Mercurial > repos > ebi-gxa > decoupler_pathway_inference
changeset 2:82b7cd3e1bbd draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit b01245159f9cb67101497bb974b2c13bcee019b7
author | ebi-gxa |
---|---|
date | Tue, 16 Apr 2024 11:49:19 +0000 |
parents | e9b06a8fb73a |
children | c6787c2aee46 |
files | decoupler_aucell_score.py |
diffstat | 1 files changed, 72 insertions(+), 62 deletions(-) [+] |
line wrap: on
line diff
--- a/decoupler_aucell_score.py Mon Apr 15 13:20:27 2024 +0000 +++ b/decoupler_aucell_score.py Tue Apr 16 11:49:19 2024 +0000 @@ -5,11 +5,12 @@ import anndata import decoupler as dc import pandas as pd +import numba as nb -def read_gmt(gmt_file): +def read_gmt_long(gmt_file): """ - Reads a GMT file into a Pandas DataFrame. + Reads a GMT file and produce a Pandas DataFrame in long format, ready to be passed to the AUCell method. Parameters ---------- @@ -19,7 +20,7 @@ Returns ------- pd.DataFrame - A DataFrame with the gene sets. Each row represents a gene set, and the columns are "gene_set_name", "gene_set_url", and "genes". + A DataFrame with the gene sets. Each row represents a gene set to gene assignment, and the columns are "gene_set_name" and "genes". >>> line = "HALLMARK_NOTCH_SIGNALING\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\\tJAG1\\tNOTCH3\\tNOTCH2\\tAPH1A\\tHES1\\tCCND1\\tFZD1\\tPSEN2\\tFZD7\\tDTX1\\tDLL1\\tFZD5\\tMAML2\\tNOTCH1\\tPSENEN\\tWNT5A\\tCUL1\\tWNT2\\tDTX4\\tSAP30\\tPPARD\\tKAT2A\\tHEYL\\tSKP1\\tRBX1\\tTCF7L2\\tARRB1\\tLFNG\\tPRKCA\\tDTX2\\tST3GAL6\\tFBXW11\\n" >>> line2 = "HALLMARK_APICAL_SURFACE\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\\tB4GALT1\\tRHCG\\tMAL\\tLYPD3\\tPKHD1\\tATP6V0A4\\tCRYBG1\\tSHROOM2\\tSRPX\\tMDGA1\\tTMEM8B\\tTHY1\\tPCSK9\\tEPHB4\\tDCBLD2\\tGHRL\\tLYN\\tGAS1\\tFLOT2\\tPLAUR\\tAKAP7\\tATP8B1\\tEFNA5\\tSLC34A3\\tAPP\\tGSTM3\\tHSPB1\\tSLC2A4\\tIL2RB\\tRTN4RL1\\tNCOA6\\tSULF2\\tADAM10\\tBRCA1\\tGATA3\\tAFAP1L2\\tIL2RG\\tCD160\\tADIPOR2\\tSLC22A12\\tNTNG1\\tSCUBE1\\tCX3CL1\\tCROCC\\n" >>> temp_dir = tempfile.gettempdir() @@ -29,81 +30,91 @@ ... f.write(line2) 288 380 - >>> df = read_gmt(temp_gmt) + >>> df = read_gmt_long(temp_gmt) >>> df.shape[0] - 2 - >>> df.columns == ["gene_set_name", "genes"] - array([ True, True]) - >>> df.loc[df["gene_set_name"] == "HALLMARK_APICAL_SURFACE"].genes.tolist()[0].startswith("B4GALT1") - True + 76 + >>> len(df.loc[df["gene_set"] == "HALLMARK_APICAL_SURFACE"].gene.tolist()) + 44 """ + # Create a list of dictionaries, where each dictionary represents a gene set + gene_sets = {} + # Read the GMT file into a list of lines with open(gmt_file, "r") as f: - lines = f.readlines() + while True: + line = f.readline() + if not line: + break + fields = line.strip().split("\t") + gene_sets[fields[0]]= fields[2:] - # Create a list of dictionaries, where each dictionary represents a gene set - gene_sets = [] - for line in lines: - fields = line.strip().split("\t") - gene_set = {"gene_set_name": fields[0], "genes": ",".join(fields[2:])} - gene_sets.append(gene_set) - - # Convert the list of dictionaries to a DataFrame - return pd.DataFrame(gene_sets) + return pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) -def score_genes_aucell( - adata: anndata.AnnData, gene_list: list, score_name: str, use_raw=False, min_n_genes=5 -): +def score_genes_aucell_mt(adata: anndata.AnnData, gene_set_gene: pd.DataFrame, use_raw=False, min_n_genes=5, var_gene_symbols_field=None): """Score genes using Aucell. Parameters ---------- adata : anndata.AnnData - gene_list : list - score_names : str - use_raw : bool, optional + gene_set_gene: pd.DataFrame with columns gene_set and gene + use_raw : bool, optional, False by default. + min_n_genes : int, optional, 5 by default. + var_gene_symbols_field : str, optional, None by default. The field in var where gene symbols are stored >>> import scanpy as sc >>> import decoupler as dc >>> adata = sc.datasets.pbmc68k_reduced() - >>> gene_list = adata.var[adata.var.index.str.startswith("RP")].index.tolist() - >>> score_genes_aucell(adata, gene_list, "ribosomal_aucell", use_raw=False) - >>> "ribosomal_aucell" in adata.obs.columns + >>> r_gene_list = adata.var[adata.var.index.str.startswith("RP")].index.tolist() + >>> m_gene_list = adata.var[adata.var.index.str.startswith("M")].index.tolist() + >>> gene_set = {} + >>> gene_set["m"] = m_gene_list + >>> gene_set["r"] = r_gene_list + >>> gene_set_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_set.items()) + >>> score_genes_aucell_mt(adata, gene_set_df, use_raw=False) + >>> "AUCell_m" in adata.obs.columns + True + >>> "AUCell_r" in adata.obs.columns True """ - # make a data.frame with two columns, geneset and gene_id, geneset filled with score_names and gene_id with gene_list, one row per element - geneset_df = pd.DataFrame( - { - "gene_id": gene_list, - "geneset": score_name, - } - ) + + # if var_gene_symbols_fiels is provided, transform gene_set_gene df so that gene contains gene ids instead of gene symbols + if var_gene_symbols_field: + # merge the index of var to gene_set_gene df based on var_gene_symbols_field + var_id_symbols = adata.var[[var_gene_symbols_field]] + var_id_symbols['gene_id'] = var_id_symbols.index + + gene_set_gene = gene_set_gene.merge(var_id_symbols, left_on='gene', right_on=var_gene_symbols_field, how='left') + # this will still produce some empty gene_ids (genes in the gene_set_gene df that are not in the var df), fill those + # with the original gene symbol from the gene_set to avoid deforming the AUCell calculation + gene_set_gene['gene_id'] = gene_set_gene['gene_id'].fillna(gene_set_gene['gene']) + gene_set_gene['gene'] = gene_set_gene['gene_id'] + # run decoupler's run_aucell - # catch the value error - try: - dc.run_aucell( - adata, net=geneset_df, source="geneset", target="gene_id", use_raw=use_raw + dc.run_aucell( + adata, net=gene_set_gene, source="gene_set", target="gene", use_raw=use_raw, min_n=min_n_genes ) - # copy .obsm['aucell_estimate'] matrix columns to adata.obs using the column names - adata.obs[score_name] = adata.obsm["aucell_estimate"][score_name] - except ValueError as ve: - print(f"Gene list {score_name} failed, skipping: {str(ve)}") + for gs in gene_set_gene.gene_set.unique(): + if gs in adata.obsm['aucell_estimate'].keys(): + adata.obs[f"AUCell_{gs}"] = adata.obsm["aucell_estimate"][gs] def run_for_genelists( - adata, gene_lists, score_names, use_raw=False, gene_symbols_field="gene_symbols", min_n_genes=5 + adata, gene_lists, score_names, use_raw=False, gene_symbols_field=None, min_n_genes=5 ): if len(gene_lists) == len(score_names): for gene_list, score_names in zip(gene_lists, score_names): genes = gene_list.split(",") - ens_gene_ids = adata.var[adata.var[gene_symbols_field].isin(genes)].index - score_genes_aucell( + gene_sets = {} + gene_sets[score_names] = genes + gene_set_gene_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) + + score_genes_aucell_mt( adata, - ens_gene_ids, - f"AUCell_{score_names}", + gene_set_gene_df, use_raw, - min_n_genes + min_n_genes, + var_gene_symbols_field=gene_symbols_field ) else: raise ValueError( @@ -160,32 +171,31 @@ parser.add_argument( "--write_anndata", action="store_true", help="Write the modified AnnData object" ) + # argument for number of max concurrent processes + parser.add_argument("--max_threads", type=int, required=False, default=1, help="Number of max concurrent threads") + # Parse command-line arguments args = parser.parse_args() + nb.set_num_threads(n=args.max_threads) + # Load input AnnData object adata = anndata.read_h5ad(args.input_file) if args.gmt_file is not None: # Load MSigDB file in GMT format - msigdb = read_gmt(args.gmt_file) + # msigdb = read_gmt(args.gmt_file) + msigdb = read_gmt_long(args.gmt_file) gene_sets_to_score = ( args.gene_sets_to_score.split(",") if args.gene_sets_to_score else [] ) - # Score genes by their ensembl ids using the score_genes_aucell function - for _, row in msigdb.iterrows(): - gene_set_name = row["gene_set_name"] - if not gene_sets_to_score or gene_set_name in gene_sets_to_score: - genes = row["genes"].split(",") - # Convert gene symbols to ensembl ids by using the columns gene_symbols and index in adata.var specific to the gene set - ens_gene_ids = adata.var[ - adata.var[args.gene_symbols_field].isin(genes) - ].index - score_genes_aucell( - adata, ens_gene_ids, f"AUCell_{gene_set_name}", args.use_raw, args.min_n - ) + if gene_sets_to_score: + # we limit the GMT file read to the genesets specified in the gene_sets_to_score argument + msigdb = msigdb[msigdb["gene_set"].isin(gene_sets_to_score)] + + score_genes_aucell_mt(adata, msigdb, args.use_raw, args.min_n, var_gene_symbols_field=args.gene_symbols_field) elif args.gene_lists_to_score is not None and args.score_names is not None: gene_lists = args.gene_lists_to_score.split(":") score_names = args.score_names.split(",")