Mercurial > repos > ecology > bar_plot
comparison Moyenne_geom.r @ 0:985f8839aebd draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Geom_mean_workflow commit 3f11e193fd9ba5bf0c706cd5d65d6398166776cb
author | ecology |
---|---|
date | Sat, 25 Nov 2023 15:18:01 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:985f8839aebd |
---|---|
1 #### loading required R libraries | |
2 #### chargement des packages R utilisés | |
3 library(gdata) | |
4 library(XLConnect) | |
5 library(rms) | |
6 | |
7 ###### overall parameters and settings | |
8 ###### paramètres globaux utilisés | |
9 | |
10 args = commandArgs(trailingOnly=TRUE) | |
11 if (length(args)==0) | |
12 { | |
13 stop("This tool needs at least one argument") | |
14 }else{ | |
15 data <- args[1] | |
16 sep <- args[2] | |
17 HR <- args[3] | |
18 | |
19 } | |
20 | |
21 if (HR =="false"){HR<-FALSE} else {HR<-TRUE} | |
22 | |
23 ###nrep: number of samples used to calculate geometric means | |
24 ###nrep: nombre d'échantillons utilisés pour calculer les moyennes géométriques | |
25 nrep<-10000 | |
26 | |
27 #______________________________________________________________________________________________________________________________________________________________________________________________ | |
28 ###### common functions | |
29 ###### fonction utiles pour la suite | |
30 | |
31 convert.to.numeric<-function(x){ | |
32 t(apply(x,1,function(x){as.double(sub(" ","",as.character(x)))}))} | |
33 | |
34 | |
35 ### calculus of the logarithm of nrep geometric means, sampling based on a lognormal distribution with the same moments as the empirical ones (means & Ics) | |
36 #to prevent negative values | |
37 ### calcul du logarithme de nrep moyennes géométriques, l'échantillonnage étant fait avec la distribution lognormale de mêmes moments que les momenst empriques (means et ICs) | |
38 #pour éviter d'avoir des valeurs négatives | |
39 | |
40 lgeomean<-function(means,ICs,nrep) | |
41 {#means: vector: mean estimates for the different categories | |
42 #ICs: vector: in proportion to the mean, difference between the extremum of the 95% confidence interval and the mean | |
43 require(mvtnorm) | |
44 #calculation of the parameters of the log normal distribution (on the log scale) | |
45 #cf. http://127.0.0.1:26338/library/stats/html/Lognormal.html | |
46 logsigma<-sqrt(log((ICs/qnorm(0.975)/means)^2+1)) | |
47 logmean<-log(means)-1/2*logsigma^2 | |
48 | |
49 #gaussian sampling on the log scale then taking exponential | |
50 temp<-exp(rmvnorm(nrep,mean=logmean,sigma=diag(logsigma*logsigma))) | |
51 | |
52 #taking geometric mean over categories, but kept on the log scale | |
53 geomm.rep<-apply(temp,1,function(x){(mean(log(x),na.rm=TRUE))}) | |
54 #c(mean(geomm.rep),sd(geomm.rep)) | |
55 geomm.rep} | |
56 #_______________________________________________________________________________________________________________________________________________________________________________________________ | |
57 | |
58 ###### importation des données | |
59 ###### importation of data | |
60 temp<-read.csv(file=data,sep=sep,header=HR,encoding="UTF-8") | |
61 | |
62 data2008_2012<-temp[4:14,] | |
63 data2013_2017<-temp[21:31,] | |
64 | |
65 meandata2008_2012<-convert.to.numeric(data2008_2012[,c(3,6,9)]) | |
66 ICdata2008_2012<-convert.to.numeric(data2008_2012[,c(5,8,11)]) | |
67 meandata2013_2017<-convert.to.numeric(data2013_2017[,c(3,6,9)]) | |
68 ICdata2013_2017<-convert.to.numeric(data2013_2017[,c(5,8,11)]) | |
69 | |
70 ####### code to calculate (nrep) logarithms of geometric means by region (Greco) | |
71 ####### code pour calculer les nrep logarithmes de moyennes géométriques par région (GRECO) | |
72 | |
73 set.seed(1) | |
74 #first period | |
75 #première période | |
76 rest2008_2012<-sapply(1:dim(data2008_2012)[1],function(region){lgeomean(meandata2008_2012[region,],ICdata2008_2012[region,],nrep)}) | |
77 | |
