Mercurial > repos > ebi-gxa > seurat_read10x
view seurat_read10x.xml @ 2:2d121013176f draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit bbe3c1f7fd8489951f2d90415fe80dd5cf961ca0
author | ebi-gxa |
---|---|
date | Fri, 10 Jul 2020 21:48:16 -0400 |
parents | 265dcc5bc1e8 |
children | 948ce48561f9 |
line wrap: on
line source
<tool id="seurat_read10x" name="Seurat Read10x" version="@SEURAT_VERSION@+galaxy1"> <description>Loads Tabular or 10x data into a serialized seurat R object</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <stdio> <exit_code range="1:" /> </stdio> <command><![CDATA[ #if str($input.format) == "mtx": ln -s "$matrix" matrix.mtx; ln -s "$genes" genes.tsv; ln -s "$barcodes" barcodes.tsv; # end if seurat-read-10x.R #if str($input.format) == "mtx": -d ./ #else -f $input.file # end if #if $metadata --metadata '$metadata' #end if #if $min_cells --min-cells '$min_cells' #end if #if $min_features --min-features '$min_features' #end if @OUTPUT_OBJECT@ ]]></command> <inputs> <conditional name="input" label="Input expression data"> <param type="select" name="format" label="Choose the format of the input" help="10X MTX or tabular"> <option value="mtx" selected="true">10X-type MTX</option> <option value="tab" selected="true">tab-delimited text</option> </param> <when value="tab"> <param type="data" name="file" label="Expression table" help="Tab-delimted expression table" format="tabular"/> </when> <when value="mtx"> <param type="data" name="matrix" help="Raw expression quantification as a sparse matrix in Matrix Market format, where each column is a gene and each row is a barcode/cell." format="txt" label="Expression matrix in sparse matrix format (.mtx)" /> <param type="data" name="genes" help="Matrix market column file for genes" label="Gene table" format="tsv,tabular"/> <param type="data" name="barcodes" help="Matrix market row file for genes" label="Barcode/cell table" format="tsv,tabular"/> </when> </conditional> <param label="Cell Metadata" optional="true" name="metadata" argument="--metadata" type="data" format="tsv,tabular" help="File with metdata for the cells, first column should be cell identifiers as used in the cells 10x file."/> <param label="Minimum cells to include features" optional="true" name="min_cells" argument="--min-cells" type="integer" help="Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff."/> <param label="Minimum features to include cells" optional="true" name="min_features" argument="--min-features" type="integer" help="Include cells where at least this many features are detected."/> <expand macro="output_object_params"/> </inputs> <outputs> <expand macro="output_files"/> </outputs> <tests> <test> <param name="matrix" ftype="txt" value="test_matrix.txt"/> <param name="genes" ftype="txt" value="test_genes.txt"/> <param name="barcodes" ftype="txt" value="test_barcodes.txt"/> <output name="rds_seurat_file" ftype="rdata" value="out_scale.rds" compare="sim_size"/> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** @SEURAT_INTRO@ **Read expression data from a tabular file or a 10x-Genomics-formatted mtx directory (`read_10x_mtx`)** For mtx, the directory should contain: 1) Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell. 2) A gene table of at least two columns where the first column gives the gene IDs. 3) A barcode/cell table of at least one column giving the barcode/cell IDs. The above-mentioned files can be obtained by running `EBI SCXA Data Retrieval` with a dataset accession. Otherwise, they need to be provided as separate Galaxy datasets. **Inputs** * A tabular file of expression data OR * Raw expression quantification as a sparse matrix in Matrix Market format, where the each column is a gene and each row is a barcode/cell. * A gene table of at least two columns where the first column gives the gene IDs. * A barcode/cell table of at least one column giving the barcode/cell IDs. * Optionally, a file with cell metadata. **Outputs** * R object for Seurat .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ .. _Seurat Guided Clustering tutorial: https://satijalab.org/seurat/pbmc3k_tutorial.html @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>