Mercurial > repos > devteam > linear_regression
diff linear_regression.py @ 0:cf431604ec3e draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 10:52:17 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/linear_regression.py Tue Apr 01 10:52:17 2014 -0400 @@ -0,0 +1,146 @@ +#!/usr/bin/env python + +import sys +from rpy import * +import numpy + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + +infile = sys.argv[1] +y_col = int(sys.argv[2])-1 +x_cols = sys.argv[3].split(',') +outfile = sys.argv[4] +outfile2 = sys.argv[5] + +print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) +fout = open(outfile,'w') +elems = [] +for i, line in enumerate( file ( infile )): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +y_vals = [] +x_vals = [] + +for k, col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + +NA = 'NA' +for ind, line in enumerate( file( infile )): + if line and not line.startswith( '#' ): + try: + fields = line.split("\t") + try: + yval = float(fields[y_col]) + except: + yval = r('NA') + y_vals.append(yval) + for k, col in enumerate(x_cols): + try: + xval = float(fields[col]) + except: + xval = r('NA') + x_vals[k].append(xval) + except: + pass + +x_vals1 = numpy.asarray(x_vals).transpose() + +dat = r.list(x=array(x_vals1), y=y_vals) + +set_default_mode(NO_CONVERSION) +try: + linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) +except RException, rex: + stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") +set_default_mode(BASIC_CONVERSION) + +coeffs = linear_model.as_py()['coefficients'] +yintercept = coeffs['(Intercept)'] +summary = r.summary(linear_model) + +co = summary.get('coefficients', 'NA') +""" +if len(co) != len(x_vals)+1: + stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") +""" + +try: + yintercept = r.round(float(yintercept), digits=10) + pvaly = r.round(float(co[0][3]), digits=10) +except: + pass + +print >> fout, "Y-intercept\t%s" % (yintercept) +print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) + +if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable + try: + slope = r.round(float(coeffs['x']), digits=10) + except: + slope = 'NA' + try: + pval = r.round(float(co[1][3]), digits=10) + except: + pval = 'NA' + print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) + print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) +else: #Multiple regression case with >1 predictors + ind = 1 + while ind < len(coeffs.keys()): + try: + slope = r.round(float(coeffs['x'+str(ind)]), digits=10) + except: + slope = 'NA' + print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) + try: + pval = r.round(float(co[ind][3]), digits=10) + except: + pval = 'NA' + print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) + ind += 1 + +rsq = summary.get('r.squared','NA') +adjrsq = summary.get('adj.r.squared','NA') +fstat = summary.get('fstatistic','NA') +sigma = summary.get('sigma','NA') + +try: + rsq = r.round(float(rsq), digits=5) + adjrsq = r.round(float(adjrsq), digits=5) + fval = r.round(fstat['value'], digits=5) + fstat['value'] = str(fval) + sigma = r.round(float(sigma), digits=10) +except: + pass + +print >> fout, "R-squared\t%s" % (rsq) +print >> fout, "Adjusted R-squared\t%s" % (adjrsq) +print >> fout, "F-statistic\t%s" % (fstat) +print >> fout, "Sigma\t%s" % (sigma) + +r.pdf( outfile2, 8, 8 ) +if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable + sub_title = "Slope = %s; Y-int = %s" % ( slope, yintercept ) + try: + r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") + r.abline(a=yintercept, b=slope, col="red") + except: + pass +else: + r.pairs(dat, main="Scatterplot Matrix", col="blue") +try: + r.plot(linear_model) +except: + pass +r.dev_off()