Mercurial > repos > ecology > bar_plot
view Moyenne_geom.r @ 0:985f8839aebd draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Geom_mean_workflow commit 3f11e193fd9ba5bf0c706cd5d65d6398166776cb
author | ecology |
---|---|
date | Sat, 25 Nov 2023 15:18:01 +0000 |
parents | |
children |
line wrap: on
line source
#### loading required R libraries #### chargement des packages R utilisés library(gdata) library(XLConnect) library(rms) ###### overall parameters and settings ###### paramètres globaux utilisés args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("This tool needs at least one argument") }else{ data <- args[1] sep <- args[2] HR <- args[3] } if (HR =="false"){HR<-FALSE} else {HR<-TRUE} ###nrep: number of samples used to calculate geometric means ###nrep: nombre d'échantillons utilisés pour calculer les moyennes géométriques nrep<-10000 #______________________________________________________________________________________________________________________________________________________________________________________________ ###### common functions ###### fonction utiles pour la suite convert.to.numeric<-function(x){ t(apply(x,1,function(x){as.double(sub(" ","",as.character(x)))}))} ### calculus of the logarithm of nrep geometric means, sampling based on a lognormal distribution with the same moments as the empirical ones (means & Ics) #to prevent negative values ### calcul du logarithme de nrep moyennes géométriques, l'échantillonnage étant fait avec la distribution lognormale de mêmes moments que les momenst empriques (means et ICs) #pour éviter d'avoir des valeurs négatives lgeomean<-function(means,ICs,nrep) {#means: vector: mean estimates for the different categories #ICs: vector: in proportion to the mean, difference between the extremum of the 95% confidence interval and the mean require(mvtnorm) #calculation of the parameters of the log normal distribution (on the log scale) #cf. http://127.0.0.1:26338/library/stats/html/Lognormal.html logsigma<-sqrt(log((ICs/qnorm(0.975)/means)^2+1)) logmean<-log(means)-1/2*logsigma^2 #gaussian sampling on the log scale then taking exponential temp<-exp(rmvnorm(nrep,mean=logmean,sigma=diag(logsigma*logsigma))) #taking geometric mean over categories, but kept on the log scale geomm.rep<-apply(temp,1,function(x){(mean(log(x),na.rm=TRUE))}) #c(mean(geomm.rep),sd(geomm.rep)) geomm.rep} #_______________________________________________________________________________________________________________________________________________________________________________________________ ###### importation des données ###### importation of data temp<-read.csv(file=data,sep=sep,header=HR,encoding="UTF-8") data2008_2012<-temp[4:14,] data2013_2017<-temp[21:31,] meandata2008_2012<-convert.to.numeric(data2008_2012[,c(3,6,9)]) ICdata2008_2012<-convert.to.numeric(data2008_2012[,c(5,8,11)]) meandata2013_2017<-convert.to.numeric(data2013_2017[,c(3,6,9)]) ICdata2013_2017<-convert.to.numeric(data2013_2017[,c(5,8,11)]) ####### code to calculate (nrep) logarithms of geometric means by region (Greco) ####### code pour calculer les nrep logarithmes de moyennes géométriques par région (GRECO) set.seed(1) #first period #première période rest2008_2012<-sapply(1:dim(data2008_2012)[1],function(region){lgeomean(meandata2008_2012[region,],ICdata2008_2012[region,],nrep)}) set.seed(3) #first period but with different seed #première période mais avec une graine différente rest2008_2012_s3<-sapply(1:dim(data2008_2012)[1],function(region){lgeomean(meandata2008_2012[region,],ICdata2008_2012[region,],nrep)}) set.seed(2) #second period #seconde période rest2013_2017<-sapply(1:dim(data2013_2017)[1],function(region){lgeomean(meandata2013_2017[region,],ICdata2013_2017[region,],nrep)}) ####### code to summarize the above nrep logarithms of geometric means by region into the statistics of an overall geometric mean across regions, taking the first period as reference ###### code pour passer des nrep logarithmes de moyenne géométrique par région aux statistiques de la moyenne géométrique globale, en prennat la première période comme référence #for the first period #pour la première période Mean_2008_2012_scaled<-{temp<-apply(rest2008_2012_s3,1,function(x){mean(x)})-apply(rest2008_2012,1,function(x){mean(x)});c(mean(exp(temp)),sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))} #for the second period #pour la seconde période Mean_2013_2017_scaled<-{temp<-apply(rest2013_2017,1,function(x){mean(x)})-apply(rest2008_2012,1,function(x){mean(x)});c(mean(exp(temp)),sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))} ############### NATIONAL OUPUTS: ############### SORTIES NATIONALES: res2008_2012_scaled_df = data.frame(Mean_2008_2012_scaled) res2008_2012_scaled_df=`rownames<-`(res2008_2012_scaled_df,c("mean","sd","2,5%","97,5%")) res2013_2017_scaled_df = data.frame(Mean_2013_2017_scaled) res2013_2017_scaled_df=`rownames<-`(res2013_2017_scaled_df,c("mean","sd","2,5%","97,5%")) write.csv(res2008_2012_scaled_df, file = "res2008_2012_scaled.csv") write.csv(res2013_2017_scaled_df,file= "res2013_2017_scaled.csv") ############### REGIONAL OUPUTS: ############### SORTIES REGIONALES (GRECO): regres2008_2012_scaled<-apply(rest2008_2012_s3-rest2008_2012,2,function(x){temp<-x;c(mean=mean(exp(temp)),sd=sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))}) regres2013_2017_scaled<-apply(rest2013_2017-rest2008_2012,2,function(x){temp<-x;c(mean=mean(exp(temp)),sd=sd(exp(temp)),quantile(exp(temp),prob=c(0.025,0.975)))}) dimnames(regres2008_2012_scaled)[[2]]<-as.character(data2008_2012[,2]) dimnames(regres2013_2017_scaled)[[2]]<-as.character(data2013_2017[,2]) write.csv(regres2008_2012_scaled, file = "regres2008_2012_scaled.csv") write.csv(regres2013_2017_scaled, file = "regres2013_2017_scaled.csv") ############### data to make a bar plot of the national evolution rate histo_data = data.frame( variable_name = c(names(res2008_2012_scaled_df),names(res2013_2017_scaled_df)), variable = c(round(Mean_2008_2012_scaled[1]*100),round(Mean_2013_2017_scaled[1]*100)), standard_deviation = c(Mean_2008_2012_scaled[2]*100,Mean_2013_2017_scaled[2]*100) ) write.table(histo_data, file = "histo_data.tsv",row.names = F, col.names = T ,sep ="\t") ############### data to make a map of the GRECO evolution rate rate2008_2012 = data.frame(round(regres2008_2012_scaled[1,1:11]*100)) rate2013_2017 = data.frame(round(regres2013_2017_scaled[1,1:11]*100)) evol_rate = rate2013_2017-rate2008_2012 evol_rate = cbind(data2013_2017[,2],evol_rate) colnames(evol_rate)<-c("Regions","Evolution_rate") write.table(evol_rate,"evolution_rate.tsv",sep="\t",quote=F,row.names=F,col.names=T)