Mercurial > repos > devteam > linear_regression
comparison linear_regression.py @ 0:cf431604ec3e draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 10:52:17 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cf431604ec3e |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import sys | |
4 from rpy import * | |
5 import numpy | |
6 | |
7 def stop_err(msg): | |
8 sys.stderr.write(msg) | |
9 sys.exit() | |
10 | |
11 infile = sys.argv[1] | |
12 y_col = int(sys.argv[2])-1 | |
13 x_cols = sys.argv[3].split(',') | |
14 outfile = sys.argv[4] | |
15 outfile2 = sys.argv[5] | |
16 | |
17 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
18 fout = open(outfile,'w') | |
19 elems = [] | |
20 for i, line in enumerate( file ( infile )): | |
21 line = line.rstrip('\r\n') | |
22 if len( line )>0 and not line.startswith( '#' ): | |
23 elems = line.split( '\t' ) | |
24 break | |
25 if i == 30: | |
26 break # Hopefully we'll never get here... | |
27 | |
28 if len( elems )<1: | |
29 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
30 | |
31 y_vals = [] | |
32 x_vals = [] | |
33 | |
34 for k, col in enumerate(x_cols): | |
35 x_cols[k] = int(col)-1 | |
36 x_vals.append([]) | |
37 | |
38 NA = 'NA' | |
39 for ind, line in enumerate( file( infile )): | |
40 if line and not line.startswith( '#' ): | |
41 try: | |
42 fields = line.split("\t") | |
43 try: | |
44 yval = float(fields[y_col]) | |
45 except: | |
46 yval = r('NA') | |
47 y_vals.append(yval) | |
48 for k, col in enumerate(x_cols): | |
49 try: | |
50 xval = float(fields[col]) | |
51 except: | |
52 xval = r('NA') | |
53 x_vals[k].append(xval) | |
54 except: | |
55 pass | |
56 | |
57 x_vals1 = numpy.asarray(x_vals).transpose() | |
58 | |
59 dat = r.list(x=array(x_vals1), y=y_vals) | |
60 | |
61 set_default_mode(NO_CONVERSION) | |
62 try: | |
63 linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
64 except RException, rex: | |
65 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
66 set_default_mode(BASIC_CONVERSION) | |
67 | |
68 coeffs = linear_model.as_py()['coefficients'] | |
69 yintercept = coeffs['(Intercept)'] | |
70 summary = r.summary(linear_model) | |
71 | |
72 co = summary.get('coefficients', 'NA') | |
73 """ | |
74 if len(co) != len(x_vals)+1: | |
75 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
76 """ | |
77 | |
78 try: | |
79 yintercept = r.round(float(yintercept), digits=10) | |
80 pvaly = r.round(float(co[0][3]), digits=10) | |
81 except: | |
82 pass | |
83 | |
84 print >> fout, "Y-intercept\t%s" % (yintercept) | |
85 print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) | |
86 | |
87 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
88 try: | |
89 slope = r.round(float(coeffs['x']), digits=10) | |
90 except: | |
91 slope = 'NA' | |
92 try: | |
93 pval = r.round(float(co[1][3]), digits=10) | |
94 except: | |
95 pval = 'NA' | |
96 print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) | |
97 print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) | |
98 else: #Multiple regression case with >1 predictors | |
99 ind = 1 | |
100 while ind < len(coeffs.keys()): | |
101 try: | |
102 slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
103 except: | |
104 slope = 'NA' | |
105 print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) | |
106 try: | |
107 pval = r.round(float(co[ind][3]), digits=10) | |
108 except: | |
109 pval = 'NA' | |
110 print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) | |
111 ind += 1 | |
112 | |
113 rsq = summary.get('r.squared','NA') | |
114 adjrsq = summary.get('adj.r.squared','NA') | |
115 fstat = summary.get('fstatistic','NA') | |
116 sigma = summary.get('sigma','NA') | |
117 | |
118 try: | |
119 rsq = r.round(float(rsq), digits=5) | |
120 adjrsq = r.round(float(adjrsq), digits=5) | |
121 fval = r.round(fstat['value'], digits=5) | |
122 fstat['value'] = str(fval) | |
123 sigma = r.round(float(sigma), digits=10) | |
124 except: | |
125 pass | |
126 | |
127 print >> fout, "R-squared\t%s" % (rsq) | |
128 print >> fout, "Adjusted R-squared\t%s" % (adjrsq) | |
129 print >> fout, "F-statistic\t%s" % (fstat) | |
130 print >> fout, "Sigma\t%s" % (sigma) | |
131 | |
132 r.pdf( outfile2, 8, 8 ) | |
133 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
134 sub_title = "Slope = %s; Y-int = %s" % ( slope, yintercept ) | |
135 try: | |
136 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
137 r.abline(a=yintercept, b=slope, col="red") | |
138 except: | |
139 pass | |
140 else: | |
141 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
142 try: | |
143 r.plot(linear_model) | |
144 except: | |
145 pass | |
146 r.dev_off() |