Mercurial > repos > davidvanzessen > mutation_analysis
comparison pattern_plots.r @ 0:8a5a2abbb870 draft default tip
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 29 Aug 2016 05:36:10 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8a5a2abbb870 |
---|---|
1 library(ggplot2) | |
2 library(reshape2) | |
3 library(scales) | |
4 | |
5 args <- commandArgs(trailingOnly = TRUE) | |
6 | |
7 input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt" | |
8 | |
9 plot1.path = args[2] | |
10 plot1.png = paste(plot1.path, ".png", sep="") | |
11 plot1.txt = paste(plot1.path, ".txt", sep="") | |
12 | |
13 plot2.path = args[3] | |
14 plot2.png = paste(plot2.path, ".png", sep="") | |
15 plot2.txt = paste(plot2.path, ".txt", sep="") | |
16 | |
17 plot3.path = args[4] | |
18 plot3.png = paste(plot3.path, ".png", sep="") | |
19 plot3.txt = paste(plot3.path, ".txt", sep="") | |
20 | |
21 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) | |
22 | |
23 | |
24 | |
25 classes = c("ca", "ca1", "ca2", "cg", "cg1", "cg2", "cg3", "cg4", "cm") | |
26 xyz = c("x", "y", "z") | |
27 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) | |
28 | |
29 names(dat) = new.names | |
30 | |
31 dat["RGYW.WRCY",] = colSums(dat[c(13,14),]) | |
32 dat["TW.WA",] = colSums(dat[c(15,16),]) | |
33 | |
34 data1 = dat[c("RGYW.WRCY", "TW.WA"),] | |
35 | |
36 data1 = data1[,names(data1)[grepl(".z", names(data1))]] | |
37 names(data1) = gsub("\\..*", "", names(data1)) | |
38 | |
39 data1 = melt(t(data1)) | |
40 | |
41 names(data1) = c("Class", "Type", "value") | |
42 | |
43 write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
44 | |
45 p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) | |
46 png(filename=plot1.png) | |
47 print(p) | |
48 dev.off() | |
49 | |
50 data2 = dat[5:8,] | |
51 | |
52 data2["sum",] = colSums(data2) | |
53 | |
54 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] | |
55 names(data2) = gsub(".x", "", names(data2)) | |
56 | |
57 data2["A/T",] = round(colSums(data2[3:4,]) / data2["sum",] * 100, 1) | |
58 data2["A/T",is.nan(unlist(data2["A/T",]))] = 0 | |
59 | |
60 data2["G/C transversions",] = round(data2[2,] / data2["sum",] * 100, 1) | |
61 data2["G/C transitions",] = round(data2[1,] / data2["sum",] * 100, 1) | |
62 | |
63 | |
64 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 | |
65 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 | |
66 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 | |
67 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 | |
68 | |
69 data2 = melt(t(data2[6:8,])) | |
70 | |
71 names(data2) = c("Class", "Type", "value") | |
72 | |
73 write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
74 | |
75 p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") | |
76 png(filename=plot2.png) | |
77 print(p) | |
78 dev.off() | |
79 | |
80 data3 = dat[c(5, 6, 8, 17:20),] | |
81 data3 = data3[,names(data3)[grepl("\\.x", names(data3))]] | |
82 names(data3) = gsub(".x", "", names(data3)) | |
83 | |
84 data3["G/C transitions",] = round(data3[1,] / (data3[5,] + data3[7,]) * 100, 1) | |
85 | |
86 data3["G/C transversions",] = round(data3[2,] / (data3[5,] + data3[7,]) * 100, 1) | |
87 | |
88 data3["A/T",] = round(data3[3,] / (data3[4,] + data3[6,]) * 100, 1) | |
89 | |
90 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 | |
91 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 | |
92 | |
93 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 | |
94 data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0 | |
95 | |
96 data3["A/T",is.nan(unlist(data3["A/T",]))] = 0 | |
97 data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0 | |
98 | |
99 data3 = melt(t(data3[8:10,])) | |
100 names(data3) = c("Class", "Type", "value") | |
101 | |
102 write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
103 | |
104 p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) | |
105 png(filename=plot3.png) | |
106 print(p) | |
107 dev.off() | |
108 | |
109 | |
110 | |
111 | |
112 | |
113 | |
114 | |
115 | |
116 | |
117 | |
118 | |
119 | |
120 | |
121 | |
122 | |
123 | |
124 | |
125 | |
126 | |
127 | |
128 | |
129 | |
130 | |
131 | |
132 | |
133 | |
134 | |
135 | |
136 | |
137 | |
138 | |
139 |