echo "<div class='tabbertab' title='Clonality'><div class='tabber'>" >> $outputFile
-	for sample in $samples; do
-		echo "${clonality_method}"
-		if [[ "${clonality_method}" == "old" ]] ; then
-			echo "in old"
-			clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)"
-			echo "<div class='tabbertab' title='$sample'><table class='pure-table pure-table-striped'>" >> $outputFile
-			echo "<thead><tr><th colspan='4'>Clonality Score: $clonalityScore</th></tr></thead>" >> $outputFile
-
-			#replicate,reads,squared
-			echo "<tr><td>Replicate ID</td><td>Number of Reads</td></tr>" >> $outputFile
-			while IFS=, read replicate reads squared
-			do
-				echo "<tr><td>$replicate</td><td>$reads</td></tr>" >> $outputFile
-			done < $outputDir/ReplicateReads_$sample.csv
-			
-			#sum of reads and reads squared
-			while IFS=, read readsSum squaredSum
-				do
-					echo "<tr><td>Sum</td><td>$readsSum</td></tr>" >> $outputFile
-			done < $outputDir/ReplicateSumReads_$sample.csv
-			
-			#overview
-			echo "<tr><td>Coincidence Type</td><td>Raw Coincidence Freq</td></tr>" >> $outputFile
-			while IFS=, read type count weight weightedCount
-			do
-				if [[ "$type" -eq "1" ]]; then
-					echo "<tr><td>$type</td><td>$count</td></tr>" >> $outputFile
-				else
-					echo "<tr><td><a href='coincidences_${sample}_${type}.txt'>$type</a></td><td>$count</td></tr>" >> $outputFile
-				fi
-				
-			done < $outputDir/ClonalityOverView_$sample.csv
-			echo "</table></div>" >> $outputFile
-		else
-			echo "in new"
-			clonalityScore="$(cat $outputDir/lymphclon_clonality_${sample}.csv)"
-			echo "<div class='tabbertab' title='$sample'>" >> $outputFile
-			echo "Lymphclon clonality score: <br />$clonalityScore<br /><br />" >> $outputFile
-			echo "<table border = 1>" >> $outputFile
-			while IFS=, read type count
-			do
-				echo "<tr><td>$type</td><td>$count</td></tr>" >> $outputFile
-			done < $outputDir/lymphclon_coincidences_$sample.csv
-			echo "</table></div>" >> $outputFile
-		fi
-	done
-	echo "</div></div>" >> $outputFile
-fi
-
-#hasJunctionData="$(if head -n 1 $inputFile | grep -qE '3V.REGION.trimmed.nt.nb'; then echo 'Yes'; else echo 'No'; fi)"
-
-#if [[ "$hasJunctionData" == "Yes" ]] ; then
-if [ -a "$outputDir/junctionAnalysisProd_mean.csv" ] ; then
-	echo "<div class='tabbertab' title='Junction Analysis'>" >> $outputFile
-	echo "<table class='pure-table pure-table-striped' id='junction_table'> <caption>Productive mean</caption><thead><tr><th>Sample</th><th>count</th><th>V.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.D</th><th>D.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.J</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><th>Median.CDR3</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELD</td><td>$DDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJ</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td><td>$median</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisProd_mean.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "<table class='pure-table pure-table-striped' id='junction_table'> <caption>Unproductive mean</caption><thead><tr><th>Sample</th><th>count</th><th>V.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.D</th><th>D.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.J</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><th>Median.CDR3</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELD</td><td>$DDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJ</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td><td>$median</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisUnProd_mean.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "<table class='pure-table pure-table-striped' id='junction_table'> <caption>Productive median</caption><thead><tr><th>Sample</th><th>count</th><th>V.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.D</th><th>D.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.J</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><th>Median.CDR3</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELD</td><td>$DDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJ</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td><td>$median</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisProd_median.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "<table class='pure-table pure-table-striped' id='junction_table'> <caption>Unproductive median</caption><thead><tr><th>Sample</th><th>count</th><th>V.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.D</th><th>D.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.J</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><th>Median.CDR3</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELD</td><td>$DDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJ</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td><td>$median</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisUnProd_median.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "</div>" >> $outputFile
