Mercurial > repos > ebi-gxa > score_genes_aucell
view decoupler_aucell_score.py @ 4:515ac51db6e5 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit b01245159f9cb67101497bb974b2c13bcee019b7
author | ebi-gxa |
---|---|
date | Tue, 16 Apr 2024 11:49:14 +0000 |
parents | e887a7e8c5b4 |
children | c9aaac87c583 |
line wrap: on
line source
import argparse import os import tempfile import anndata import decoupler as dc import pandas as pd import numba as nb def read_gmt_long(gmt_file): """ Reads a GMT file and produce a Pandas DataFrame in long format, ready to be passed to the AUCell method. Parameters ---------- gmt_file : str Path to the GMT file. Returns ------- pd.DataFrame A DataFrame with the gene sets. Each row represents a gene set to gene assignment, and the columns are "gene_set_name" and "genes". >>> line = "HALLMARK_NOTCH_SIGNALING\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\\tJAG1\\tNOTCH3\\tNOTCH2\\tAPH1A\\tHES1\\tCCND1\\tFZD1\\tPSEN2\\tFZD7\\tDTX1\\tDLL1\\tFZD5\\tMAML2\\tNOTCH1\\tPSENEN\\tWNT5A\\tCUL1\\tWNT2\\tDTX4\\tSAP30\\tPPARD\\tKAT2A\\tHEYL\\tSKP1\\tRBX1\\tTCF7L2\\tARRB1\\tLFNG\\tPRKCA\\tDTX2\\tST3GAL6\\tFBXW11\\n" >>> line2 = "HALLMARK_APICAL_SURFACE\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\\tB4GALT1\\tRHCG\\tMAL\\tLYPD3\\tPKHD1\\tATP6V0A4\\tCRYBG1\\tSHROOM2\\tSRPX\\tMDGA1\\tTMEM8B\\tTHY1\\tPCSK9\\tEPHB4\\tDCBLD2\\tGHRL\\tLYN\\tGAS1\\tFLOT2\\tPLAUR\\tAKAP7\\tATP8B1\\tEFNA5\\tSLC34A3\\tAPP\\tGSTM3\\tHSPB1\\tSLC2A4\\tIL2RB\\tRTN4RL1\\tNCOA6\\tSULF2\\tADAM10\\tBRCA1\\tGATA3\\tAFAP1L2\\tIL2RG\\tCD160\\tADIPOR2\\tSLC22A12\\tNTNG1\\tSCUBE1\\tCX3CL1\\tCROCC\\n" >>> temp_dir = tempfile.gettempdir() >>> temp_gmt = os.path.join(temp_dir, "temp_file.gmt") >>> with open(temp_gmt, "w") as f: ... f.write(line) ... f.write(line2) 288 380 >>> df = read_gmt_long(temp_gmt) >>> df.shape[0] 76 >>> len(df.loc[df["gene_set"] == "HALLMARK_APICAL_SURFACE"].gene.tolist()) 44 """ # Create a list of dictionaries, where each dictionary represents a gene set gene_sets = {} # Read the GMT file into a list of lines with open(gmt_file, "r") as f: while True: line = f.readline() if not line: break fields = line.strip().split("\t") gene_sets[fields[0]]= fields[2:] return pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) def score_genes_aucell_mt(adata: anndata.AnnData, gene_set_gene: pd.DataFrame, use_raw=False, min_n_genes=5, var_gene_symbols_field=None): """Score genes using Aucell. Parameters ---------- adata : anndata.AnnData gene_set_gene: pd.DataFrame with columns gene_set and gene use_raw : bool, optional, False by default. min_n_genes : int, optional, 5 by default. var_gene_symbols_field : str, optional, None by default. The field in var where gene symbols are stored >>> import scanpy as sc >>> import decoupler as dc >>> adata = sc.datasets.pbmc68k_reduced() >>> r_gene_list = adata.var[adata.var.index.str.startswith("RP")].index.tolist() >>> m_gene_list = adata.var[adata.var.index.str.startswith("M")].index.tolist() >>> gene_set = {} >>> gene_set["m"] = m_gene_list >>> gene_set["r"] = r_gene_list >>> gene_set_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_set.items()) >>> score_genes_aucell_mt(adata, gene_set_df, use_raw=False) >>> "AUCell_m" in adata.obs.columns True >>> "AUCell_r" in adata.obs.columns True """ # if var_gene_symbols_fiels is provided, transform gene_set_gene df so that gene contains gene ids instead of gene symbols if var_gene_symbols_field: # merge the index of var to gene_set_gene df based on var_gene_symbols_field var_id_symbols = adata.var[[var_gene_symbols_field]] var_id_symbols['gene_id'] = var_id_symbols.index gene_set_gene = gene_set_gene.merge(var_id_symbols, left_on='gene', right_on=var_gene_symbols_field, how='left') # this will still produce some empty gene_ids (genes in the gene_set_gene df that are not in the var df), fill those # with the original gene symbol from the gene_set to avoid deforming the AUCell calculation gene_set_gene['gene_id'] = gene_set_gene['gene_id'].fillna(gene_set_gene['gene']) gene_set_gene['gene'] = gene_set_gene['gene_id'] # run