Mercurial > repos > ebi-gxa > seurat_find_clusters
view seurat_find_clusters.xml @ 6:d541e9e62beb draft default tip
planemo upload commit 0264c359f1d638bbbbab515a3502231f679cdcf6
author | ebi-gxa |
---|---|
date | Sat, 02 Mar 2024 10:42:24 +0000 |
parents | eefaffdcd441 |
children |
line wrap: on
line source
<tool id="seurat_find_clusters" name="Seurat FindClusters" profile="18.01" version="@SEURAT_VERSION@+galaxy0"> <description>find clusters of cells</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <expand macro="version" /> <command detect_errors="exit_code"><![CDATA[ seurat-find-clusters.R @INPUT_OBJECT@ @OUTPUT_OBJECT@ --output-text-file output_tab #if str($adv.resolution): --resolution '$adv.resolution' #end if #if str($adv.algorithm): --algorithm '$adv.algorithm' #end if #if str($adv.modularity_fxn): --modularity-fxn '$adv.modularity_fxn' #end if #if str($adv.method): --method '$adv.method' #end if #if str($adv.graph_name): --graph-name '$adv.graph_name' #end if #if str($adv.nrandom_starts): --nrandom-starts '$adv.nrandom_starts' #end if $adv.group_singletons ## TODO add pdf support as optional ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <section name="adv" title="Advanced Options"> <param name="resolution" argument="--resolution" optional="true" type="float" label="Resolution" help="Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Defaults to 0.8."/> <param name="algorithm" argument="--algorithm" optional="true" type="select" label="Modularity organization algorithm"> <option value="1" selected="true">Louvain</option> <option value="2">Louvain algorithm with multilevel refinement</option> <option value="3">SLM algorithm</option> <option value="4">Leiden</option> </param> <param name="modularity_fxn" argument="--modularity-fxn" optional="true" type="select" label="Modularity function"> <option value="1" selected="true">Standard</option> <option value="2">Alternative</option> </param> <param name="method" argument="--method" type="select" label="Method for Leiden" help="Method for leiden (defaults to matrix which is fast for small datasets). Select iGraph to avoid casting large data to a dense matrix."> <option value="matrix" selected="true">Matrix</option> <option value="igraph">iGraph</option> </param> <param name="graph_name" argument="--graph-name" type="text" value="RNA_nn" label="Graph Name" help="Name of graph to use for the clustering algorith."/> <param name="nrandom_starts" argument="--nrandom-starts" type="integer" optional="true" label="Random starts" help="Number of random starts, 10 by default."/> <param name="group_singletons" argument="--group-singletons" type="boolean" truevalue="--group-singletons" falsevalue="" checked="false" label="Group singletons" help="Group singletons into nearest cluster. If FALSE, assign all singletons to a 'singleton' group."/> <param name="random_seed" argument="--random-seed" type="integer" optional="true" label="Random seed" help="Seed of the random number generator"/> </section> </inputs> <outputs> <!-- <data name="out_pdf" format="pdf" from_work_dir="out.pdf" label="${tool.name} on ${on_string}: Plots" /> --> <expand macro="output_files"/> <data name="output_tab" format="csv" from_work_dir="output_tab" label="${tool.name} on ${on_string}: CSV Seurat Clusters"/> </outputs> <tests> <!-- Ensure count matrix input works --> <test> <param name="rds_seurat_file" ftype="rdata" value="E-MTAB-6077-3k_features_90_cells-neighbours.rds"/> <output name="rds_seurat_file" ftype="rdata" > <assert_contents> <has_size value="5064329" delta="200000"/> </assert_contents> </output> <output name="output_tab" > <assert_contents> <has_n_lines n="92" /> </assert_contents> </output> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct t he SNN graph (using Seurat find neighbours). Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. @SEURAT_INTRO@ ----- **Inputs** * RDS object ----- **Outputs** * Seurat RDS object .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ @VERSION_HISTORY@ ]]></help> <expand macro="citations" /> </tool>