-fi
-
-echo "<div class='tabbertab' title='Comparison'><table class='pure-table pure-table-striped'><thead><tr><th>ID</th><th>Include</th></tr></thead>" >> $outputFile
-for sample in $samples; do
-	echo "<tr><td>$sample</td><td><input type='checkbox' onchange=\"javascript:compareAdd('$sample')\" id='compare_checkbox_$sample'/></td></tr>" >> $outputFile
-done
-echo "</table><div name='comparisonarea'>" >> $outputFile
-echo "<table><tr id='comparison_table_vd'></tr></table>" >> $outputFile
-echo "<table><tr id='comparison_table_vj'></tr></table>" >> $outputFile
-echo "<table><tr id='comparison_table_dj'></tr></table>" >> $outputFile
-echo "</div></div>" >> $outputFile
-
-echo "<div class='tabbertab' title='Downloads'>" >> $outputFile
-echo "<table class='pure-table pure-table-striped'>" >> $outputFile
-echo "<thead><tr><th>Description</th><th>Link</th></tr></thead>" >> $outputFile
-echo "<tr><td>The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType)</td><td><a href='allUnique.csv'>Download</a></td></tr>" >> $outputFile
-echo "<tr><td>The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType)</td><td><a href='clonalityComplete.csv'>Download</a></td></tr>" >> $outputFile
-
-echo "<tr><td>The dataset used to generate the CDR3 length frequency graph</td><td><a href='CDR3LengthPlot.csv'>Download</a></td></tr>" >> $outputFile
-
-echo "<tr><td>The dataset used to generate the V gene family frequency graph</td><td><a href='VFFrequency.csv'>Download</a></td></tr>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<tr><td>The dataset used to generate the D gene family frequency graph</td><td><a href='DFFrequency.csv'>Download</a></td></tr>" >> $outputFile
-fi
-
-echo "<tr><td>The dataset used to generate the V gene frequency graph</td><td><a href='VFrequency.csv'>Download</a></td></tr>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<tr><td>The dataset used to generate the D gene frequency graph</td><td><a href='DFrequency.csv'>Download</a></td></tr>" >> $outputFile
-fi
-echo "<tr><td>The dataset used to generate the J gene frequency graph</td><td><a href='JFrequency.csv'>Download</a></td></tr>" >> $outputFile
-echo "<tr><td>The dataset used to generate the AA composition graph</td><td><a href='AAComposition.csv'>Download</a></td></tr>" >> $outputFile
-
-for sample in $samples; do
-	if [[ "$useD" == "true" ]] ; then
-		echo "<tr><td>The data used to generate the VD heatmap for $sample.</td><td><a href='HeatmapVD_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	fi
-	echo "<tr><td>The data used to generate the VJ heatmap for $sample.</td><td><a href='HeatmapVJ_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<tr><td>The data used to generate the DJ heatmap for $sample.</td><td><a href='HeatmapDJ_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	fi
-done
-
-echo "<tr><td>A frequency count of V Gene + J Gene + CDR3</td><td><a href='VJCDR3_count.txt'>Download</a></td></tr>" >> $outputFile
-
-echo "</table>" >> $outputFile
-echo "</div></html>" >> $outputFile
--- a/report_clonality/r_wrapper.sh~	Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,203 +0,0 @@
-#!/bin/bash
-
-inputFile=$1
-outputDir=$3
-outputFile=$3/index.html #$2
-clonalType=$4
-species=$5
-locus=$6
-filterproductive=$7
-clonality_method=$8
-dir="$(cd "$(dirname "$0")" && pwd)"
-useD="false"
-if grep -q "$species.*${locus}D" "$dir/genes.txt" ; then
-	echo "species D region in reference db"
-	useD="true"
-fi
-echo "$species"
-if [[ "$species" == *"custom"* ]] ; then
-	loci=(${locus//;/ })
-	useD="true"
-	echo "${loci[@]}"
-	if [[ "${#loci[@]}" -eq "2" ]] ; then
-		useD="false"
-	fi
-fi
-mkdir $3
-cp $dir/genes.txt $outputDir
-Rscript --verbose $dir/RScript.r $inputFile $outputDir $outputDir $clonalType "$species" "$locus" $filterproductive ${clonality_method} 2>&1
-cp $dir/tabber.js $outputDir
-cp $dir/style.css $outputDir
-cp $dir/script.js $outputDir
-cp $dir/jquery-1.11.0.min.js $outputDir
-samples=`cat $outputDir/samples.txt`
-echo "<html><center><h1><a href='index.html'>Click here for the results</a></h1>Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)<br />" > $2
-echo "<table border = 1>" >> $2