decoupler's run_aucell dc.run_aucell( adata, net=gene_set_gene, source="gene_set", target="gene", use_raw=use_raw, min_n=min_n_genes ) for gs in gene_set_gene.gene_set.unique(): if gs in adata.obsm['aucell_estimate'].keys(): adata.obs[f"AUCell_{gs}"] = adata.obsm["aucell_estimate"][gs] def run_for_genelists( adata, gene_lists, score_names, use_raw=False, gene_symbols_field=None, min_n_genes=5 ): if len(gene_lists) == len(score_names): for gene_list, score_names in zip(gene_lists, score_names): genes = gene_list.split(",") gene_sets = {} gene_sets[score_names] = genes gene_set_gene_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) score_genes_aucell_mt( adata, gene_set_gene_df, use_raw, min_n_genes, var_gene_symbols_field=gene_symbols_field ) else: raise ValueError( "The number of gene lists (separated by :) and score names (separated by :) must be the same" ) if __name__ == "__main__": # Create command-line arguments parser parser = argparse.ArgumentParser(description="Score genes using Aucell") parser.add_argument( "--input_file", type=str, help="Path to input AnnData file", required=True ) parser.add_argument( "--output_file", type=str, help="Path to output file", required=True ) parser.add_argument("--gmt_file", type=str, help="Path to GMT file", required=False) # add argument for gene sets to score parser.add_argument( "--gene_sets_to_score", type=str, required=False, help="Optional comma separated list of gene sets to score (the need to be in the gmt file)", ) # add argument for gene list (comma separated) to score parser.add_argument( "--gene_lists_to_score", type=str, required=False, help="Comma separated list of genes to score. You can have more than one set of genes, separated by colon :", ) # argument for the score name when using the gene list parser.add_argument( "--score_names", type=str, required=False, help="Name of the score column when using the gene list. You can have more than one set of score names, separated by colon :. It should be the same length as the number of gene lists.", ) parser.add_argument( "--gene_symbols_field", type=str, help="Name of the gene symbols field in the AnnData object", required=True, ) # argument for min_n Minimum of targets per source. If less, sources are removed. parser.add_argument( "--min_n", type=int, required=False, default=5, help="Minimum of targets per source. If less, sources are removed.", ) parser.add_argument("--use_raw", action="store_true", help="Use raw data") parser.add_argument( "--write_anndata", action="store_true", help="Write the modified AnnData object" ) # argument for number of max concurrent processes parser.add_argument("--max_threads", type=int, required=False, default=1, help="Number of max concurrent threads") # Parse command-line arguments args = parser.parse_args() nb.set_num_threads(n=args.max_threads) # Load input AnnData object adata = anndata.read_h5ad(args.input_file) if args.gmt_file is not None: # Load MSigDB file in GMT format # msigdb = read_gmt(args.gmt_file) msigdb = read_gmt_long(args.gmt_file) gene_sets_to_score = ( args.gene_sets_to_score.split(",") if args.gene_sets_to_score else [] ) if gene_sets_to_score: # we limit the GMT file read to the genesets specified in the gene_sets_to_score argument msigdb = msigdb[msigdb["gene_set"].isin(gene_sets_to_score)] score_genes_aucell_mt(adata, msigdb, args.use_raw, args.min_n, var_gene_symbols_field=args.gene_symbols_field) elif args.gene_lists_to_score is not None and args.score_names is not None: gene_lists = args.gene_lists_to_score.split(":") score_names = args.score_names.split(",") run_for_genelists( adata, gene_lists, score_names, args.use_raw, args.gene_symbols_field, args.min_n ) # Save the modified AnnData object or generate a file with cells as rows and the new score_names columns if args.write_anndata: adata.write_h5ad(args.output_file) else: new_columns = [col for col in adata.obs.columns if col.startswith("AUCell_")] adata.obs[new_columns].to_csv(args.output_file, sep="\t", index=True)