Mercurial > repos > ebi-gxa > seurat_read10x
view seurat_read10x.xml @ 0:1b8566f3c1d0 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:18:21 -0400 |
parents | |
children | 265dcc5bc1e8 |
line wrap: on
line source
<tool id="seurat_read10x" name="Seurat Read10x" version="2.3.1+galaxy1"> <description>Loads 10x data into a serialized seurat R object</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <stdio> <exit_code range="1:" /> </stdio> <command><![CDATA[ ln -s "$matrix" matrix.mtx; ln -s "$genes" genes.tsv; ln -s "$barcodes" barcodes.tsv; seurat-read-10x.R -d ./ -o "$R_seurat_serialized" ]]></command> <inputs> <param type="data" name="matrix" help="Raw expression quantification as a sparse matrix in Matrix Market format, where each column is a gene and each row is a barcode/cell." format="txt" label="Expression matrix in sparse matrix format (.mtx)" /> <param type="data" name="genes" help="Matrix market column file for genes" label="Gene table" format="tsv,tabular"/> <param type="data" name="barcodes" help="Matrix market row file for genes" label="Barcode/cell table" format="tsv,tabular"/> </inputs> <outputs> <data name="R_seurat_serialized" format="rdata" label="${tool.name} on ${on_string}: RData file" /> </outputs> <tests> <test> <param name="matrix" ftype="txt" value="test_matrix.txt"/> <param name="genes" ftype="txt" value="test_genes.txt"/> <param name="barcodes" ftype="txt" value="test_barcodes.txt"/> <output name="R_seurat_serialized" ftype="rdata" value="out_scale.rds" compare="sim_size"/> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See the `Seurat Guided Clustering tutorial`_ for more information. **Read 10x-Genomics-formatted mtx directory (`read_10x_mtx`)** The mtx directory should contain: 1) Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell. 2) A gene table of at least two columns where the first column gives the gene IDs. 3) A barcode/cell table of at least one column giving the barcode/cell IDs. The above-mentioned files can be obtained by running `EBI SCXA Data Retrieval` with a dataset accession. Otherwise, they need to be provided as separate Galaxy datasets. **Inputs** * Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell. * A gene table of at least two columns where the first column gives the gene IDs. * A barcode/cell table of at least one column giving the barcode/cell IDs. **Outputs** * R object for Seurat .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ .. _Seurat Guided Clustering tutorial: https://satijalab.org/seurat/pbmc3k_tutorial.html @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>