Mercurial > repos > ebi-gxa > seurat_find_clusters
diff seurat_find_clusters.xml @ 1:bdabb6af06e4 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 0463f230d18201c740851d72e31a5024f391207f
author | ebi-gxa |
---|---|
date | Mon, 25 Nov 2019 06:09:15 -0500 |
parents | 8ea738667314 |
children | 0715bcb14547 |
line wrap: on
line diff
--- a/seurat_find_clusters.xml Wed Apr 03 11:17:04 2019 -0400 +++ b/seurat_find_clusters.xml Mon Nov 25 06:09:15 2019 -0500 @@ -1,4 +1,4 @@ -<tool id="seurat_find_clusters" name="Seurat FindClusters" version="2.3.1+galaxy1"> +<tool id="seurat_find_clusters" name="Seurat FindClusters" version="@SEURAT_VERSION@_@VERSION@+galaxy0"> <description>find clusters of cells</description> <macros> <import>seurat_macros.xml</import> @@ -8,30 +8,10 @@ <command detect_errors="exit_code"><![CDATA[ seurat-find-clusters.R - --input-object-file '$input' - --output-object-file '$output' + @INPUT_OBJECT@ + @OUTPUT_OBJECT@ --output-text-file output_tab - #if $genes_use: - --genes-use '$genes_use' - #end if - - #if str($adv.reduction_type): - --reduction-type '$adv.reduction_type' - #end if - - #if str($adv.dims_use): - --dims-use \$(seq -s , 1 '$adv.dims_use') - #end if - - #if str($adv.k_num_clusters): - --k-param '$adv.k_num_clusters' - #end if - - #if str($adv.prune_snn): - --prune-snn '$adv.prune_snn' - #end if - #if str($adv.resolution): --resolution '$adv.resolution' #end if @@ -40,31 +20,58 @@ --algorithm '$adv.algorithm' #end if + #if str($adv.modularity_fxn): + --modularity-fxn '$adv.modularity_fxn' + #end if + + #if str($adv.method): + --method '$adv.method' + #end if + + #if str($adv.graph_name): + --graph-name '$adv.graph_name' + #end if + + #if str($adv.nrandom_starts): + --nrandom-starts '$adv.nrandom_starts' + #end if + + $adv.group_singletons + + + ## TODO add pdf support as optional ]]></command> <inputs> - <param name="input" argument="--input-object-file" type="data" format="rdata" label="Seurat RDS object" help="Seurat object produced by Seurat run PCA or other." /> - <expand macro="genes-use-input"/> + <expand macro="input_object_params"/> + <expand macro="output_object_params"/> <section name="adv" title="Advanced Options"> - <param name="reduction_type" argument="--reduction-type" optional="true" type="select" label="Dimensional reduction type" help="dimensional reduction technique to use in construction of SNN graph. (e.g. 'pca', 'ica'). PCA by default."> - <option value="pca" selected="true">PCA</option> - <option value="ica">ICA</option> - </param> - <expand macro="dims-use-input"/> - <param name="k_num_clusters" argument="--k-param" optional="true" type="integer" label="Number of clusters (k) to compute" help="Defines k for the k-nearest neighbor algorithm."/> - <param name="prune_snn" argument="--prune-snn" optional="true" type="float" label="Prune SNN cutoff" help="Sets the cutoff for acceptable Jaccard distances when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 — no pruning, 1 — prune everything). Defaults to 1/15."/> <param name="resolution" argument="--resolution" optional="true" type="float" label="Resolution" help="Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Defaults to 0.8."/> <param name="algorithm" argument="--algorithm" optional="true" type="select" label="Modularity organization algorithm"> <option value="1" selected="true">Louvain</option> <option value="2">Louvain algorithm with multilevel refinement</option> <option value="3">SLM algorithm</option> + <option value="4">Leiden</option> </param> + <param name="modularity_fxn" argument="--modularity-fxn" optional="true" type="select" label="Modularity function"> + <option value="1" selected="true">Standard</option> + <option value="2">Alternative</option> + </param> + <param name="method" argument="--method" type="select" label="Method for Leiden" help="Method for leiden (defaults to matrix which is fast for small datasets). Select iGraph to avoid casting large data to a dense matrix."> + <option value="matrix" selected="true">Matrix</option> + <option value="igraph">iGraph</option> + </param> + <param name="graph_name" argument="--graph-name" type="text" value="RNA_nn" label="Graph Name" help="Name of graph to use for the clustering algorith."/> + <param name="nrandom_starts" argument="--nrandom-starts" type="integer" optional="true" label="Random starts" help="Number of random starts, 10 by default."/> + <param name="group_singletons" argument="--group-singletons" type="boolean" truevalue="--group-singletons" falsevalue="" checked="false" label="Group singletons" help="Group singletons into nearest cluster. If FALSE, assign all singletons to a 'singleton' group."/> + <param name="random_seed" argument="--random-seed" type="integer" optional="true" label="Random seed" help="Seed of the random number generator"/> </section> + </inputs> <outputs> <!-- <data name="out_pdf" format="pdf" from_work_dir="out.pdf" label="${tool.name} on ${on_string}: Plots" /> --> - <data name="output" format="rdata" from_work_dir="*.rds" label="${tool.name} on ${on_string}: Seurat RDS"/> + <expand macro="output_files"/> <data name="output_tab" format="csv" from_work_dir="output_tab" label="${tool.name} on ${on_string}: CSV Seurat Clusters"/> </outputs> @@ -72,7 +79,7 @@ <!-- Ensure count matrix input works --> <test> <param name="input" ftype="rdata" value="out_runpca.rds"/> - <output name="output" ftype="rdata" value="out_findclust.rds" compare="sim_size"/> + <output name="rds_seurat_file" ftype="rdata" value="out_findclust.rds" compare="sim_size"/> </test> </tests> <help><![CDATA[ @@ -80,16 +87,14 @@ **What it does** -Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. -It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and -interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse -types of single cell data. +Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization +based clustering algorithm. First calculate k-nearest neighbors and construct t +he SNN graph (using Seurat find neighbours). +Then optimize the modularity function to determine clusters. +For a full description of the algorithms, see Waltman and van Eck (2013) +The European Physical Journal B. -Seurat clustering use SNN method to determine different clusters in your dataset. In order to construct a -SNN graph, you must have perform a PCA before launch this tool (you can use Seurat dimensional reduction). -It will search k (30) nearest neighbors for each cells and link cells to each other if they shared the -same neighbors. You can modulate the resolution in order to get larger (resolution superior to 1) or smaller -(inferior to 1) clusters. +@SEURAT_INTRO@ -----