78 set.seed(3) | |
79 #first period but with different seed | |
80 #première période mais avec une graine différente | |
81 rest2008_2012_s3<-sapply(1:dim(data2008_2012)[1],function(region){lgeomean(meandata2008_2012[region,],ICdata2008_2012[region,],nrep)}) | |
82 | |
83 set.seed(2) | |
84 #second period | |
85 #seconde période | |
86 rest2013_2017<-sapply(1:dim(data2013_2017)[1],function(region){lgeomean(meandata2013_2017[region,],ICdata2013_2017[region,],nrep)}) | |
87 | |
88 | |
89 ####### code to summarize the above nrep logarithms of geometric means by region into the statistics of an overall geometric mean across regions, taking the first period as reference | |
90 ###### code pour passer des nrep logarithmes de moyenne géométrique par région aux statistiques de la moyenne géométrique globale, en prennat la première période comme référence | |
91 | |
92 #for the first period | |
93 #pour la première période | |
94 Mean_2008_2012_scaled<-{temp<-apply(rest2008_2012_s3,1,function(x){mean(x)})-apply(rest2008_2012,1,function(x){mean(x)});c(mean(exp(temp)),sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))} | |
95 | |
96 #for the second period | |
97 #pour la seconde période | |
98 Mean_2013_2017_scaled<-{temp<-apply(rest2013_2017,1,function(x){mean(x)})-apply(rest2008_2012,1,function(x){mean(x)});c(mean(exp(temp)),sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))} | |
99 | |
100 | |
101 | |
102 ############### NATIONAL OUPUTS: | |
103 ############### SORTIES NATIONALES: | |
104 | |
105 res2008_2012_scaled_df = data.frame(Mean_2008_2012_scaled) | |
106 res2008_2012_scaled_df=`rownames<-`(res2008_2012_scaled_df,c("mean","sd","2,5%","97,5%")) | |
107 | |
108 res2013_2017_scaled_df = data.frame(Mean_2013_2017_scaled) | |
109 res2013_2017_scaled_df=`rownames<-`(res2013_2017_scaled_df,c("mean","sd","2,5%","97,5%")) | |
110 | |
111 | |
112 write.csv(res2008_2012_scaled_df, file = "res2008_2012_scaled.csv") | |
113 write.csv(res2013_2017_scaled_df,file= "res2013_2017_scaled.csv") | |
114 | |
115 ############### REGIONAL OUPUTS: | |
116 ############### SORTIES REGIONALES (GRECO): | |
117 | |
118 regres2008_2012_scaled<-apply(rest2008_2012_s3-rest2008_2012,2,function(x){temp<-x;c(mean=mean(exp(temp)),sd=sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))}) | |
119 regres2013_2017_scaled<-apply(rest2013_2017-rest2008_2012,2,function(x){temp<-x;c(mean=mean(exp(temp)),sd=sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))}) | |
120 dimnames(regres2008_2012_scaled)[[2]]<-as.character(data2008_2012[,2]) | |
121 dimnames(regres2013_2017_scaled)[[2]]<-as.character(data2013_2017[,2]) | |
122 | |
123 write.csv(regres2008_2012_scaled, file = "regres2008_2012_scaled.csv") | |
124 write.csv(regres2013_2017_scaled, file = "regres2013_2017_scaled.csv") | |
125 | |
126 ############### data to make a bar plot of the national evolution rate | |
127 histo_data = data.frame( | |
128 variable_name = c(names(res2008_2012_scaled_df),names(res2013_2017_scaled_df)), | |
129 variable = c(round(Mean_2008_2012_scaled[1]*100),round(Mean_2013_2017_scaled[1]*100)), | |
130 standard_deviation = c(Mean_2008_2012_scaled[2]*100,Mean_2013_2017_scaled[2]*100) | |
131 ) | |
132 | |
133 write.table(histo_data, file = "histo_data.tsv",row.names = F, col.names = T ,sep ="\t") | |
134 | |
135 ############### data to make a map of the GRECO evolution rate | |
136 | |
137 rate2008_2012 = data.frame(round(regres2008_2012_scaled[1,1:11]*100)) | |
138 rate2013_2017 = data.frame(round(regres2013_2017_scaled[1,1:11]*100)) | |
139 | |
140 evol_rate = rate2013_2017-rate2008_2012 | |
141 evol_rate = cbind(data2013_2017[,2],evol_rate) | |
142 colnames(evol_rate)<-c("Regions","Evolution_rate") | |
143 | |
144 | |
145 write.table(evol_rate,"evolution_rate.tsv",sep="\t",quote=F,row.names=F,col.names=T) | |
146 | |
147 | |
148 | |
149 | |
150 | |
151 | |
152 | |
153 | |
154 | |
155 | |
156 |