Mercurial > repos > devteam > linear_regression
comparison linear_regression.py @ 0:cf431604ec3e draft default tip
Imported from capsule None
| author | devteam |
|---|---|
| date | Tue, 01 Apr 2014 10:52:17 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:cf431604ec3e |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 import sys | |
| 4 from rpy import * | |
| 5 import numpy | |
| 6 | |
| 7 def stop_err(msg): | |
| 8 sys.stderr.write(msg) | |
| 9 sys.exit() | |
| 10 | |
| 11 infile = sys.argv[1] | |
| 12 y_col = int(sys.argv[2])-1 | |
| 13 x_cols = sys.argv[3].split(',') | |
| 14 outfile = sys.argv[4] | |
| 15 outfile2 = sys.argv[5] | |
| 16 | |
| 17 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
| 18 fout = open(outfile,'w') | |
| 19 elems = [] | |
| 20 for i, line in enumerate( file ( infile )): | |
| 21 line = line.rstrip('\r\n') | |
| 22 if len( line )>0 and not line.startswith( '#' ): | |
| 23 elems = line.split( '\t' ) | |
| 24 break | |
| 25 if i == 30: | |
| 26 break # Hopefully we'll never get here... | |
| 27 | |
| 28 if len( elems )<1: | |
| 29 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 30 | |
| 31 y_vals = [] | |
| 32 x_vals = [] | |
| 33 | |
| 34 for k, col in enumerate(x_cols): | |
| 35 x_cols[k] = int(col)-1 | |
| 36 x_vals.append([]) | |
| 37 | |
| 38 NA = 'NA' | |
| 39 for ind, line in enumerate( file( infile )): | |
| 40 if line and not line.startswith( '#' ): | |
| 41 try: | |
| 42 fields = line.split("\t") | |
| 43 try: | |
| 44 yval = float(fields[y_col]) | |
| 45 except: | |
| 46 yval = r('NA') | |
| 47 y_vals.append(yval) | |
| 48 for k, col in enumerate(x_cols): | |
| 49 try: | |
| 50 xval = float(fields[col]) | |
| 51 except: | |
| 52 xval = r('NA') | |
| 53 x_vals[k].append(xval) | |
| 54 except: | |
| 55 pass | |
| 56 | |
| 57 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 58 | |
| 59 dat = r.list(x=array(x_vals1), y=y_vals) | |
| 60 | |
| 61 set_default_mode(NO_CONVERSION) | |
| 62 try: | |
| 63 linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
| 64 except RException, rex: | |
| 65 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
| 66 set_default_mode(BASIC_CONVERSION) | |
| 67 | |
| 68 coeffs = linear_model.as_py()['coefficients'] | |
| 69 yintercept = coeffs['(Intercept)'] | |
| 70 summary = r.summary(linear_model) | |
| 71 | |
| 72 co = summary.get('coefficients', 'NA') | |
| 73 """ | |
| 74 if len(co) != len(x_vals)+1: | |
| 75 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
| 76 """ | |
| 77 | |
| 78 try: | |
| 79 yintercept = r.round(float(yintercept), digits=10) | |
| 80 pvaly = r.round(float(co[0][3]), digits=10) | |
| 81 except: | |
| 82 pass | |
| 83 | |
| 84 print >> fout, "Y-intercept\t%s" % (yintercept) | |
| 85 print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) | |
| 86 | |
| 87 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 88 try: | |
| 89 slope = r.round(float(coeffs['x']), digits=10) | |
| 90 except: | |
| 91 slope = 'NA' | |
| 92 try: | |
| 93 pval = r.round(float(co[1][3]), digits=10) | |
| 94 except: | |
| 95 pval = 'NA' | |
| 96 print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) | |
| 97 print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) | |
| 98 else: #Multiple regression case with >1 predictors | |
| 99 ind = 1 | |
| 100 while ind < len(coeffs.keys()): | |
| 101 try: | |
| 102 slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
| 103 except: | |
| 104 slope = 'NA' | |
| 105 print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) | |
| 106 try: | |
| 107 pval = r.round(float(co[ind][3]), digits=10) | |
| 108 except: | |
| 109 pval = 'NA' | |
| 110 print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) | |
| 111 ind += 1 | |
| 112 | |
| 113 rsq = summary.get('r.squared','NA') | |
| 114 adjrsq = summary.get('adj.r.squared','NA') | |
| 115 fstat = summary.get('fstatistic','NA') | |
| 116 sigma = summary.get('sigma','NA') | |
| 117 | |
| 118 try: | |
| 119 rsq = r.round(float(rsq), digits=5) | |
| 120 adjrsq = r.round(float(adjrsq), digits=5) | |
| 121 fval = r.round(fstat['value'], digits=5) | |
| 122 fstat['value'] = str(fval) | |
| 123 sigma = r.round(float(sigma), digits=10) | |
| 124 except: | |
| 125 pass | |
| 126 | |
| 127 print >> fout, "R-squared\t%s" % (rsq) | |
| 128 print >> fout, "Adjusted R-squared\t%s" % (adjrsq) | |
| 129 print >> fout, "F-statistic\t%s" % (fstat) | |
| 130 print >> fout, "Sigma\t%s" % (sigma) | |
| 131 | |
| 132 r.pdf( outfile2, 8, 8 ) | |
| 133 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 134 sub_title = "Slope = %s; Y-int = %s" % ( slope, yintercept ) | |
| 135 try: | |
| 136 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
| 137 r.abline(a=yintercept, b=slope, col="red") | |
| 138 except: | |
| 139 pass | |
| 140 else: | |
| 141 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
| 142 try: | |
| 143 r.plot(linear_model) | |
| 144 except: | |
| 145 pass | |
| 146 r.dev_off() |
