Mercurial > repos > ebi-gxa > scanpy_find_variable_genes
diff scanpy-find-variable-genes.xml @ 1:b089f4a55e6b draft
"planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 4846776f55931e176f7e77af7c185ec6fec7d142"
author | ebi-gxa |
---|---|
date | Mon, 16 Sep 2019 08:19:34 -0400 |
parents | 305d0cbe0ffd |
children | cb007db0857d |
line wrap: on
line diff
--- a/scanpy-find-variable-genes.xml Wed Apr 03 11:12:05 2019 -0400 +++ b/scanpy-find-variable-genes.xml Mon Sep 16 08:19:34 2019 -0400 @@ -2,47 +2,51 @@ <tool id="scanpy_find_variable_genes" name="Scanpy FindVariableGenes" version="@TOOL_VERSION@+galaxy0"> <description>based on normalised dispersion of expression</description> <macros> - <import>scanpy_macros.xml</import> + <import>scanpy_macros2.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ln -s '${input_obj_file}' input.h5 && -PYTHONIOENCODING=utf-8 scanpy-find-variable-genes.py -i input.h5 - -f '${input_format}' - -o output.h5 - -F '${output_format}' - --flavor '${flavor}' - -b '${n_bin}' - #if $parameters - #set pars = ','.join([str($p['name']) for $p in $parameters]) - -p '${pars}' - #set mins = ','.join([str($p['min']) for $p in $parameters]) - -l '${mins}' - #set maxs = ','.join([str($p['max']) for $p in $parameters]) - -j '${maxs}' - #end if - #if $n_top_gene - -n '${n_top_gene}' - #end if +PYTHONIOENCODING=utf-8 scanpy-find-variable-genes + --flavor '${method.flavor}' +#if $method.flavor == 'seurat' + --mean-limits ${method.min_mean} ${method.max_mean} + --disp-limits ${method.min_disp} ${method.max_disp} +#else + --n-top-genes ${method.n_top_gene} +#end if + --n-bins '${n_bin}' + ${filter} + @INPUT_OPTS@ + @OUTPUT_OPTS@ ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> - <param name="flavor" argument="--flavor" type="select" value="seurat" label="Flavor of computing normalised dispersion"> - <option value="seurat">Seurat</option> - <option value="cell_ranger">Cell-ranger</option> - </param> - <repeat name="parameters" min="1" title="Parameters used to find variable genes"> - <param name="name" type="select" label="Name of parameter to filter on"> - <option value="mean">Mean of expression</option> - <option value="disp">Dispersion of expression</option> + <conditional name="method"> + <param name="flavor" argument="--flavor" type="select" label="Flavor of computing normalised dispersion"> + <option value="seurat" selected="true">Seurat</option> + <option value="cell_ranger">Cell-ranger</option> </param> - <param name="min" type="float" value="0" label="Min value"/> - <param name="max" type="float" value="1e9" label="Max value"/> - </repeat> + <when value="seurat"> + <param name="min_mean" argument="--min-mean" type="float" min="0" value="0.0125" + label="Min value for normalised mean expression (in log1p scale)"/> + <param name="max_mean" argument="--max-mean" type="float" min="0" value="3" + label="Max value for normalised mean expresssion (in log1p scale)"/> + <param name="min_disp" argument="--min-disp" type="float" min="0" value="0.5" + label="Min value for dispersion of expression"/> + <param name="max_disp" argument="--max-disp" type="float" min="0" value="50" + label="Max value for dispersion of expresssion"/> + </when> + <when value="cell_ranger"> + <param name="n_top_gene" argument="--n-top-genes" type="integer" value="2000" + label="Number of top variable genes to keep"/> + </when> + </conditional> <param name="n_bin" argument="--n-bins" type="integer" value="20" label="Number of bins for binning the mean expression"/> - <param name="n_top_gene" argument="--n-top-genes" type="integer" optional="true" label="Number of top variable genes to keep"/> + <param name="filter" argument="--subset" type="boolean" truevalue="--subset" falsevalue="" checked="false" + label="Remove genes not marked as highly variable"/> </inputs> <outputs> @@ -56,26 +60,20 @@ <param name="output_format" value="anndata"/> <param name="flavor" value="seurat"/> <param name="n_bin" value="20"/> - <repeat name="parameters"> - <param name="name" value="mean"/> - <param name="min" value="0.0125"/> - <param name="max" value="3"/> - </repeat> - <repeat name="parameters"> - <param name="name" value="disp"/> - <param name="min" value="0.5"/> - <param name="max" value="1e9"/> - </repeat> + <param name="min_mean" value="0.0125"/> + <param name="max_mean" value="3"/> + <param name="min_disp" value="0.5"/> + <param name="max_disp" value="1e9"/> <output name="output_h5" file="find_variable_genes.h5" ftype="h5" compare="sim_size"/> </test> </tests> <help><![CDATA[ -============================================================ -Extract highly variable genes (`pp.filter_genes_dispersion`) -============================================================ +============================================================== +Mark highly variable genes (`scanpy.pp.highly_variable_genes`) +============================================================== -Depending on `flavor`, this reproduces the R-implementations of Seurat and Cell Ranger. +Depending on `flavor`, this reproduces the R-implementations of Seurat or Cell Ranger. The normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean