Mercurial > repos > ebi-gxa > seurat_find_clusters
comparison seurat_find_clusters.xml @ 0:8ea738667314 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:17:04 -0400 |
parents | |
children | bdabb6af06e4 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8ea738667314 |
---|---|
1 <tool id="seurat_find_clusters" name="Seurat FindClusters" version="2.3.1+galaxy1"> | |
2 <description>find clusters of cells</description> | |
3 <macros> | |
4 <import>seurat_macros.xml</import> | |
5 </macros> | |
6 <expand macro="requirements" /> | |
7 <expand macro="version" /> | |
8 <command detect_errors="exit_code"><![CDATA[ | |
9 seurat-find-clusters.R | |
10 | |
11 --input-object-file '$input' | |
12 --output-object-file '$output' | |
13 --output-text-file output_tab | |
14 | |
15 #if $genes_use: | |
16 --genes-use '$genes_use' | |
17 #end if | |
18 | |
19 #if str($adv.reduction_type): | |
20 --reduction-type '$adv.reduction_type' | |
21 #end if | |
22 | |
23 #if str($adv.dims_use): | |
24 --dims-use \$(seq -s , 1 '$adv.dims_use') | |
25 #end if | |
26 | |
27 #if str($adv.k_num_clusters): | |
28 --k-param '$adv.k_num_clusters' | |
29 #end if | |
30 | |
31 #if str($adv.prune_snn): | |
32 --prune-snn '$adv.prune_snn' | |
33 #end if | |
34 | |
35 #if str($adv.resolution): | |
36 --resolution '$adv.resolution' | |
37 #end if | |
38 | |
39 #if str($adv.algorithm): | |
40 --algorithm '$adv.algorithm' | |
41 #end if | |
42 | |
43 ## TODO add pdf support as optional | |
44 ]]></command> | |
45 | |
46 <inputs> | |
47 <param name="input" argument="--input-object-file" type="data" format="rdata" label="Seurat RDS object" help="Seurat object produced by Seurat run PCA or other." /> | |
48 <expand macro="genes-use-input"/> | |
49 <section name="adv" title="Advanced Options"> | |
50 <param name="reduction_type" argument="--reduction-type" optional="true" type="select" label="Dimensional reduction type" help="dimensional reduction technique to use in construction of SNN graph. (e.g. 'pca', 'ica'). PCA by default."> | |
51 <option value="pca" selected="true">PCA</option> | |
52 <option value="ica">ICA</option> | |
53 </param> | |
54 <expand macro="dims-use-input"/> | |
55 <param name="k_num_clusters" argument="--k-param" optional="true" type="integer" label="Number of clusters (k) to compute" help="Defines k for the k-nearest neighbor algorithm."/> | |
56 <param name="prune_snn" argument="--prune-snn" optional="true" type="float" label="Prune SNN cutoff" help="Sets the cutoff for acceptable Jaccard distances when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 — no pruning, 1 — prune everything). Defaults to 1/15."/> | |
57 <param name="resolution" argument="--resolution" optional="true" type="float" label="Resolution" help="Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Defaults to 0.8."/> | |
58 <param name="algorithm" argument="--algorithm" optional="true" type="select" label="Modularity organization algorithm"> | |
59 <option value="1" selected="true">Louvain</option> | |
60 <option value="2">Louvain algorithm with multilevel refinement</option> | |
61 <option value="3">SLM algorithm</option> | |
62 </param> | |
63 </section> | |
64 </inputs> | |
65 <outputs> | |
66 <!-- <data name="out_pdf" format="pdf" from_work_dir="out.pdf" label="${tool.name} on ${on_string}: Plots" /> --> | |
67 <data name="output" format="rdata" from_work_dir="*.rds" label="${tool.name} on ${on_string}: Seurat RDS"/> | |
68 <data name="output_tab" format="csv" from_work_dir="output_tab" label="${tool.name} on ${on_string}: CSV Seurat Clusters"/> | |
69 </outputs> | |
70 | |
71 <tests> | |
72 <!-- Ensure count matrix input works --> | |
73 <test> | |
74 <param name="input" ftype="rdata" value="out_runpca.rds"/> | |
75 <output name="output" ftype="rdata" value="out_findclust.rds" compare="sim_size"/> | |
76 </test> | |
77 </tests> | |
78 <help><![CDATA[ | |
79 .. class:: infomark | |
80 | |
81 **What it does** | |
82 | |
83 Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. | |
84 It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and | |
85 interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse | |
86 types of single cell data. | |
87 | |
88 Seurat clustering use SNN method to determine different clusters in your dataset. In order to construct a | |
89 SNN graph, you must have perform a PCA before launch this tool (you can use Seurat dimensional reduction). | |
90 It will search k (30) nearest neighbors for each cells and link cells to each other if they shared the | |
91 same neighbors. You can modulate the resolution in order to get larger (resolution superior to 1) or smaller | |
92 (inferior to 1) clusters. | |
93 | |
94 ----- | |
95 | |
96 **Inputs** | |
97 | |
98 * RDS object | |
99 | |
100 ----- | |
101 | |
102 **Outputs** | |
103 | |
104 * Seurat RDS object | |
105 | |
106 .. _Seurat: https://www.nature.com/articles/nbt.4096 | |
107 .. _Satija Lab: https://satijalab.org/seurat/ | |
108 | |
109 @VERSION_HISTORY@ | |
110 | |
111 ]]></help> | |
112 <expand macro="citations" /> | |
113 </tool> |