view seurat_read10x.xml @ 0:1b8566f3c1d0 draft

planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author ebi-gxa
date Wed, 03 Apr 2019 11:18:21 -0400
parents
children 265dcc5bc1e8
line wrap: on
line source

<tool id="seurat_read10x" name="Seurat Read10x" version="2.3.1+galaxy1">
<description>Loads 10x data into a serialized seurat R object</description>
  <macros>
      <import>seurat_macros.xml</import>
  </macros>
  <expand macro="requirements" />
<stdio>
<exit_code range="1:" />
</stdio>
<command><![CDATA[
ln -s "$matrix" matrix.mtx;
ln -s "$genes" genes.tsv;
ln -s "$barcodes" barcodes.tsv;

seurat-read-10x.R -d ./ -o "$R_seurat_serialized"
]]></command>
<inputs>
    <param type="data" name="matrix" help="Raw expression quantification as a sparse matrix in Matrix Market format, where each column is a gene and each row is a barcode/cell." format="txt" label="Expression matrix in sparse matrix format (.mtx)" />
    <param type="data" name="genes" help="Matrix market column file for genes" label="Gene table" format="tsv,tabular"/>
    <param type="data" name="barcodes" help="Matrix market row file for genes" label="Barcode/cell table" format="tsv,tabular"/>
</inputs>
<outputs>
    <data name="R_seurat_serialized" format="rdata" label="${tool.name} on ${on_string}: RData file" />
</outputs>

<tests>
    <test>
       <param name="matrix" ftype="txt" value="test_matrix.txt"/>
       <param name="genes" ftype="txt" value="test_genes.txt"/>
       <param name="barcodes" ftype="txt" value="test_barcodes.txt"/>
       <output name="R_seurat_serialized" ftype="rdata" value="out_scale.rds" compare="sim_size"/>
    </test>
</tests>


<help><![CDATA[
  .. class:: infomark

  **What it does**

  Seurat_ is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data.
  It is developed and maintained by the `Satija Lab`_ at NYGC. Seurat aims to enable users to identify and
  interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse
  types of single cell data. See the `Seurat Guided Clustering tutorial`_ for more information.

  **Read 10x-Genomics-formatted mtx directory (`read_10x_mtx`)**

  The mtx directory should contain:

  1) Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell.

  2) A gene table of at least two columns where the first column gives the gene IDs.

  3) A barcode/cell table of at least one column giving the barcode/cell IDs.

  The above-mentioned files can be obtained by running `EBI SCXA Data Retrieval`
  with a dataset accession. Otherwise, they need to be provided as separate Galaxy
  datasets.

  **Inputs**
      * Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell.
      * A gene table of at least two columns where the first column gives the gene IDs.
      * A barcode/cell table of at least one column giving the barcode/cell IDs.

  **Outputs**
      * R object for Seurat

  .. _Seurat: https://www.nature.com/articles/nbt.4096
  .. _Satija Lab: https://satijalab.org/seurat/
  .. _Seurat Guided Clustering tutorial: https://satijalab.org/seurat/pbmc3k_tutorial.html

@VERSION_HISTORY@
]]></help>
<expand macro="citations"/>
</tool>