Mercurial > repos > davidvanzessen > mutation_analysis
view pattern_plots.r @ 0:8a5a2abbb870 draft default tip
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 29 Aug 2016 05:36:10 -0400 |
parents | |
children |
line wrap: on
line source
library(ggplot2) library(reshape2) library(scales) args <- commandArgs(trailingOnly = TRUE) input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt" plot1.path = args[2] plot1.png = paste(plot1.path, ".png", sep="") plot1.txt = paste(plot1.path, ".txt", sep="") plot2.path = args[3] plot2.png = paste(plot2.path, ".png", sep="") plot2.txt = paste(plot2.path, ".txt", sep="") plot3.path = args[4] plot3.png = paste(plot3.path, ".png", sep="") plot3.txt = paste(plot3.path, ".txt", sep="") dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) classes = c("ca", "ca1", "ca2", "cg", "cg1", "cg2", "cg3", "cg4", "cm") xyz = c("x", "y", "z") new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) names(dat) = new.names dat["RGYW.WRCY",] = colSums(dat[c(13,14),]) dat["TW.WA",] = colSums(dat[c(15,16),]) data1 = dat[c("RGYW.WRCY", "TW.WA"),] data1 = data1[,names(data1)[grepl(".z", names(data1))]] names(data1) = gsub("\\..*", "", names(data1)) data1 = melt(t(data1)) names(data1) = c("Class", "Type", "value") write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) png(filename=plot1.png) print(p) dev.off() data2 = dat[5:8,] data2["sum",] = colSums(data2) data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] names(data2) = gsub(".x", "", names(data2)) data2["A/T",] = round(colSums(data2[3:4,]) / data2["sum",] * 100, 1) data2["A/T",is.nan(unlist(data2["A/T",]))] = 0 data2["G/C transversions",] = round(data2[2,] / data2["sum",] * 100, 1) data2["G/C transitions",] = round(data2[1,] / data2["sum",] * 100, 1) data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 data2 = melt(t(data2[6:8,])) names(data2) = c("Class", "Type", "value") write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") png(filename=plot2.png) print(p) dev.off() data3 = dat[c(5, 6, 8, 17:20),] data3 = data3[,names(data3)[grepl("\\.x", names(data3))]] names(data3) = gsub(".x", "", names(data3)) data3["G/C transitions",] = round(data3[1,] / (data3[5,] + data3[7,]) * 100, 1) data3["G/C transversions",] = round(data3[2,] / (data3[5,] + data3[7,]) * 100, 1) data3["A/T",] = round(data3[3,] / (data3[4,] + data3[6,]) * 100, 1) data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0 data3["A/T",is.nan(unlist(data3["A/T",]))] = 0 data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0 data3 = melt(t(data3[8:10,])) names(data3) = c("Class", "Type", "value") write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) png(filename=plot3.png) print(p) dev.off()