diff claraguess.R @ 6:aba980404954 draft default tip

planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 1f5e22a210b8a395f1c7b48f54e03e781a1b34c4
author ecology
date Wed, 14 May 2025 13:49:25 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/claraguess.R	Wed May 14 13:49:25 2025 +0000
@@ -0,0 +1,75 @@
+##30/04/2025
+##Jean Le Cras
+### Clustering with Clara algorithm with an option to determine the optimal number of clusters based on SIH index
+
+#load libraries
+library(cluster)
+library(dplyr)
+library(tidyverse)
+
+#load arguments
+args <- commandArgs(trailingOnly = TRUE)
+if (length(args)==0) {
+  stop("This tool needs at least one argument")
+}
+
+#load data
+enviro_path <- args[1]
+preds_path <- args[2]
+taxas_path <- args[3]
+type <- args[4]
+k <- as.integer(args[5])
+metric <- args[6]
+samples <- as.integer(args[7])
+env.data <- read.table(enviro_path, sep = "\t", header = TRUE, dec = ".", na.strings = "-9999")
+
+data_split = str_split(preds_path, ",")
+preds.data = NULL
+
+for (i in 1:length(data_split[[1]])) {
+  df <- read.table(data_split[[1]][i], dec=".", sep="\t", header=T, na.strings="NA")
+  preds.data <- rbind(preds.data, df)
+  remove(df)
+}
+
+names(preds.data) <- c("lat", "long", "pred", "taxa")
+
+development_traits <- str_split(readLines(taxas_path), "\t")
+
+#select the clara model with the optimal number of clusters
+model <- NULL
+
+if (type == "auto") {
+  sih_scores <- c()
+  models <- list()
+  
+  for (i in 2:k) {
+    models[[i]] <- clara(preds.data$pred, i, metric = metric, samples = samples, stand = TRUE)
+    sih_scores[i] <- models[[i]]$silinfo$avg.width
+  }
+  png("sih_scores.png")
+  plot(2:k, sih_scores[2:k], type = "b", xlab = "Number of clusters", ylab = "SIH index")
+  dev.off()
+  
+  best_k <- which.max(sih_scores[3:k]) + 2
+  model <- models[[best_k]]
+  k <- best_k
+} else {
+  model <- clara(preds.data$pred, k, metric = metric, samples = samples, stand = TRUE)
+}
+
+#saving results
+png("silhouette_plot.png")
+plot(silhouette(model), main = paste("Silhouette plot for k =", k))
+dev.off()
+
+data.test <- matrix(preds.data$pred, nrow = nrow(env.data), ncol = nrow(preds.data) / nrow(env.data))
+data.test <- data.frame(data.test)
+names(data.test) <- unique(preds.data$development)
+
+full.data <- cbind(preds.data[1:nrow(data.test), 1:2], model$clustering)
+names(full.data) <- c("lat", "long", "cluster")
+full.data <- cbind(full.data, data.test, env.data[, 3:ncol(env.data)])
+
+write.table(full.data[1:3], file = "data_cluster.tabular", quote = FALSE, sep = "\t", row.names = FALSE)
+write.table(full.data, file = "clustered_taxas_env.tabular", quote = FALSE, sep = "\t", row.names = FALSE)
\ No newline at end of file