comparison seurat_find_clusters.xml @ 0:8ea738667314 draft

planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author ebi-gxa
date Wed, 03 Apr 2019 11:17:04 -0400
parents
children bdabb6af06e4
comparison
equal deleted inserted replaced
-1:000000000000 0:8ea738667314
1 <tool id="seurat_find_clusters" name="Seurat FindClusters" version="2.3.1+galaxy1">
2 <description>find clusters of cells</description>
3 <macros>
4 <import>seurat_macros.xml</import>
5 </macros>
6 <expand macro="requirements" />
7 <expand macro="version" />
8 <command detect_errors="exit_code"><![CDATA[
9 seurat-find-clusters.R
10
11 --input-object-file '$input'
12 --output-object-file '$output'
13 --output-text-file output_tab
14
15 #if $genes_use:
16 --genes-use '$genes_use'
17 #end if
18
19 #if str($adv.reduction_type):
20 --reduction-type '$adv.reduction_type'
21 #end if
22
23 #if str($adv.dims_use):
24 --dims-use \$(seq -s , 1 '$adv.dims_use')
25 #end if
26
27 #if str($adv.k_num_clusters):
28 --k-param '$adv.k_num_clusters'
29 #end if
30
31 #if str($adv.prune_snn):
32 --prune-snn '$adv.prune_snn'
33 #end if
34
35 #if str($adv.resolution):
36 --resolution '$adv.resolution'
37 #end if
38
39 #if str($adv.algorithm):
40 --algorithm '$adv.algorithm'
41 #end if
42
43 ## TODO add pdf support as optional
44 ]]></command>
45
46 <inputs>
47 <param name="input" argument="--input-object-file" type="data" format="rdata" label="Seurat RDS object" help="Seurat object produced by Seurat run PCA or other." />
48 <expand macro="genes-use-input"/>
49 <section name="adv" title="Advanced Options">
50 <param name="reduction_type" argument="--reduction-type" optional="true" type="select" label="Dimensional reduction type" help="dimensional reduction technique to use in construction of SNN graph. (e.g. 'pca', 'ica'). PCA by default.">
51 <option value="pca" selected="true">PCA</option>
52 <option value="ica">ICA</option>
53 </param>
54 <expand macro="dims-use-input"/>
55 <param name="k_num_clusters" argument="--k-param" optional="true" type="integer" label="Number of clusters (k) to compute" help="Defines k for the k-nearest neighbor algorithm."/>
56 <param name="prune_snn" argument="--prune-snn" optional="true" type="float" label="Prune SNN cutoff" help="Sets the cutoff for acceptable Jaccard distances when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 — no pruning, 1 — prune everything). Defaults to 1/15."/>
57 <param name="resolution" argument="--resolution" optional="true" type="float" label="Resolution" help="Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Defaults to 0.8."/>
58 <param name="algorithm" argument="--algorithm" optional="true" type="select" label="Modularity organization algorithm">
59 <option value="1" selected="true">Louvain</option>
60 <option value="2">Louvain algorithm with multilevel refinement</option>
61 <option value="3">SLM algorithm</option>
62 </param>
63 </section>
64 </inputs>
65 <outputs>
66 <!-- <data name="out_pdf" format="pdf" from_work_dir="out.pdf" label="${tool.name} on ${on_string}: Plots" /> -->
67 <data name="output" format="rdata" from_work_dir="*.rds" label="${tool.name} on ${on_string}: Seurat RDS"/>
68 <data name="output_tab" format="csv" from_work_dir="output_tab" label="${tool.name} on ${on_string}: CSV Seurat Clusters"/>
69 </outputs>
70
71 <tests>
72 <!-- Ensure count matrix input works -->
73 <test>
74 <param name="input" ftype="rdata" value="out_runpca.rds"/>
75 <output name="output" ftype="rdata" value="out_findclust.rds" compare="sim_size"/>
76 </test>
77 </tests>
78 <help><![CDATA[
79 .. class:: infomark
80
81 **What it does**
82
83 Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data.
84 It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and
85 interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse
86 types of single cell data.
87
88 Seurat clustering use SNN method to determine different clusters in your dataset. In order to construct a
89 SNN graph, you must have perform a PCA before launch this tool (you can use Seurat dimensional reduction).
90 It will search k (30) nearest neighbors for each cells and link cells to each other if they shared the
91 same neighbors. You can modulate the resolution in order to get larger (resolution superior to 1) or smaller
92 (inferior to 1) clusters.
93
94 -----
95
96 **Inputs**
97
98 * RDS object
99
100 -----
101
102 **Outputs**
103
104 * Seurat RDS object
105
106 .. _Seurat: https://www.nature.com/articles/nbt.4096
107 .. _Satija Lab: https://satijalab.org/seurat/
108
109 @VERSION_HISTORY@
110
111 ]]></help>
112 <expand macro="citations" />
113 </tool>