-echo "<thead><tr><th>Sample/Replicate</th><th>All</th><th>Productive</th><th>Unique Productive</th><th>Unproductive</th><th>Unique Unproductive</th></tr></thead>" >> $2
-while IFS=, read sample all productive perc_prod productive_unique perc_prod_un unproductive perc_unprod unproductive_unique perc_unprod_un
-	do
-		echo "<tr><td>$sample</td>" >> $2
-		echo "<td>$all</td>" >> $2
-		echo "<td>$productive (${perc_prod}%)</td>" >> $2
-		echo "<td>$productive_unique (${perc_prod_un}%)</td>" >> $2
-		echo "<td>$unproductive (${perc_unprod}%)</td>" >> $2
-		echo "<td>$unproductive_unique (${perc_unprod_un}%)</td></tr>" >> $2
-done < $outputDir/productive_counting.txt
-echo "</table border></center></html>" >> $2
-
-echo "productive_counting.txt"
-echo "<html><head><title>Report on:" >> $outputFile
-for sample in $samples; do
-	echo " $sample" >> $outputFile
-done
-echo "</title><script type='text/javascript' src='jquery-1.11.0.min.js'></script>" >> $outputFile
-echo "<script type='text/javascript' src='tabber.js'></script>" >> $outputFile
-echo "<script type='text/javascript' src='script.js'></script>" >> $outputFile
-echo "<link rel='stylesheet' type='text/css' href='style.css'></head>" >> $outputFile
-echo "<div class='tabber'><div class='tabbertab' title='Gene frequencies'>" >> $outputFile
-
-echo "<img src='CDR3LengthPlot.png'/><br />" >> $outputFile
-echo "<img src='VFPlot.png'/>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<img src='DFPlot.png'/>" >> $outputFile
-fi
-echo "<img src='JFPlot.png'/>" >> $outputFile
-echo "<img src='VPlot.png'/>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<img src='DPlot.png'/>" >> $outputFile
-fi
-echo "<img src='JPlot.png'/>" >> $outputFile
-echo "<img src='AAComposition.png'/></div>" >> $outputFile
-
-count=1
-echo "<div class='tabbertab' title='Heatmaps'><div class='tabber'>" >> $outputFile
-for sample in $samples; do
-	echo "<div class='tabbertab' title='$sample'><table border='1'><tr>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<td><img src='HeatmapVD_$sample.png'/></td>" >> $outputFile
-	fi
-	echo "<td><img src='HeatmapVJ_$sample.png'/></td>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<td><img src='HeatmapDJ_$sample.png'/></td>" >> $outputFile
-	fi
-	echo "</tr></table></div>" >> $outputFile
-	count=$((count+1))
-done
-echo "</div></div>" >> $outputFile
-
-#echo "<div class='tabbertab' title='Interactive'><svg class='chart'></svg><script src='http://d3js.org/d3.v3.min.js'></script></div>" >> $outputFile
-
-hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)"
-echo "$hasReplicateColumn"
-#if its a 'new' merged file with replicate info
-if [[ "$hasReplicateColumn" == "Yes" && "$clonalType" != "none" ]] ; then
-	echo "<div class='tabbertab' title='Clonality'><div class='tabber'>" >> $outputFile
-	for sample in $samples; do
-		echo "${clonality_method}"
-		if [[ "${clonality_method}" == "old" ]] ; then
-			echo "in old"
-			clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)"
-			echo "<div class='tabbertab' title='$sample'><table border='1'>" >> $outputFile
-			echo "<tr><td colspan='4'>Clonality Score: $clonalityScore</td></tr>" >> $outputFile
-
-			#replicate,reads,squared
-			echo "<tr><td>Replicate ID</td><td>Number of Reads</td><td>Reads Squared</td><td></td></tr>" >> $outputFile
-			while IFS=, read replicate reads squared
-			do
-				
-				echo "<tr><td>$replicate</td><td>$reads</td><td>$squared</td><td></td></tr>" >> $outputFile
-			done < $outputDir/ReplicateReads_$sample.csv
-			
-			#sum of reads and reads squared
-			while IFS=, read readsSum squaredSum
-				do
-					echo "<tr><td>Sum</td><td>$readsSum</td><td>$squaredSum</td></tr>" >> $outputFile
-			done < $outputDir/ReplicateSumReads_$sample.csv
-			
-			#overview
-			echo "<tr><td>Coincidence Type</td><td>Raw Coincidence Freq</td><td>Coincidence Weight</td><td>Coincidences, Weighted</td></tr>" >> $outputFile
-			while IFS=, read type count weight weightedCount
-			do
-				echo "<tr><td>$type</td><td>$count</td><td>$weight</td><td>$weightedCount</td></tr>" >> $outputFile
-			done < $outputDir/ClonalityOverView_$sample.csv
-			echo "</table></div>" >> $outputFile
-		else
-			echo "in new"
-			clonalityScore="$(cat $outputDir/lymphclon_clonality_${sample}.csv)"
-			echo "<div class='tabbertab' title='$sample'>" >> $outputFile
-			echo "Lymphclon clonality score: <br />$clonalityScore<br /><br />" >> $outputFile
-			echo "<table border = 1>" >> $outputFile
-			while IFS=, read type count
-			do
-				echo "<tr><td>$type</td><td>$count</td></tr>" >> $outputFile
-			done < $outputDir/lymphclon_coincidences_$sample.csv
-			echo "</table></div>" >> $outputFile
