Mercurial > repos > ebi-gxa > seurat_find_variable_genes
view seurat_find_variable_genes.xml @ 1:a6077346f869 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 0463f230d18201c740851d72e31a5024f391207f
author | ebi-gxa |
---|---|
date | Mon, 25 Nov 2019 06:10:14 -0500 |
parents | a56efad05337 |
children | 8f67188f11c4 |
line wrap: on
line source
<tool id="seurat_find_variable_genes" name="Seurat FindVariableGenes" version="@SEURAT_VERSION@_@VERSION@+galaxy0"> <description>identify variable genes</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <expand macro="version" /> <command detect_errors="exit_code"><![CDATA[ seurat-find-variable-genes.R @INPUT_OBJECT@ #if $mean: --mean-function '$mean' #end if #if $selection_method --selection-method '$selection_method' #end if #if $disp: --dispersion-function $disp #end if #if $xlow: --x-low-cutoff $xlow #end if #if $xhigh: --x-high-cutoff $xhigh #end if #if $ylow: --y-low-cutoff $ylow #end if #if $yhigh: --y-high-cutoff $yhigh #end if @OUTPUT_OBJECT@ --output-text-file '$output_tab' ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param label="Number of features" optional="true" name="nfeatures" argument="--nfeatures" type="integer" help="Number of features to return."/> <param name="mean" argument="--mean-function" type="text" optional="True" label="Mean function" help="Function to compute x-axis value (average expression). Default is to take the mean of the detected (i.e. non-zero) values."/> <param name="disp" argument="--dispersion-function" type="text" optional="True" label="Dispersion function" help="Function to compute y-axis value (dispersion). Default is to take the standard deviation of all values." /> <param name="xlow" argument="--x-low-cutoff" type="float" optional="True" label="X-axis low cutoff" help="Bottom cutoff on x-axis (mean) for identifying variable genes."/> <param name="xhigh" argument="--x-high-cutoff" type="float" optional="True" label="X-axis high cutoff" help="Top cutoff on x-axis (mean) for identifying variable genes."/> <param name="ylow" argument="--y-low-cutoff" type="float" optional="True" label="Y-axis low cutoff" help="Bottom cutoff on y-axis (dispersion) for identifying variable genes."/> <param name="yhigh" argument="--y-high-cutoff" type="float" optional="True" label="Y-axis high cutoff" help="Top cutoff on y-axis (dispersion) for identifying variable genes."/> <param label="Selection method" optional="true" name="selection_method" argument="--selection-method" type="select" help="How to choose top variable features. Choose one of: 'vst', 'mvp', disp."> <option value="vst" selected="true">vst</option> <option value="mbp">mbp</option> <option value="disp">disp</option> </param> </inputs> <outputs> <expand macro="output_files"/> <data name="output_tab" format="tabular" from_work_dir="*.tab" label="${tool.name} on ${on_string}: Variable genes tabular file"/> </outputs> <tests> <test> <param name="input" ftype="rdata" value="out_norm.rds"/> <output name="rds_seurat_file" ftype="rdata" value="out_findvar.rds" compare="sim_size"/> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** This tool identifies genes that are outliers on a 'mean variability plot'. First, uses a function to calculate average expression (mean.function) and dispersion (dispersion.function) for each gene. Next, divides genes into num.bin (deafult 20) bins based on their average expression, and calculates z-scores for dispersion within each bin. The purpose of this is to identify variable genes while controlling for the strong relationship between variability and average expression. For the mean.var.plot method: Exact parameter settings may vary empirically from dataset to dataset, and based on visual inspection of the plot. Setting the y.cutoff parameter to 2 identifies features that are more than two standard deviations away from the average dispersion within a bin. The default X-axis function is the mean expression level, and for Y-axis it is the log(Variance/mean). All mean/variance calculations are not performed in log-space, but the results are reported in log-space - see relevant functions for exact details. @SEURAT_INTRO@ ----- **Inputs** * Seurat RDS object * Mean function. Function to compute x-axis value (average expression). Default is to take the mean of the detected (i.e. non-zero) values. * Dispersion function. Function to compute y-axis value (dispersion). Default is to take the standard deviation of all values. * Bottom cutoff on x-axis for identifying variable genes. * Top cutoff on x-axis for identifying variable genes. * Bottom cutoff on y-axis for identifying variable genes. * Top cutoff on y-axis for identifying variable genes. ----- **Outputs** * Seurat RDS object. Places variable genes in object@var.genes. The result of all analysis is stored in object@hvg.info * Tabular file of variable genes .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ @VERSION_HISTORY@ ]]></help> <expand macro="citations" /> </tool>