Mercurial > repos > ebi-gxa > seurat_find_clusters
diff seurat_find_clusters.xml @ 0:8ea738667314 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:17:04 -0400 |
parents | |
children | bdabb6af06e4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/seurat_find_clusters.xml Wed Apr 03 11:17:04 2019 -0400 @@ -0,0 +1,113 @@ +<tool id="seurat_find_clusters" name="Seurat FindClusters" version="2.3.1+galaxy1"> + <description>find clusters of cells</description> + <macros> + <import>seurat_macros.xml</import> + </macros> + <expand macro="requirements" /> + <expand macro="version" /> + <command detect_errors="exit_code"><![CDATA[ + seurat-find-clusters.R + + --input-object-file '$input' + --output-object-file '$output' + --output-text-file output_tab + + #if $genes_use: + --genes-use '$genes_use' + #end if + + #if str($adv.reduction_type): + --reduction-type '$adv.reduction_type' + #end if + + #if str($adv.dims_use): + --dims-use \$(seq -s , 1 '$adv.dims_use') + #end if + + #if str($adv.k_num_clusters): + --k-param '$adv.k_num_clusters' + #end if + + #if str($adv.prune_snn): + --prune-snn '$adv.prune_snn' + #end if + + #if str($adv.resolution): + --resolution '$adv.resolution' + #end if + + #if str($adv.algorithm): + --algorithm '$adv.algorithm' + #end if + + ## TODO add pdf support as optional + ]]></command> + + <inputs> + <param name="input" argument="--input-object-file" type="data" format="rdata" label="Seurat RDS object" help="Seurat object produced by Seurat run PCA or other." /> + <expand macro="genes-use-input"/> + <section name="adv" title="Advanced Options"> + <param name="reduction_type" argument="--reduction-type" optional="true" type="select" label="Dimensional reduction type" help="dimensional reduction technique to use in construction of SNN graph. (e.g. 'pca', 'ica'). PCA by default."> + <option value="pca" selected="true">PCA</option> + <option value="ica">ICA</option> + </param> + <expand macro="dims-use-input"/> + <param name="k_num_clusters" argument="--k-param" optional="true" type="integer" label="Number of clusters (k) to compute" help="Defines k for the k-nearest neighbor algorithm."/> + <param name="prune_snn" argument="--prune-snn" optional="true" type="float" label="Prune SNN cutoff" help="Sets the cutoff for acceptable Jaccard distances when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 — no pruning, 1 — prune everything). Defaults to 1/15."/> + <param name="resolution" argument="--resolution" optional="true" type="float" label="Resolution" help="Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Defaults to 0.8."/> + <param name="algorithm" argument="--algorithm" optional="true" type="select" label="Modularity organization algorithm"> + <option value="1" selected="true">Louvain</option> + <option value="2">Louvain algorithm with multilevel refinement</option> + <option value="3">SLM algorithm</option> + </param> + </section> + </inputs> + <outputs> + <!-- <data name="out_pdf" format="pdf" from_work_dir="out.pdf" label="${tool.name} on ${on_string}: Plots" /> --> + <data name="output" format="rdata" from_work_dir="*.rds" label="${tool.name} on ${on_string}: Seurat RDS"/> + <data name="output_tab" format="csv" from_work_dir="output_tab" label="${tool.name} on ${on_string}: CSV Seurat Clusters"/> + </outputs> + + <tests> + <!-- Ensure count matrix input works --> + <test> + <param name="input" ftype="rdata" value="out_runpca.rds"/> + <output name="output" ftype="rdata" value="out_findclust.rds" compare="sim_size"/> + </test> + </tests> + <help><![CDATA[ +.. class:: infomark + +**What it does** + +Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. +It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and +interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse +types of single cell data. + +Seurat clustering use SNN method to determine different clusters in your dataset. In order to construct a +SNN graph, you must have perform a PCA before launch this tool (you can use Seurat dimensional reduction). +It will search k (30) nearest neighbors for each cells and link cells to each other if they shared the +same neighbors. You can modulate the resolution in order to get larger (resolution superior to 1) or smaller +(inferior to 1) clusters. + +----- + +**Inputs** + + * RDS object + +----- + +**Outputs** + + * Seurat RDS object + +.. _Seurat: https://www.nature.com/articles/nbt.4096 +.. _Satija Lab: https://satijalab.org/seurat/ + +@VERSION_HISTORY@ + +]]></help> + <expand macro="citations" /> +</tool>