-		fi
-	done
-	echo "</div></div>" >> $outputFile
-fi
-
-hasJunctionData="$(if head -n 1 $inputFile | grep -q '3V-REGION trimmed-nt'; then echo 'Yes'; else echo 'No'; fi)"
-
-if [[ "$hasJunctionData" == "Yes" ]] ; then
-	echo "<div class='tabbertab' title='Junction Analysis'>" >> $outputFile
-	echo "<table border='1' id='junction_table'> <caption>Productive</caption><thead><tr><th>Sample</th><th>count</th><th>VH.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.DH</th><th>DH.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.JH</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VHDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELDH</td><td>$DHDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJH</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisProd.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "<table border='1' id='junction_table'> <caption>Unproductive</caption><thead><tr><th>Sample</th><th>count</th><th>VH.DEL</th><th>P1</th><th>N1</th><th>P2</th><th>DEL.DH</th><th>DH.DEL</th><th>P3</th><th>N2</th><th>P4</th><th>DEL.JH</th><th>Total.Del</th><th>Total.N</th><th>Total.P</th><thead></tr><tbody>" >> $outputFile
-	while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP
-	do
-		echo "<tr><td>$Sample</td><td>$unique</td><td>$VHDEL</td><td>$P1</td><td>$N1</td><td>$P2</td><td>$DELDH</td><td>$DHDEL</td><td>$P3</td><td>$N2</td><td>$P4</td><td>$DELJH</td><td>$TotalDel</td><td>$TotalN</td><td>$TotalP</td></tr>" >> $outputFile
-	done < $outputDir/junctionAnalysisUnProd.csv
-	echo "</tbody></table>" >> $outputFile
-	
-	echo "</div>" >> $outputFile
-fi
-
-echo "<div class='tabbertab' title='Comparison'><table border='1'><tr><th>ID</th><th>Include</th></tr>" >> $outputFile
-for sample in $samples; do
-	echo "<tr><td>$sample</td><td><input type='checkbox' onchange=\"javascript:compareAdd('$sample')\" id='compare_checkbox_$sample'/></td></tr>" >> $outputFile
-done
-echo "</table><div name='comparisonarea'>" >> $outputFile
-echo "<table><tr id='comparison_table_vd'></tr></table>" >> $outputFile
-echo "<table><tr id='comparison_table_vj'></tr></table>" >> $outputFile
-echo "<table><tr id='comparison_table_dj'></tr></table>" >> $outputFile
-echo "</div></div>" >> $outputFile
-
-echo "<div class='tabbertab' title='Downloads'>" >> $outputFile
-echo "<table border='1'>" >> $outputFile
-echo "<tr><th>Description</th><th>Link</th></tr>" >> $outputFile
-echo "<tr><td>The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType)</td><td><a href='allUnique.csv'>Download</a></td></tr>" >> $outputFile
-echo "<tr><td>The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType)</td><td><a href='clonalityComplete.csv'>Download</a></td></tr>" >> $outputFile
-
-echo "<tr><td>The dataset used to generate the CDR3 length frequency graph</td><td><a href='CDR3LengthPlot.csv'>Download</a></td></tr>" >> $outputFile
-
-echo "<tr><td>The dataset used to generate the V gene family frequency graph</td><td><a href='VFFrequency.csv'>Download</a></td></tr>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<tr><td>The dataset used to generate the D gene family frequency graph</td><td><a href='DFFrequency.csv'>Download</a></td></tr>" >> $outputFile
-fi
-echo "<tr><td>The dataset used to generate the J gene family frequency graph</td><td><a href='JFFrequency.csv'>Download</a></td></tr>" >> $outputFile
-
-echo "<tr><td>The dataset used to generate the V gene frequency graph</td><td><a href='VFrequency.csv'>Download</a></td></tr>" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
-	echo "<tr><td>The dataset used to generate the D gene frequency graph</td><td><a href='DFrequency.csv'>Download</a></td></tr>" >> $outputFile
-fi
-echo "<tr><td>The dataset used to generate the J gene frequency graph</td><td><a href='JFrequency.csv'>Download</a></td></tr>" >> $outputFile
-echo "<tr><td>The dataset used to generate the AA composition graph</td><td><a href='AAComposition.csv'>Download</a></td></tr>" >> $outputFile
-
-for sample in $samples; do
-	if [[ "$useD" == "true" ]] ; then
-		echo "<tr><td>The data used to generate the VD heatmap for $sample.</td><td><a href='HeatmapVD_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	fi
-	echo "<tr><td>The data used to generate the VJ heatmap for $sample.</td><td><a href='HeatmapVJ_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	if [[ "$useD" == "true" ]] ; then
-		echo "<tr><td>The data used to generate the DJ heatmap for $sample.</td><td><a href='HeatmapDJ_$sample.csv'>Download</a></td></tr>" >> $outputFile
-	fi
-done
-
-echo "</table>" >> $outputFile
-echo "</div></html>" >> $outputFile