Mercurial > repos > ebi-gxa > scpred_predict_labels
view scpred_predict.xml @ 7:b869bb6d4b01 draft default tip
"planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit a1ad1ddd9b8e4db5bb82c3accae8311e0e488b19"
author | ebi-gxa |
---|---|
date | Fri, 27 Nov 2020 13:46:06 +0000 |
parents | eca76dd511f4 |
children |
line wrap: on
line source
<tool id="scpred_predict_labels" name="Scpred predict" version="@TOOL_VERSION@+galaxy0"> <description>Make cell type predictions using trained model.</description> <macros> <import>scpred_macros.xml</import> </macros> <expand macro="requirements" /> <command detect_errors="exit_code"><![CDATA[ scpred_predict.R --input-object "${input_object}" --pred-data "${pred_data}" --normalise-data "${normalise_data}" --recompute-alignment "${recompute_alignment}" --reference-scaling "${reference_scaling}" --output-path "${output_path}" #if $normalisation_method --normalisation-method "${normalisation_method}" #end if #if $scale_factor --scale-factor "${scale_factor}" #end if #if $threshold_level --threshold-level "${threshold_level}" #end if #if $max_iter_harmony --max-iter-harmony "${max_iter_harmony}" #end if ]]></command> <inputs> <param type="data" name="input_object" label="Input Seurat Object" format="rdata" help="Input Seurat object in .rds format" /> <param type="data" name="pred_data" label="Query Data Matrix" format="rdata" help="Path to the input prediction matrix in .rds format"/> <param type="boolean" checked="false" name="normalise_data" label="Normalise Data" help="Should the predicted expression data be normalised? Default: False"/> <param type="text" name="normalisation_method" optional="true" value="LogNormalize" label="Normalisation Method" help="What normalisation method should be applied to predicted data? Default: LogNormalize" /> <param type="integer" name="scale_factor" optional="true" value="1000000" label="Scale Factor" help="What scale factor should be applied? Note: for CPM normalisation, 1e6 is selected by default" /> <param type="float" name="threshold_level" optional="true" value="0.8" label="Threshold Level" help="Classification threshold value" /> <param type="integer" name="max_iter_harmony" optional="true" value="20" label="Max Iterations" help="Maximum number of rounds to run Harmony. One round of Harmony involves one clustering and one correction step" /> <param type="boolean" checked="true" name="recompute_alignment" label="Recompute Alignment" help="Recompute alignment? Useful if scPredict() has already been run. Default: True"/> <param type="boolean" checked="true" name="reference_scaling" label="Reference Scaling" help="Scale new dataset based on means and stdevs from reference dataset before alignment. Default: True"/> </inputs> <outputs> <data name="output_path" format="rdata" /> </outputs> <tests> <test> <param name="input_object" value="scPred_trained.rds" /> <param name="normalise_data" value="True" /> <param name="pred_data" value="query_pbmc.rds" /> <output name="output_path" file="predicted_data.rds" compare="sim_size" delta="10000000"/> </test> </tests> <help><![CDATA[ @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations" /> </tool>