Mercurial > repos > ebi-gxa > decoupler_pseudobulk
view decoupler_aucell_score.py @ 6:ed2a77422e00 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 11fb36a94b8262ef8e78f1c6dd46c4146eb59341
author | ebi-gxa |
---|---|
date | Mon, 15 Apr 2024 13:20:32 +0000 |
parents | f321c60167d4 |
children | 68a2b5445558 |
line wrap: on
line source
import argparse import os import tempfile import anndata import decoupler as dc import pandas as pd def read_gmt(gmt_file): """ Reads a GMT file into a Pandas DataFrame. Parameters ---------- gmt_file : str Path to the GMT file. Returns ------- pd.DataFrame A DataFrame with the gene sets. Each row represents a gene set, and the columns are "gene_set_name", "gene_set_url", and "genes". >>> line = "HALLMARK_NOTCH_SIGNALING\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\\tJAG1\\tNOTCH3\\tNOTCH2\\tAPH1A\\tHES1\\tCCND1\\tFZD1\\tPSEN2\\tFZD7\\tDTX1\\tDLL1\\tFZD5\\tMAML2\\tNOTCH1\\tPSENEN\\tWNT5A\\tCUL1\\tWNT2\\tDTX4\\tSAP30\\tPPARD\\tKAT2A\\tHEYL\\tSKP1\\tRBX1\\tTCF7L2\\tARRB1\\tLFNG\\tPRKCA\\tDTX2\\tST3GAL6\\tFBXW11\\n" >>> line2 = "HALLMARK_APICAL_SURFACE\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\\tB4GALT1\\tRHCG\\tMAL\\tLYPD3\\tPKHD1\\tATP6V0A4\\tCRYBG1\\tSHROOM2\\tSRPX\\tMDGA1\\tTMEM8B\\tTHY1\\tPCSK9\\tEPHB4\\tDCBLD2\\tGHRL\\tLYN\\tGAS1\\tFLOT2\\tPLAUR\\tAKAP7\\tATP8B1\\tEFNA5\\tSLC34A3\\tAPP\\tGSTM3\\tHSPB1\\tSLC2A4\\tIL2RB\\tRTN4RL1\\tNCOA6\\tSULF2\\tADAM10\\tBRCA1\\tGATA3\\tAFAP1L2\\tIL2RG\\tCD160\\tADIPOR2\\tSLC22A12\\tNTNG1\\tSCUBE1\\tCX3CL1\\tCROCC\\n" >>> temp_dir = tempfile.gettempdir() >>> temp_gmt = os.path.join(temp_dir, "temp_file.gmt") >>> with open(temp_gmt, "w") as f: ... f.write(line) ... f.write(line2) 288 380 >>> df = read_gmt(temp_gmt) >>> df.shape[0] 2 >>> df.columns == ["gene_set_name", "genes"] array([ True, True]) >>> df.loc[df["gene_set_name"] == "HALLMARK_APICAL_SURFACE"].genes.tolist()[0].startswith("B4GALT1") True """ # Read the GMT file into a list of lines with open(gmt_file, "r") as f: lines = f.readlines() # Create a list of dictionaries, where each dictionary represents a gene set gene_sets = [] for line in lines: fields = line.strip().split("\t") gene_set = {"gene_set_name": fields[0], "genes": ",".join(fields[2:])} gene_sets.append(gene_set) # Convert the list of dictionaries to a DataFrame return pd.DataFrame(gene_sets) def score_genes_aucell( adata: anndata.AnnData, gene_list: list, score_name: str, use_raw=False, min_n_genes=5 ): """Score genes using Aucell. Parameters ---------- adata : anndata.AnnData gene_list : list score_names : str use_raw : bool, optional >>> import scanpy as sc >>> import decoupler as dc >>> adata = sc.datasets.pbmc68k_reduced() >>> gene_list = adata.var[adata.var.index.str.startswith("RP")].index.tolist() >>> score_genes_aucell(adata, gene_list, "ribosomal_aucell", use_raw=False) >>> "ribosomal_aucell" in adata.obs.columns True """ # make a data.frame with two columns, geneset and gene_id, geneset filled with score_names and gene_id with gene_list, one row per element geneset_df = pd.DataFrame( { "gene_id": gene_list, "geneset": score_name, } ) # run decoupler's run_aucell # catch the value error try: dc.run_aucell( adata, net=geneset_df, source="geneset", target="gene_id", use_raw=use_raw ) # copy .obsm['aucell_estimate'] matrix columns to adata.obs using the column names adata.obs[score_name] = adata.obsm["aucell_estimate"][score_name] except ValueError as ve: print(f"Gene list {score_name} failed, skipping: {str(ve)}") def run_for_genelists( adata, gene_lists, score_names, use_raw=False, gene_symbols_field="gene_symbols", min_n_genes=5 ): if len(gene_lists) == len(score_names): for gene_list, score_names in zip(gene_lists, score_names): genes = gene_list.split(",") ens_gene_ids = adata.var[adata.var[gene_symbols_field].isin(genes)].index score_genes_aucell( adata, ens_gene_ids, f"AUCell_{score_names}", use_raw, min_n_genes ) else: raise ValueError( "The number of gene lists (separated by :) and score names (separated by :) must be the same" ) if __name__ == "__main__": # Create command-line arguments parser parser = argparse.ArgumentParser(description="Score genes using Aucell") parser.add_argument( "--input_file", type=str, help="Path to input AnnData file", required=True ) parser.add_argument( "--output_file", type=str, help="Path to output file", required=True ) parser.add_argument("--gmt_file", type=str, help="Path to GMT file", required=False) # add argument for gene sets to score parser.add_argument( "--gene_sets_to_score", type=str, required=False, help="Optional comma separated list of gene sets to score (the need to be in the gmt file)", ) # add argument for gene list (comma separated) to score parser.add_argument( "--gene_lists_to_score", type=str, required=False, help="Comma separated list of genes to score. You can have more than one set of genes, separated by colon :", ) # argument for the score name when using the gene list parser.add_argument( "--score_names", type=str, required=False, help="Name of the score column when using the gene list. You can have more than one set of score names, separated by colon :. It should be the same length as the number of gene lists.", ) parser.add_argument( "--gene_symbols_field", type=str, help="Name of the gene symbols field in the AnnData object", required=True, ) # argument for min_n Minimum of targets per source. If less, sources are removed. parser.add_argument( "--min_n", type=int, required=False, default=5, help="Minimum of targets per source. If less, sources are removed.", ) parser.add_argument("--use_raw", action="store_true", help="Use raw data") parser.add_argument( "--write_anndata", action="store_true", help="Write the modified AnnData object" ) # Parse command-line arguments args = parser.parse_args() # Load input AnnData object adata = anndata.read_h5ad(args.input_file) if args.gmt_file is not None: # Load MSigDB file in GMT format msigdb = read_gmt(args.gmt_file) gene_sets_to_score = ( args.gene_sets_to_score.split(",") if args.gene_sets_to_score else [] ) # Score genes by their ensembl ids using the score_genes_aucell function for _, row in msigdb.iterrows(): gene_set_name = row["gene_set_name"] if not gene_sets_to_score or gene_set_name in gene_sets_to_score: genes = row["genes"].split(",") # Convert gene symbols to ensembl ids by using the columns gene_symbols and index in adata.var specific to the gene set ens_gene_ids = adata.var[ adata.var[args.gene_symbols_field].isin(genes) ].index score_genes_aucell( adata, ens_gene_ids, f"AUCell_{gene_set_name}", args.use_raw, args.min_n ) elif args.gene_lists_to_score is not None and args.score_names is not None: gene_lists = args.gene_lists_to_score.split(":") score_names = args.score_names.split(",") run_for_genelists( adata, gene_lists, score_names, args.use_raw, args.gene_symbols_field, args.min_n ) # Save the modified AnnData object or generate a file with cells as rows and the new score_names columns if args.write_anndata: adata.write_h5ad(args.output_file) else: new_columns = [col for col in adata.obs.columns if col.startswith("AUCell_")] adata.obs[new_columns].to_csv(args.output_file, sep="\t", index=True)